
Genome Informatics 16(2): 237–246 (2005) 237

A Space-Efficient Algorithm for the Constrained

Pairwise Sequence Alignment Problem

Dan He Abdullah N. Arslan
dhe@cs.uvm.edu aarslan@cs.uvm.edu

Department of Computer Science, University of Vermont, Burlington, VT 05405, USA

Abstract

The constrained pairwise sequence alignment (CPSA) problem aims to align two given sequences
by aligning their similar subsequences in the same region under the guidance of a given pattern
(constraint). Let the lengths of the sequences be m, and n where n ≤ m, and let r ≤ n be the length
of the given pattern. The optimum constrained pairwise alignment score can be computed using
O(rn) space by a naive dynamic programming solution. If an optimal alignment path is desired
then the space requirement of the naive dynamic programming algorithm is O(rnm). There is a
divide-and-conquer algorithm that reduces the memory requirement of finding an optimal alignment
for the CPSA problem to O(rn). In this paper, we present a space-efficient CPSA algorithm that
returns an optimal alignment. Our analysis on real protein sequences suggests that our algorithm
requires only O(n) space in practice. This algorithm is not only space efficient but also very fast.
A generalization of the CPSA problem for multiple sequences is called the constrained multiple
sequence alignment (CMSA) problem. Our CPSA algorithm also improves the space requirement
of progressive CMSA algorithms that use solutions of CPSA problems.

Keywords: constrained sequence alignment, pairwise alignment, multiple alignment, dynamic pro-
gramming, divide-and-conquer, space efficient

1 Introduction

The constrained pairwise sequence alignment (CPSA) problem [8] aims to find the optimum alignment
score of two given sequences S1 and S2 such that the alignment contains a given pattern string P , i.e.
in the alignment matrix there exists a sequence c of columns each entirely composed of symbol P [k] for
every k where P [k] is the kth symbol in P , 1 ≤ k ≤ |P |, and in the sequence c, a column containing P [i]
appears before column containing P [j] for all i, j, i < j. The generalization of this problem for multiple
sequences is called the constrained multiple sequence alignment (CMSA) problem [8]. The motivation
for these constrained sequence alignment problems are to incorporate the biologically meaningful prior
knowledge of the structure or pattern of the input sequences into the alignment process. Patterns the
optimal alignments are constrained to contain can lead to more biologically meaningful alignments
other than alignments with mathematically high scores. For example, in all members of a certain
protein family a particular cysteine residue enters into a disulfide bond, all those cysteines should be
placed in the same column by an alignment of members of that family, even if some other configurations
result in higher scores. Another application of the problem is the alignment of RNase sequences. Such
sequences are all known to contain three active residues His(H), Lyn(K), His(H) that are essential
for RNA degrading. Therefore it is natural to expect that in an alignment of RNA sequences, each
of these residues should be aligned in the same column. Constrained sequence alignment may also be
used in comparing other long biological sequences which share a common pattern, and it may also

238 He and Arslan

have applications outside computational biology such as text alignment problem. It is an interesting
problem in computer science.

There are many dynamic programming algorithms for the CMSA and CPSA problems, and their
variations [5, 1, 2, 3, 8, 9, 10]. In the CPSA problem let m, and n be the length of the sequences
aligned, and let r be the length of the pattern string P . We assume without loss of generality that
r ≤ n ≤ m, and typically r is much smaller than n. The time complexity of the CPSA problem is
O(rnm) (see for example Chin et al. [2]). In this paper we concentrate on the space complexity of the
CPSA problem. The space complexity in sequence alignment problems can be problematic for long
sequences. Progressive CMSA algorithms align the sequences into a multiple alignment by using a
minimum spanning tree obtained from a constrained pairwise distance matrix of the sequences that
is generated by solving CPSA problems [2, 8]. Space requirement of the CPSA algorithms are a
bottleneck for these CMSA algorithms. Therefore a space efficient solution for the CPSA problem
is important not only for the feasibility of constrained pairwise sequence alignment but also for the
practicality of some CMSA algorithms.

