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Abstract. In this paper we present LCSk++: a new metric for mea-
suring the similarity of long strings, and provide an algorithm for its
efficient computation. With ever increasing size of strings occuring in
practice, e.g. large genomes of plants and animals, classic algorithms such
as Longest Common Subsequence (LCS) fail due to demanding compu-
tational complexity. Recently, Benson et al. defined a similarity metric
named LCSk. By relaxing the requirement that the k-length substrings
should not overlap, we extend their definition into a new metric. An effi-
cient algorithm is presented which computes LCSk++ with complexity
of O((|X| + |Y |) log(|X| + |Y |)) for strings X and Y under a realistic
random model. The algorithm has been designed with implementation
simplicity in mind. Additionally, we describe how it can be adjusted to
compute LCSk as well, which gives an improvement of the O(|X||̇Y |)
algorithm presented in the original LCSk paper.
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1 Introduction

Measuring the similarity of strings is the fundamental problem which arises in
many applications including DNA sequence comparison [1], differential file anal-
ysis and plagiarism detection [2]. Metrics such as Longest Common Subsequence
[3] or Edit Distance [4] are usually used for solving this type of problems. Still,
even advanced variants of these approaches don’t cope well with long input
strings (e.g. the size of the human genome).

A general approach of approximating the Longest Common Subsequence is
given by Baker and Giancarlo [5]. They assume a list of matching substring
pairs of various lengths as input and combine them to approximate the LCS
between two long strings. The two variants of their algorithm have O(T log T )
and O(T log logmin(T, nm/T )) time complexities, where T denotes the number
of matching fragments and n,m denote lengths of the two strings. We simplify
some of their ideas and address the question of how to select these matching
fragments.
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Recently, significant effort was directed towards defining new similarity met-
rics. Benson et al. [1] defined a metric called LCSk, which is computed between
strings X of length m and Y of length n. It counts the maximal number of
nonoverlapping matching k-length substrings3 in the two strings (see Example
1). An O(mn) time and space algorithm is proposed for computing and recon-
structing the optimal LCSk. Deorowicz and Grabowski [6] correctly observed
that LCSk can be computed more efficiently. Out of several approaches, the
proposed Sparse method allows both the computation of LCSk metric and its
reconstruction in O(m + n + r log l) time and O(r) memory complexity, where
l is the length of the optimal solution and r is the total number of matching
k-length substring pairs between the input strings. In their approach they adapt
the Hunt-Szymanski [3] paradigm in a way that makes them rely on the usage
of persistent red-black binary tree.

A serious drawback to the LCSk definition is that it considers only nonover-
lapping matches with length of exactly k, thereby possibly ignoring substring
matches with lengths of at least k (see Example 1). Therefore, we propose the
LCSk++ measure, the longest common subsequence which removes this re-
striction. We still use the substrings of length k for computation, but they are
allowed to overlap which results that the resulting common subsequence con-
sists of nonoverlapping matching substrings with length of at least4 k. We give
an efficient O(m+ n+ r log r) time complexity algorithm in section 3.2. The al-
gorithm utilizes only on a light-weight Fenwick tree [7] data structure. In section
4 we demonstrate the ability of LCSk++ to separate pairs of strings which are
similar from unrelated ones under a realistic random model5. We discuss the in-
fluence of the parameter k on the performance and the separability. To the best
of our knowledge, such discussion didn’t appear in any previous related work.
We conclude the paper with an O((m+n) log(m+n)) time and O(m+n) mem-
ory complexity algorithm with good separability under the presented random
model.

Example 1. Consider three strings: X=ABCBA, Y =ABCBA and Z=ABCDE
and let k = 3. LCS3 between every pair of these strings is equal to 1. The fact
that X and Y are more similar than X and Z is not captured. That is because
the k-length substrings are forbidden to overlap.

2 Preliminaries

In this section we formalize the concepts used in the remainder of the paper.

Definition 1 (Common subsequence). Given two strings X and Y consider
two sets of distinct indices I = {i1, i2, ..., in} and J = {j1, j2, ..., jn} such that

3 Similarly as in [1], we use the term substring to denote a consecutive part of the
string, while a subsequence is obtained by deleting symbols from arbitrary indices.

