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Abstract 

We prove that the NP-hard problem of finding in an undirected graph G a spanning tree with a maximum 
number of leaves is MAX-SNP hard. On the basis of a recent result in the theory of approximability of NP-hard 
optimization problems stating that all problems that are MAX-SNP hard with respect to approximation-preserving 
reductions do not allow polynomial time approximation schemes, unless P = NP, we conclude that the Maximum 
Leaves Spanning Tree Problem does not have a polynomial time approximation scheme, unless P = NP, giving 
therefore a negative answer to this question, which was left open in [6]. 

Keywords: Analysis of algorithms; Combinatorial problems; Spanning trees 

1. Introduction 

Since the discovery in the 70’s of NP-hard 
optimization problems which do not allow effi- 
cient solution algorithms, unless P = NP, the 
search for efficient approximation algorithms hav- 
ing different performance guarantees has begun. 
Different classes of optimization problems having 
approximation algorithms with similar perfor- 
mance guarantees have been found and classes 
like FPTAS, PTAS and APX have been defined 
long ago as the classes consisting of optimization 
problems having fully polynomial time approxima- 
tion schemes, polynomial time approximation 
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schemes and polynomial time k-approximation al- 
gorithms for some constant k > 1, respectively 

E71. 
Recently two new classes have been defined by 

Papadimitriou and Yannakakis [8] on the basis of 
a characterization of languages in NP in terms of 
logical formulas, namely the classes MAX-SNP 
and MAX-NP, both contained in APX. In the 
same paper 181 problems complete for MAX-SNP 
under a particular type of reduction which pre- 
serves approximability within a constant factor, 
called L-reduction, have been described, so that a 
complete problem has a polynomial time approxi- 
mation scheme iff the whole class does. 

More recently Arora et al. [l], on the basis of a 
characterization of NP in terms of multi-prover 
interactive proofs [2], have proved that no prob- 
lem complete for MAX-SNP can have a polyno- 
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mial time approximation scheme, unless P = NP. tion Problem (NPO for short). Initially it was 
As a consequence no problem which is MAX-SNP given by Johnson [7]. The following formulation, 
hard with respect to L-reductions can be in PTAS, very similar, is due to Crescenzi and Panconesi 
unless P = NP. 131. 

In this note we describe an L-reduction from 
the Minimum Dominating Set-B Problem, which 
is MAX-SNP complete [8], to the Maximum 
Leaves Spanning Tree Problem, thus proving that 
Maximum Leaves Spanning Tree is MAX-SNP 
hard. 

Definition. An NPU problem P is a tuple 
(1, Sol, c, opt) where: 

(1) 9 is the set of the instances of P and it is 
recognizable in polynomial time. 

As a consequence we are able to give a nega- 
tive answer to the question, left open in [6], of 
whether a polynomial time approximation scheme 
for Maximum Leaves Spanning Tree exists. 

(2) For each instance I, &l(1) is the set of 
feasible solutions of I. The set must be recogniz- 
able in polynomial time and a polynomial p exists 
such thatVsESol(Z), IsI <p(III). 

In [6] the Maximum Leaves Spanning Tree 
Problem has been extensively studied. Besides 
applications in circuit layouts and in communica- 
tions networks other interesting applications are 
mentioned, like the one that uses a spanning tree 
with a maximum number of leaves in the alterna- 
tive solution, described in [9], of the problem of 
self-stabilizing a set of processors in spite of 
distributed control [4]. Moreover in [61, a series of 
approximation algorithms for the Maximum 
Leaves Spanning Tree Problem is described based 
on local search, and the first two in this series are 
shown to have performance ratios of 5 and 3. It 
was left open whether the series describes a poly- 
nomial time approximation scheme. 

(3) For each instance I and each feasible solu- 
tion s E Sol(I), c( I, s) is an integer, non negative 
function, called objective function. 

(4) opt E {ma, min} tells if problem P is a 
maximization or a minimization problem. 

Solving problem P on a given instance I means 
finding a feasible solution s E Sol(l) which maxi- 
mizes ccl, s) over all feasible solutions s E Sol( I > 
if opt = mux or minimizes such value if opt = min. 
Opt(I) indicates such optimum value of the ob- 
jective function. 

The second definition describes what a linear 
reduction is. 

The consequence of the hardness result shown 
in this paper is that this series does not form such 
a scheme because no polynomial time approxima- 
tion scheme can exist for this problem, unless 
P=NP. 

In conclusion only polynomial time k-ap- 
proximation algorithms for some constant k > 1 
can be found for the Maximum Leaves Spanning 
Tree Problem, like those described in [6], with 
k = 5 and k = 3. Improving the value of k is an 
open research topic. 

Definition. Given two NPO problems 

p = (Y,, Sol,, cp> opt,), 

Q = (Ai, Sol,> ca, o&,)> 

an L-reduction from P to Q is a tuple 

(t,, t,, (Y, p), where t, and t, are polyncmial 

time computable functions and (Y and p are 

2. Definitions 

In the following we will describe an L-reduc- 
tion between two NP-hard optimization prob- 
lems. We give here two relevant definitions. 

The first definition is that of an NP Optimiza- 
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positive constants having the following properties 

(see Fig. 1): 
(1) t, : 3p ‘YQ. 
(2) VI ~2~ and Vs’ E SoZp(Z’), with I’ = t,(I), 

t,(I, s’> E Sol,(I). 
(3) VI EYp, I’ = f,(Z), opt&‘) < cwopt,U). 
(4) V’s’ E %Z,(Z’), I’ = t,(I), 

I OPf,( I) - CP( 1, t*( I, 0) I 

<pPIPtp(z’) -ccp(Z’, s’)I. 