Space complexity of the naive CPSA dynamic programming algorithm presented by Chin et al. [2]
is O(rnm). This can easily be reduced to O(rn) by performing the calculations layer by layer where
each layer is the alignment matrix for S1 and P , and the layers are indexed by positions in S2. In
this case, we only need to store the previous layer and the current layer when we compute the current
layer. Therefore we only need O(rn) space. If an optimal alignment is also desired then finding
an optimal alignment using the naive algorithm requires O(rnm) space. Lu and Huang [7] propose
a memory efficient algorithm based on the divide-and-conquer approach for linear-space pairwise
sequence alignment [6]. Their algorithm can find an optimal alignment for the CPSA problem in
O(rn) space. Arslan and Eğecioğlu [1] discuss similar space complexity results for the constrained
longest common subsequence, and edit-distance constrained longest common subsequence problems
which are the variations of the CPSA problem.

He and Arslan [5] presented an algorithm for the CPSA and CMSA problems based on the
dynamic programming solution devised by Chin et al. [2]. Even though the algorithm does not
improve the worst-case time complexity of these problems, it avoids redundant computations in the
original dynamic programming matrix. The algorithm uses the pattern string P to pre-compute the
regions (which are usually much smaller than the entire matrix) at each layer (an alignment matrix
for S1 and S2) where an optimal alignment can possibly pass. He and Arslan [5] showed that this
algorithm is much faster in practice than a naive implementation of the algorithm of Chin et al. [2].
The worst-case space complexity of this algorithm for the CPSA problem is O(n2) when we compute
the optimum score, and O(rn2) if an optimal alignment is also desired.

In this paper, we propose a CPSA algorithm that uses O(n + α) space where our experiments
suggest that α ¿ n when we use protein sequences. Our algorithm uses the CPSA algorithm of
He and Arslan [5] and the divide-and-conquer linear-space pairwise sequence alignment algorithm [6].
The algorithm considers the dynamic programming matrix for the CPSA problem as a graph, and
computes an optimal constrained path (an optimal alignment path that contains P) in this graph
between the vertices (0, 0, 0) and (m,n, r). An optimal path enters, spans, and exits layers indexed
by the positions in P where each layer is a subregion of the pairwise alignment matrix of the two
sequences S1 and S2 whose boundaries can be pre-computed at each layer. For each layer we pre-
compute all possible points where an optimal constrained alignment can enter and exit. We apply the
divide-and-conquer approach on the dynamic programming matrix to calculate a mid-point through
which an optimal constrained alignment path passes. We calculate and store optimum scores obtained
at these entry and exit points layer by layer, and within a layer in row by row manner. This requires
O(n + α) space where α is the maximum total number of entry and exit vertices for any layer. Once
a mid-point is found we recurse on the two halves to find the two halves of an optimal constrained
alignment path which passes through this mid-point. The space complexity of the resulting algorithm
is O(n + α).

A Space-Efficient Algorithm for the CPSA Problem 239

The outline of this paper is as follows: In Section 2 we summarize the current algorithms for the
CPSA problem. In Section 3 we describe our algorithm for the CPSA problem. In Section 4, we
show evidence using real data that our algorithm is space efficient. We include our final remarks in
Section 5.

2 Algorithms for the CPSA Problem

Given two sequences S1, S2 with lengths n ≤ m, respectively, the pairwise sequence alignment (PSA)
problem is to find the optimum alignment score for these two sequences. The problem can be solved
according to the following recurrence:

Theorem 1 [11] D(i1, i2) = ∞ if i1 = 0, or i2 = 0, and D(0, 0) = 0, and for all i1, i2, 0 < i1 ≤
s1, 0 < i2 ≤ s2,

D(i1, i2) = min

D(i1 − 1, i2 − 1) + δ(S1[i1], S2[i2]) if (S1[i1] = S2[i2])
D(i1 − 1, i2) + δ(S1[i1],′−′)
D(i1, i2 − 1) + +δ(′−′, S2[i2])

where δ(a, b) is the score for the alignment of symbol a and b.