4 Hence the plusses in the LCSk++.
5 We call this property separability.



i1 < i2 < ... < in, j1 < j2 < ... < jn and Xix = Yjx for x = 1...n. Sets I and J
determine a common subsequence of X and Y whose length is equal to n.

Definition 2 (k++ common subsequence). Consider a common subsequence
of strings X and Y . Such subsequence uniquely determines two sets of indices
I and J (as in definition 1). If both I and J can be partitioned into families
of sets of consecutive indices such that every set has a size of at least k, this
subsequence is called a k++ common subsequence.

Definition 3 (LCSk++). LCSk++ of two strings X and Y is the length of
their k++ common subsequence with maximal number of elements.

Definition 4. We denote a substring of string X starting at index i and ending
at index j by Xi...j. If i > j then Xi...j denotes an empty string.

Example 2. Consider the same strings as in Example 1. Now LCS3++(X,Y )
equals 5 and LCS3++(X,Z) equals 3, which reflects the fact that X and Y
are more similar than X and Z. That is because of the k-length substrings are
allowed to overlap.

3 Computation

3.1 Basic dynamic programming

The basic dynamic programming algorithm sequentially computes the values of
dp(i, j) = LCSk++(X0...i−1, Y0...j−1) via the following recursive relation:

dp(i, j) = max


0

dp(i− 1, j) i ≥ 1

dp(i, j − 1) j ≥ 1

dp(i− q, j − q) + q for all q ≥ k s.t. Xi−q...i−1 = Yj−q...j−1

(1)

The 2nd and 3rd terms in the above formula correspond to inheriting the
LCSk++ value from previously computed values while the last term tries to
extend the LCSk++(X0...i−q−1, Y0...j−q−1) with Xi−q...i−1 and Yj−q...j−1 if they
are equal. Those terms contribute |Xi−q...i−1| = |Yj−q...j−1| = q to the resulting
length. A direct implementation of the above idea leads to an algorithm with
time complexity O(nm ·min(n,m)).

3.2 Efficient algorithm

Definition 5 (Match pair6). For a given strings X, Y and integer k ≥ 1 we
define:

kMatch(i, j) =

{
1 ifXi+f = Yj+f , for every 0 ≤ f ≤ k − 1

0 otherwise
(2)

6 Original definition given in [1].



If kMatch(i,j)=1, we call (i,j) a match pair. In other words, kMatch(i,j)=1
when the substring of A starting at i and having an length of exactly k is equal
to the substring of B starting at j with the same length. (i, j) is also called the
start and (i + k, j + k) is called the end of the match pair.

When the number of match pairs r is less than quadratic (consult Section 4 for
the analysis), it is possible to compute LCSk++ efficiently. The time complexity
of the algorithm we will describe in this section is O(n + m + r log r).

For every match pair P = (iP , jP ) we use dynamic programming to com-
pute dp(P ) = LCSk++(X0...iP+k−1, Y0...jP+k−1), which represents the value
of LCSk++ ending with P . The following definitions will be useful:

Definition 6 (Precedence of match pairs). Let P=(iP , jP ) and G=(iG, jG)
be k-match pairs. Then G precedes P if iG + k ≤ iP and jG + k ≤ jP . In other
words, G precedes P if the end of G is on the upper left side of the start of P in
the dynamic programming table (see Figure 1).

Definition 7 (Continuation of match pairs). Let P=(iP , jP ) and G=(iG, jG)
be k-match pairs. Then P continues G if iP − jP = iG − jG (i.e. they are on
the same primary diagonal) and iP − iG = 1 (P is only one down-right position
from G, see Figure 1).
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Fig. 1: k = 2; strings X = ATTATG and Y = CTATAGAGTA construct
exactly five 2-match pairs denoted a to e. Starts are represented by circles, ends
are represented by squares. The following holds: “b continues a”, “c precedes e”,
while the following does not hold: “a precedes b”, “c precedes d”, “a continues
b”.



