
A Genetic Algorithm for the
Longest Common Subsequence Problem

Brenda Hinkemeyer and Bryant A. Julstrom
Department of Computer Science, St. Cloud State University

St. Cloud, MN 56301 USA

brenda@nikosha.net, julstrom@stcloudstate.edu

ABSTRACT
A genetic algorithm for the longest common subsequence
problem encodes candidate sequences as binary strings that
indicate subsequences of the shortest or first string. Its
fitness function penalizes sequences not found in all the
strings. In tests on 84 sets of three strings, a dynamic pro-
gramming algorithm returns optimum solutions quickly on
smaller instances and increasingly slowly on larger instances.
Repeated trials of the GA always identify optimum subse-
quences, and it runs in reasonable times even on the largest
instances.

In Proceedings of the Genetic and Evolutionary Computation

Conference, GECCO–2006 (Maarten Keijzer et al., Editors),

Volume 1, pp.609–610. New York: ACM Press, 2006.

Categories and Subject Descriptors
G.2.1 [Mathematics of Computing]: Discrete Mathe-
matics—Combinatorics; I.2.8 [Problem Solving, Control

Methods, and Search]: Heuristic Methods

General Terms
Algorithms

Keywords
Strings, longest common subsequence, genetic algorithm

1. INTRODUCTION
A subsequence of a string S is a sequence obtained by

deleting zero more characters from S. Given two or more
strings S1, S2, . . . , SK over an alphabet Σ, the Longest
Common Subsequence (LCS) problem seeks the length of a
longest subsequence found in all of the strings. A dynamic
programming algorithm for the LCS problem due to Irving
and Fraser [1] requires time that is O(nK), where n is the
length of the strings.

2. AN EVOLUTIONARY CODING
For evolutionary search in the LCS problem, encode can-

didate sequences as binary strings as long as the shortest of
the given strings (or the first if their lengths are equal) S1.
In a chromosome c[·], c[i] = 1 indicates that S1[i] is in
the sequence c[·] represents; c[i] = 0 that it is not.
The fitness function rewards longer sequences; strongly

rewards a chromosome for each string in which its subse-
quence appears; rewards a chromosome whose subsequence

Copyright is held by the author/owner(s).
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
ACM 1-59593-186-4/06/0007.

is as long as S1; and very strongly penalizes a chromosome
whose subsequence is not found in all of the strings. In the
following sketch, v is a variable in which c[·]’s fitness f(c[·])
is developed, ` is the length of the subsequence c[·] repre-
sents (that is, the number of 1s in c[·]), m is the number of
strings that the subsequence matches, S1 is the shortest or
first string, and K is the number of strings in the instance.

v ← ` + 30×m
if ` = |S1|

v ← v + 50
if m = K

v ← 3000× v
else

v ← −1000× v × (K −m)
f(c[·])← v

Random chromosomes are generated by assigning their
positions 0 or 1 with equal probabilities. All chromosomes
represent candidate sequences, so positional operators—k-
point crossover and position-by-position mutation—can be
applied to them.

3. A GENETIC ALGORITHM
A generational genetic algorithm uses the coding and op-

erators just described. It initializes its population with ran-
dom chromosomes. It chooses chromosomes to be parents in
2-tournaments, generates offspring chromosomes from par-
ents by applying crossover or mutation with equal proba-
bilities, and is 1-elitist. The GA can handle instances with
any number of strings. In the tests described below, the
GA’s population contained 100 chromosomes. The proba-
bility that mutation flips each entry was 1/n. The non-best
chromosomes were re-initialized if no improvement in the
fittest chromosome occurred for 100 generations. The GA
ran until it found an optimum solution, which was always
known.

4. TESTS
Test LCS instances, each with K = 3 strings, have alpha-

bet size |Σ| = 2, 4, or 26, corresponding to binary, DNA,
or English-alphabet strings; lengths n = 100, 200, 400, 800,
1600, 3200, or 6400; and maximum common subsequence
lengths equal to 10%, 50%, 90%, or 100% of their strings’
lengths. For each, S1 was chosen and a subsequence of it
was specified. This subsequence then appeared in the other
strings, whose remaining positions were filled in such a way
that no longer subsequence was common to all the strings.

Table 1: The trials of the DPA and the GA on the 28

LCS instances with “DNA” strings; |Σ| = 4. For each
instance, the table lists the length n of its strings,

the length of a longest common subsequence as a

percentage of n, the time that the DPA required

to find the longest subsequence length, the shortest

and mean times the GA required to find the longest

length, and the standard deviation of those times.