Computing the optimum score D(m, n) of the PSA problem takes O(nm) time and O(n) space
since at one time we only need to record the current row, the preceding row, and after every iterations
the current row is moved onto the preceding row. If we also desire an optimal alignment path then
this can be done using O(nm) space. Hirschberg [6] showed that an optimal solution for the PSA
problem can be solved in only O(n) space by binary-recursion. This approach is based on computing
mid-point of an optimal alignment along one string whose length is m, and recursing on the two
halves. An optimal alignment can be obtained by merging the series of mid-points. We show this
approach in Figure 1. For sequence S1 with length n and sequence S2 with length m, Hirschberg’s
algorithm divides S1 into two halves: S11[1...n

2] and S12[n2 ...n]. S11 is then aligned with S2 using the
linear-space algorithm, namely each time saving only two adjacent columns. The alignment proceeds
from vertex A to the middle dividing line . Then S12 and S2 are reversed and aligned using the same
linear-space algorithm, which proceeds from vertex B to the middle dividing line. The mid-point can
be determined by picking vertex C from the middle dividing line such that the sum of the alignment
score from A to C and the alignment score from B to C is minimized. The original PSA problem then
is reduced to two smaller PSA problems: the dynamic programming matrix from A to C, and the
dynamic programming matrix from C to B. Each of these two subproblems can be solved recursively
in the same manner. The recursion ends when the length of one of two sequences to be aligned is
one. We can write recurrence relations for the time complexity, and space complexity. Solving these
recurrences shows that the time to find an optimal alignment is O(nm) (it is twice the time required
to calculate the optimum score but not an optimal path), and the space used is O(n).

For the CPSA problem Chin et al. [2] present a dynamic programming formulation that modifies
the solution of the PSA problem by considering the additional string P . We next show this solution.

Let D(i1, i2, k) be the optimal constrained sequence alignment score of sequences S1[1..i1],S2[1..i2]
with pattern sequence P [1..k]. Then this score can be computed by the following recurrence:

Theorem 2 [2] D(i1, i2, k) = ∞ if i1 = 0, or i2 = 0, for all k, 1 ≤ k ≤ r, and D({0}2, 0) = 0, and
for all i1, i2, k, 0 < i1 ≤ s1, 0 < i2 ≤ s2, 0 ≤ k ≤ r,

D(i1, i2, k) = min

D(i1 − 1, i2 − 1, k − 1) + δ(S1[i1], S2[i2])
if (S1[i1] = S2[i2] = P [k]) and k ≥ 1

mine∈{0,1}2D(i1 − e1, i2 − e2, k) + δ(e1 ∗ S1[i1], e2 ∗ S2[i2])
for ij − ej ≥ 0 for all j, 1 ≤ j ≤ 2

240 He and Arslan

�

�

�

�

���

���

�����

���	�

������	�
�������������

�������

Figure 1: Hirschberg’s Linear-space algorithm in layer by layer manner.

where ej = 0 or 1, ej ∗ Sj [ij] with ej = 0 represents a space character ′−′, and Sj [ij] when ej = 1.

D(m,n, r) is the optimum score of the CPSA problem. We can visualize the dynamic programming
computations in Theorem 1 for the CPSA problem in r+1 layers, one layer at each iteration k, where
each layer is a two dimensional dynamic programming matrix (or alignment matrix of S1 and S2).
Figure 2 illustrates the layers during the computations of CPSA for a pattern whose length is 2.

Figure 2: CPSA computation for a pattern string of length 2.

The score D(i1, i2, k) for each node (i1, i2, k) in the dynamic programming matrix is computed
using the scores of all the neighbor nodes (nodes that have direct links to this node) on the same layer
k, or on the preceding layer k − 1 (if it exists).

He and Arslan [5] improved the naive dynamic programming algorithm of Chin et al. [2] using the
observation that if the symbol P [k] is aligned with a symbol of Si then the region before this symbol
P [k] in Si can never be aligned with the region after P [k] in Sj . Thus redundant computations
in the original dynamic programming matrix can be avoided by precomputing regions that need to
be considered using the pattern string P . This saves both time and space. The same idea can be
extended for the CMSA problem. The speed-up achieved by this way is significant when the pattern
string is long, or the number of sequences n is large. Although the algorithm does not improve the
worst-case time complexity of the CMSA problem (it is O(2ns1s2...snr) where each si denotes the
length of Si), experiments show that for 5 RNA sequences, and a pattern of length 4 the algorithm is
60 times faster than a naive implementation of the dynamic programming solution in Theorem 1. An
interesting result is that for the CPSA problem the time requirement of the algorithm is observed to
be O(nm) when the pattern length r is sufficiently large with respect to n and m, and it may even
decrease with increasing r.