We can express the dp(P ) = LCSk++(X0...iP+k−1, Y0...jP+k−1) via the fol-
lowing formula which will be the basis for the efficient algorithm:

dp(P ) = max


k

maxG dp(G) + k over all G preceding P

dp(G) + 1 if P continues G

(3)

In other words, a k-match pair P can either start its own k-common subsequence,
extend a k-common subsequence ending with a match G such that G precedes
P or extend a k-common subsequence ending with a match pair G such that P
continues G. In the second case the k-common sequence is enlarged by k (e.g.
c→ e in figure 1), while in the latter it’s enlarged by 1 (e.g. a→ b in figure 1).

Algorithm 1 Efficient LCSk++ computation

1: MaxColDp← 1D array filled with n zeros
2: MatchPairs← find all k-match pairs between X and Y
3: events ← all starts and ends of MatchPairs sorted in row-major order, if some

start S = (iS , jS) and some end E = (iE , jE) share the same indices, E should
come first

4: for all event ∈ events do
5: if event is a start P = (iP , jP ) then
6: dp(P ) ← k + maxx∈0...jP MaxColDp(x)
7: else if event is an end P = (iP + k, jP + k) then
8: if ∃G s.t. P continues G then
9: dp(P )← max{dp(P ), dp(G) + 1}

10: end if
11: MaxColDp(jP + k)← max {MaxColDp(jP + k), dp(P )}
12: end if
13: end for
14: return maxP dp(P )

Algorithm 1 starts by extracting all of the r match pairs on line 2. This can be
done in two ways: we can employ a suffix array in the exact same manner as in [6]
to get the time complexity of O(n+m+r). However, as k is small in practice7 we
can find all match pairs using a simple hash table in O(n+m+kr) = O(n+m+r).

Line 3 creates events and sorts them, which ensures the correctness of the
sweeping algorithm on lines 4-14. This can be accomplished in O(r log r) using
a standard comparison based sorting algorithm. Line 8 can be implemented as a
binary search over the events array. If MaxColDp is implemented as a Fenwick
tree [7], the operations on lines 6 and 11 have a cost of O(log n) which implies that
the sweep algorithm runs in O(r log n). Overall complexity is O(m+n+r log r)8.

7 Usually k will be small enough such that every k-length substring can be perfectly
hashed using 64 bits, see section 4 for details.

8 This is assuming that r is at least as big as n. In the other case the correct complexity
is O(m + n + r log r + r logn).



The memory complexity is O(n+m+ r) because we only need the space to save
the match pairs and the MaxColDp structure. If we would like to reconstruct
the sequence, the dp array has to store O(1) additional information per match
pair: a pointer to the previous match pair in case some other match pair G
preceded P or P continued some G in the optimal solution. We remark that by
removing lines 8-10 this algorithm computes LCSk.

4 How to choose k?

In this section we will analyze the performance of the LCSk++ measure on the
following classification problem: given a pair of strings X and Y , decide whether
they are similar to each other. To formalize this problem, next sections proposes
two simple random models: one for the unrelated pairs of strings and one for
similar pairs. We use this setting to demonstrate the influence of the parameter
k to the performance and separability of LCSk++.

On an efficiency note, it is natural to expect that the time complexity of
the algorithm will decrease as the size of the alphabet increases (due to the
diminishing number of match pairs). The interesting questions thus emerge when
the size of the alphabet is small and the lengths of the strings are large. Such a
setting is naturally found in DNA sequence alignment, which is an inspiration
for the presented model.

4.1 Similarity model

We model a pair of unrelated strings X(n) and Y (n) of length n as random
strings over the alphabet {A,C,G, T} where each character has a known and mu-
tually independent probability of appearing. This construction yields a constant

eunrelated defined as eunrelated = P [X
(n)
i 6= Y

(n)
i ].

The model for similar pairs depends on a fixed parameter esimilar < eunrelated.
Pairs of strings are generated in a way that one of them is created randomly over
{A,C,G, T} using the same distributions as above, and the other one is its mu-

tated copy satisfying restriction P [X
(n)
i 6= Y

(n)
i ] = esimilar. The model reflects

simplified evolutionary mutations (only substitutions are considered).
In order to distinguish between two classes, we would expect the following

to hold (see Figure 2 for confirmation of this claim):

E[LCSk++(X
(n)
similar, Y

(n)
similar)]

n
>

E[LCSk++(X
(n)
unrelated, Y

(n)
unrelated)]

n
(4)