Notice that (1) and (2) define a polynomial 
time transformation from optimization problem 
P to optimization problem Q, that is, a fast way 
to identify from an instance I of P, an instance I’ 
of Q and vice-versa from a solution of I’, a 
solution of 1. Instead (3) and (4) characterize the 
transformation as being an L-reduction. 

3. Definitions of the problems 

MINIMUM BOUNDED DOMINATING SET 
(MIN DOMINATING SET-B) 

Znstance: an undirected graph G = (V, A) with 
V={ul,..., v,,} and degrees bounded by a con- 
stant B. 

Feasible solution: a dominating set W, that is, a 
set W c V such that Vu E I/- W there exists a 
vertex u E W such that arc {c, w) E A. 

Objective function: the cardinality of W. 
Opt: min. 

MAXIMUM LEAVES SPANNING TREE 

Instance: an undirected graph G’ = (V’, A’). 
Feasible solution: a spanning tree T’ of G’. 
Objectiue function: the number of leaves of T’. 
Opt: max 

4. The L-reduction 

We now define the tuple (tl, t,, a, p> which 
constitutes an L-reduction from MIN DOMI- 
NATING SET-B, called problem P, to MAXI- 
MUM LEAVES SPANNING TREE, called 
problem Q. 

.,g..* 

v2 v3 

Fig. 2. 

The function t, : 3, +YL, is defined as fol- 
lows. If Z is an instance of problem P the in- 
stance I’ = t,(I) of problem Q is the graph G’ = 
(I”, A’), where 

I/‘= {cu”, “,, 1,)“‘) 1,,,2,,...,2,,,3,,...,3,,}, 

A’= {k”, %H 
n II n 

” u k% lj) u U {lj> 2J} u U {2j: 3j} 
j= 1 /=I j= 1 

Figs. 2 and 3 give an example of instances I and 

t,(I). 
We now define function t,. If T’ is a feasible 

solution of I’ we define t,(I, T’) as the set of 
vertices {cj: lj is not a leaf in T’) of G. In order 
to show that t2(Z, T’) is a dominating set of G we 
use the following helpful construction. We trans- 
form tree T’ into another spanning tree T”, by 
connecting to (Y” every vertex lj not already 
adjacent to it and by deleting the unique arc 
(2,, l,} in the resulting cycle. Figs. 4 and 5 illus- 
trate the construction on a spanning tree T’ of 
the graph G’ of Fig. 3. Notice that the new tree 
T” has the same leaves as T’, that is all vertices 

{3j),=1,...,n, cxl and some (1,). In fact a leaf 1, in 

01 t 

Fig. 3 
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Fig. 4. 

T’ remains a leaf in T”, an internal node lj in T’ 

remains an internal node in T” and no vertex 2,, 
for any i, can be a leaf because of the presence of 
the adjacent vertex 3,. Now it is straightforward 
to see that the set (cj: 1, is not a leaf in T’}, 
invariant under the construction, identify a domi- 
nating set of G, and also a partition of the 
vertices of G into sets made of vertices adjacent 
to the same vertex of the dominating set. 

011 J 

Fig. 5. 

Since both r, and t, can be computed in 
polynomial time it remains to be proved that the 
reduction is an L-reduction. We will use the 
following proposition. 

Proposition 1. Zf opt(l) = n,) then opt(l’) = 2n - 

n,, + 1. 

Proof. If opt(l) = n,, we construct a spanning 
tree T’ of G’ with a number of leaves equal to 
2n - a(, + 1. Simply we let tree T’ consists of all 
arcs connecting the vertices {2,} to the {3,} and to 
those vertices {lj) corresponding to the dominat- 
ing set of cardinality n,,. Then we connect all 
vertices (lj} to (Y(,, and LY(, to (Y,. Therefore 
opt( I’) > 2n - n,, + 1. Now if there exists a tree 
T’ with more than 2n - no + 1 leaves, the tree 
would have more than n - y1(, leaves labelled 1, 
and therefore it would identify a dominating set 
with less than n,, vertices, contrary to the fact 
that opt(Z) = n,,. 0 

Now we prove the two properties of an L-re- 
duction. 

Proposition 2. There exists (Y > 0 such that VI, 

opt(l’) < aopt(I>. 

Proof. Using Proposition 1 all we need to prove is 
that there exists a > 0 such that 2n -n, + 1 < 
LYNCH. This inequality follows if we let (Y = 2B + 2, 
for instance, and we notice that n,,(B + 1) > n, 
since graph G is B-bounded. 0 

Proposition 3. There exists /3 > 0 such that for all 

spanning trees T’ of G’ 

I wt( 1) - c( 1, fz( 1, T’)) I 

<PIopt -c(I’, T’)I. 

Proof. Let 1 be the number of leaves of tree T’ 
and let d be the number of vertices {l,} which are 
not leaves. Using Proposition 1 we can write the 
preceding inequality as 

d-n,,<P(2n -n,,+ 1 -I). 

Since the leaves of T’ are all the (3,), (Y, and 
some (lj}, we have that I = 2n + 1 - d and the 
conclusion follows with /3 = 1. 0 
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