A Space-Efficient Algorithm for the CPSA Problem 241

Lu and Huang [7] proposed a memory efficient algorithm CPSA-DC based on Hirschberg’s divide-
and-conquer approach [6]. The algorithm can solve the CPSA problem in O(rn) space. In the algo-
rithm, the constrained alignment problem is divided into two smaller constrained alignment problems
at a middle point. Then each of these smaller constrained alignment problems is recursively divided
into two smaller subproblems in the same manner. The optimal constrained alignment is obtained by
merging these series of mid-points. The dynamic programming matrix for the CPSA problem can be
visualized as a 3-dimensional matrix with each dimension indexed by positions of symbols in S1, S2

and P , respectively. This 3-dimensional matrix can be computed in a layer by layer manner, where
the layers can be indexed by the positions of symbols in pattern string P or S1 or S2 and each layer
is a 2-dimensional dynamic programming matrix. Figure 2 shows the case where layers are indexed
by the positions of symbols in the pattern string P . According to Theorem 1, the optimum score of
one vertex in the dynamic programming matrix can be obtained from the optimum scores of vertices
on the same layer and the vertices on the preceding layer. Therefore the calculation of the optimum
score at a mid-point in the divide-and-conquer approach needs to store the preceding layer, and the
current layer when the current layer is processed. Since in practice r ¿ n, the CPSA-DC algorithm
computes layers indexed by the positions of symbols in S1 as shown in Figure 3. Therefore the memory
requirement is O(rn) (instead of O(nm) space required if we compute layers indexed by the positions
of symbols in pattern string).

S2

S1

P

Figure 3: CPSA-DC algorithm for CPSA problem. The layers are indexed by the positions of
symbols in S1. Each time we need to record two adjacent layers. An example to such two layers is
shown in areas with dashed lines.

3 Algorithm Layer-DC

The algorithm of Lu and Huang [7] applies the divide-and-conquer approach to the complete 3-
dimensional dynamic programming matrix in a layer-by-layer manner and the algorithm needs to
store two complete layers at any time. Therefore its space complexity is O(rn). In our algorithm,
we not only take the divide-and-conquer approach in a layer-by-layer manner, but also we apply the
linear-space algorithm on each layer. With our approach at any given time we only need to store two
rows on the current 2-dimensional layer using O(n) space.

The dynamic programming solution for the CPSA problem can be considered as finding a shortest
path in the 3-dimensional dynamic programming matrix through layers. Here we index the layers with
the positions of symbols in the pattern string, as shown in Figure 2, where each layer is a 2-dimensional
matrix. We observe that a shortest path goes through each layer of the dynamic programming matrix
beginning at layer 0 and ending at layer r, where r is the length of the pattern string. A shortest
path enters each layer at a vertex (we call it an entry vertex), after traversing a number of vertices in

242 He and Arslan

Figure 4: For the CPSA problem with pattern string of length 3, a global shortest path passing
through entry and exit vertices, and connecting sub-paths on each layer.

each layer exits the layer at a vertex (we call it an exit vertex) never to come back to this layer again
as shown in Figure 4. In the dynamic programming algorithm the optimum scores for the vertices
on layer k are obtained from the optimum scores of the vertices on the same layer and the vertices
on the preceding layer, or more precisely the exit vertices on the preceding layer. Therefore the only
information on layer k we need to store in order to compute the optimum scores on layer k + 1 is the
scores of the exit vertices on layer k.