Computing the asymptotic behavior in Eq. 4 is still an open problem [8, 9],
though the limit does exist - it can be shown by following the argument for
the expectation of LCS for random strings by Chvátal and Sankoff in [10]. We
compute them by a Monte Carlo simulation.
Unpublished work of Rabinovitch[11] experimentally demonstrates that the value

of E[LCS(X(n),Y (n))]
n increases with n, eventually hitting the limit. The value



of StdDev[LCS(X(n),Y (n))]
n decreases with n. Experiments presented in Table 1

confirm this behavior for LCSk++. Effectively this means that the separability
gets better as n increases.
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(c) k = 10
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Fig. 2: LCSk++ distributions for strings of length 1000 and several values of
k. It is clear that increasing k lowers the average score that string pairs achieve
and increases the deviation. For our similarity model, the boundary of good
separability is reached by setting k to around 20. DNA substrings of length 20
can be perfectly hashed in a 64-bit integer. That is useful for implementation
because the step of finding all the match pairs can be implemented with a simple
hash table.

4.2 Expected value of match pairs r

Let X, Y be either unrelated or similar pair of strings of length m,n constructed
over the alphabet {A, C, G, T} with a priori distributions pA, pC , pG, pT . Then
S := E[Xi = Yj ] = (p2A + p2C + p2G + p2T ) for all i 6= j (this restriction is needed
to cover both models with this proof). Expected number of match pairs then
equals:



E[r] = E[# of pairs (i,j) such that Xi..i+k−1 = Yj..j+k−1]

= E

n−k∑
i=0

m−k∑
j=0

1[Xi..i+k−1 = Yj..j+k−1]


= E

n−k∑
i=0

m−k∑
j=0

1[i = j]1[Xi..i+k−1 = Yj..j+k−1]

 +

E

n−k∑
i=0

m−k∑
j=0

1[i 6= j]1[Xi..i+k−1 = Yj..j+k−1]


= O(n + m) +

n−k∑
i=0

m−k∑
j=0

E [1[i 6= j]1[Xi..i+k−1 = Yj..j+k−1]]

= O(n + m + nmSk) (5)

Corollary 1. By choosing kfast = log1/S
nm
n+m it follows that E[r] = O(n+m),

so the expected complexity of the whole algorithm is O((n + m) log(n + m)).

Corollary 2. For uniformly distributed alphabets, the expected number of match
pairs drops as the size of the alphabet increases. That implies that the bigger
the alphabet is, the smaller k is needed for the LCSk++ computation to run
efficiently.

Table 1: Expected values and standard deviations of the LCSk++ dis-
tribution for strings of length 100, 1000 and 10000, k of 10 and 20, and for
unrelated and similar pairs (with various esimilar).

k string length error E[LCSk++]
n

Std.Dev.
n

10 1000 unrelated 0.015 0.024

0.20 0.470 0.051

0.10 0.770 0.041

0.05 0.911 0.025

10000 unrelated 0.032 0.015

0.20 0.471 0.017

0.10 0.772 0.014

0.05 0.914 0.008

100000 unrelated 0.041 0.015

0.20 0.471 0.006

0.10 0.772 0.005

0.05 0.914 0.003

k string length error E[LCSk++]
n

Std.Dev.
n

20 1000 unrelated 0.001 0.006

0.20 0.154 0.057

0.10 0.512 0.075

0.05 0.793 0.058

10000 unrelated 0.006 0.009

0.20 0.154 0.018

0.10 0.516 0.025

0.05 0.801 0.018

100000 unrelated 0.011 0.008

0.20 0.154 0.006

0.10 0.516 0.008

0.05 0.801 0.006



5 Conclusions

In this paper we defined LCSk++, a similarity metric for long strings and we
proposed an efficient algorithm for its computation. LCSk++ is a natural ex-
tension over the previous LCSk metric [1], with improved sensitivity. The only
parameter k gives a flexible tradeoff between computational efficiency and sensi-
tivity. Assuming strings X and Y follow a realistic random model, we presented
a O((|X|+ |Y |) log(|X|+ |Y |)) algorithm for computing the metric. Because of
dependence on only a simple Fenwick tree data structure, the implementation is
almost straightforward, making LCSk++ attractive for usage in practice.
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