The DPA could not run on the larger instances.

Instance DPA GA time (s)
n % time (s) best mean stdev
100 10% 0.094 0.204 3.204 15.655

50% 0.204 69.875 267.482 406.935
90% 0.079 0.187 1.451 3.189
100% 0.203 0.203 0.248 0.034

200 10% 0.782 1.047 1.298 0.139
50% 0.734 2.016 2.345 0.206
90% 0.625 1.297 1.942 0.306
100% 0.719 0.844 1.028 0.106

400 10% 4.313 4.579 5.162 0.361
50% 4.297 12.109 12.294 0.144
90% 3.391 7.000 9.264 0.869
100% 4.219 3.953 4.625 0.410

800 10% 1590.406 19.875 21.779 1.193
50% 1420.532 37.625 41.700 2.284
90% 936.125 35.157 39.507 2.159
100% 1300.547 16.516 18.897 1.273

1600 10% — 83.610 92.017 5.633
50% — 164.765 180.656 10.059
90% — 148.890 166.621 10.371
100% — 72.781 78.786 4.346

3200 10% — 347.609 382.175 23.236
50% — 687.438 736.156 32.872
90% — 645.781 703.531 28.021
100% — 288.547 323.813 18.164

6400 10% — 1433.047 1566.138 68.087
50% — 2938.422 3208.825 157.626
90% — 2788.547 2983.347 137.954
100% — 1231.718 1392.686 92.700

One instance was generated for each combination of |Σ|, n,
and LCS length.
The dynamic programming algorithm (DPA) of Irving and

Fraser and the genetic algorithm were implemented in Java
and executed on an AMD 3400+ processor with one Gbyte of
memory running at 2.2 GHz under Windows XP. The DPA
was run once and the GA 30 independent times on each
problem instance. Table 1 summarizes the results of these
trials on the instances with “DNA” strings (|Σ| = 4); results
on the binary and English-alphabet strings were similar.
The DPA’s times were similar for each string length and

small—no more than a few seconds—for n = 100, 200, and
400. On the instances with n = 800, the DPA’s times sud-
denly ballooned. On the largest instances, the DPA required
more memory than was available.
When n ≤ 400, the GA’s times were slightly longer than

but comparable to those of the DPA. With n = 800, the

Length Fitness/1M

Generations

Length

Fitness

0 4000 8000 12000 16000
0

1000

2000

3000

4000

5000

6000

-4

0

4

8

12

16

20

Figure 1: The length and fitness of the most fit se-

quence in the GA’s population on the binary strings

of length n = 6400 with LCS length = 0.9n.

GA’s times grew, but nowhere near as much as the DPA’s
times. On the larger instances, the GA continued to identify
longest common subsequences in reasonable times.
In general, the GA generates short sequences that are

found in all the strings, then extends them until one is as
long as possible. Figure 1 illustrates this behavior through
one of the GA’s runs. Fitness increases monotonically, as
it must under elitism, but the length of the fittest sequence
drops at first, and its fitness is negative. Initially, the fittest
sequence gets shorter as the GA searches for a subsequence
that occurs in all the strings. Once such a subsequence is
found, both length and fitness of the fittest subsequence
increase, as the GA identifies longer and longer common
subsequences.
Finally, because the GA represents candidate subsequences

by selecting characters from the shortest or first string in the
target LCS instance, it returns not only the length of a long
common subsequence but the sequence itself. In contrast,
the dynamic programming algorithm requires a second pass
over its primary data structure to retrieve the LCS [1].

5. CONCLUSION
A genetic algorithm for the longest common subsequence

problem encodes candidate sequences as binary strings that
indicate selections of characters from the shortest or first
given string. The GA was compared to a dynamic program-
ming algorithm on 84 instances of the LCS problem, each
with three strings over alphabets of two, four, or 26 char-
acters, string lengths from 100 to 6400, and known LCS
lengths of 0.1, 0.5, 0.9, and 1.0 times the string lengths. In
repeated trials on the instances, the GA always found an
optimum solution, a little more slowly than the dynamic
programming algorithm on the smaller instances, but much
more quickly on those with lengths of 800 and in reasonable
times on the larger instances.

6. REFERENCES
[1] R. Irving and C. Fraser. Two algorithms for the longest

common subsequence of three (or more) strings. In
Proceedings of the 3rd Annual Symposium on

Combinatorial Pattern Matching, pages 214–229, New
York, 1992. Springer-Verlag.