We can precompute all of the candidate entry and exit vertices (we call entry vertex set and exit
vertex set, respectively) on each layer. The entry vertices on layer k are all the vertices where the
symbol is P [k] for all sequences at these coordinates. These vertices are in the overlapping region of
layer k−1 (for k ≥ 1) and k. Similarly, the exit vertices on layer k (for k < r) are all the vertices where
the symbol is P [k + 1] for all sequences at these coordinates. These vertices are in the overlapping
region of layer k and k + 1. Note that the entry vertices on layer k are also the exit vertices on layer
k − 1, and the exit vertices on layer k are also the entry vertices on layer k + 1. Layer 0 has only one
entry vertex (0, 0, 0) and layer r has only one exit vertex (m,n, r). This is shown in Figure 4.

In our algorithm, we apply the divide-and-conquer approach through layers such that the original
CPSA problems can be divided into two smaller subproblems at a middle layer. While computing
through layers, we use the linear-space algorithm on each layer k, and store all the exit vertices which
are pre-calculated on layer k. Then we initialize the scores of the entry vertices on layer k +1 as those
of their corresponding exit vertices on layer k so that the linear-space algorithm can be again applied
to layer k + 1. Therefore we do not need to store the complete 2-dimensional dynamic programming
matrix of layer k. Let the forward computation starting at the top-left corner stop at a middle layer
f and the backward computation starting at the bottom-right corner stop at layer f + 1, we next find
the mid-point T in the exit vertex set E1 on layer f (also the entry vertex set E2 on layer f + 1)
which minimizes the score of the global path through the whole dynamic programming matrix. After
we find the mid-point T , we can divide the original problem into two smaller problems and then solve
each of them recursively in the same manner. Note that for the first subproblem, the end vertex of the
new smaller dynamic programming matrix is changed to T , and for the second subproblem the start
vertex of the new smaller dynamic programming matrix is changed to T as shown in Figure 5. If the
forward and backward computation fall on the same layer, it is just the ordinary case for Hirschberg’s
divide-and-conquer approach. We show our algorithm Layer-DC in Figure 6 and Figure 7.

The space complexity of our algorithm Layer-DC is O(n + α) where α is the maximum number
of entry and exit vertices on any layer. This is because at each layer until a mid-point is reached
the algorithm stores scores for O(α) entry and exit points, and the total area (in terms of vertices)
computed is O(n). Chin et al. [2] showed that the number of occurrences of constraints is very small
compared with the size of the aligned sequences. Thus usually α ¿ n. Therefore our algorithm

A Space-Efficient Algorithm for the CPSA Problem 243

���������
	��

���������
	�����

���������
� 	����	��������

���������
� 	����	�����������

���������
	������

���������
	��

�
�
�
�

�
�
�

�������
 ����!���#"���$&%�'
(�������)	���*+'���,�� (�
�-'.�/�0�1 ����!�/�#"���$&%�'

(�-�����
	�����

Figure 5: When we apply the divide-and-conquer approach through layers, we also apply linear-space
algorithm on each layer. Layer k1+k2

2 is the middle-layer. T is the mid-point which minimizes the
score of the global path through the whole dynamic programming matrix. On each layer each time
we only need to record two adjacent rows and the exit vertices (or equivalently the entry vertices on
the next layer) that have been computed already as shown on layer k1. The original CPSA problem
is divided at T into two smaller subproblems. For the first subproblem, the end vertex of the new
smaller dynamic programming matrix is changed to T , that is, layer k1+k2

2 is reduced to the top left
gray area. For the second subproblem the start vertex of the new smaller dynamic programming
matrix is changed to T , in other words, layer k1+k2

2 +1 is reduced to the bottom right gray area. Each
of these subproblems can be solved recursively in the same manner.

requires O(n) space in practice.
We expect our algorithm is not only more space efficient but also fast in practice since we avoid

the computation of redundant regions on each layer.

4 Space Requirement of Algorithm Layer-DC

In performance analysis of our algorithm Layer-DC, we use the first 4 RNase sequences in Data Set 1
in Figure 7 and Data Set 2 in Figure 8 of Chin et al. [2] with the pattern strings HKSH and HKSTH,
respectively. These 4 sequences are:

Seq1 : gi|119124|sp|p12724|ecp human
Seq2 : gi|2500564|sp|p70709|ecp rat
Seq3 : gi|13400006|pdb|ldyt|
Seq4 : gi|20930966|ref |xp 142859.1

We consider CPSA problems for all distinct pairs of these sequences (we note that to solve the
CMSA problem for all these sequences one needs to solve a CPSA problem for every distinct pair).
In our analysis for the space requirement of our algorithm Layer-DC we use the maximum number of
vertices the algorithm loads at any time. This way we measure the memory usage of our algorithm,
and we compare it with that of the CPSA-DC algorithm of Lu and Huang [7]. As we show in Figure
8 and Figure 9, for both pattern strings our algorithm Layer-DC algorithm loads much fewer vertices
into memory than that of Algorithm CPSA-DC. Therefore we expect that the memory usage of our
algorithm Layer-DC is much less than that of Algorithm CPSA-DC. This implies that progressive
CMSA algorithms can reduce their space requirement by using our algorithm Layer-DC in solving

244 He and Arslan

Layer-DC Algorithm for the CPSA problem:

1. Compute the boundary for each layer:

For each k, find every pair of first and last possible positions that match P [k] in each

sequence, S1, S2, then find pair of start point and end point

(S1begin[k], S1end[k]), (S2begin[k]), S2end[k]) as the boundary for layer k

for t = 1 to 2 do {
for k = 0 to r − 1 do {
set Sfirst[t][k] = the first possible position that can be aligned to p[k + 1] in St;

set Slast[t][k] = the last possible position that can be aligned to p[k + 1] in St;

}
}
for k = 0 to r do

if(k == 0){
S1begin[0] = 0;
S2begin[0] = 0;
} else {
S1begin[k] = Sfirst[0][k − 1] + 1;
S2begin[k] = Sfirst[1][k − 1] + 1;
}
if (k == r){
S1last[k] = r;
S2last[k] = r;
}else{
S1last[k] = Slast[0][k] + 1;
S2last[k] = Slast[1][k] + 1;
}

2. Compute the entry and exit vertices on each layer:

For layer k, 1 ≤ k ≤ r, find all the candidate entry vertices (t1, t2, k) such that

S1[t1] = S2[t2] = P [k], in the overlapping region of layer k − 1 and k

For layer k, 0 ≤ k ≤ r − 1, find all the candidate exit vertices (m1,m2, k) such that

S1[m1] = S2[m2] = P [k + 1], in the overlapping region of layer k and k + 1
3. Apply the divide-and-conquer approach:

Find-Concat-Mids(0, r) {Concatenate the series of mid-points to get the optimal solution}

Function Find-Concat-Mids(k1,k2){
if (k1! = k2) {
for k = k1 to bk1+k2

2 c do {
Compute and record the scores for all the candidate exit vertices on layer k

in row by row manner storing two rows at any time.

Initialize the scores for all the entry vertices on layer k + 1.
}
for k = k2 to bk1+k2

2 c+ 1 do (in reverse matrix) {
Compute and record the scores for all the candidate exit vertices on layer k

in row by row manner storing two rows at any time.

Initialize the scores for all the entry vertices on layer k + 1.
}
{ The algorithm continues in Figure 7 }

Figure 6: Algorithm Layer-DC for the CPSA problem.

A Space-Efficient Algorithm for the CPSA Problem 245

Find the mid-point T in the exit vertex set E1 on layer bk1+k2
2 c, namely in the entry

vertex set E2 on layer bk1+k2
2 c+ 1, which minimizes the score of the global path

through the whole dynamic programming matrix.

Change the end vertex of the first new dynamic programming matrix to vertex T, and

change the start vertex of the second new dynamic programming matrix to vertex T.

Find-Concat-Mids(k1,bk1+k2
2 c);

Find-Concat-Mids(bk1+k2
2 c+ 1,k2);

} else { Compute the scores for all the candidate exit vertices on layer k

in row by row manner storing two rows at any time }
}

Figure 7: Algorithm Layer-DC for the CPSA problem (Continuation).

the CPSA problems that arise. For the longer pattern string HKSTH, the reduction in memory
usage of our algorithm Layer-DC over Algorithm CPSA-DC algorithm is more significant. The reason
is that the amount of space required by Algorithm CPSA-DC linearly increases with the pattern length
since this algorithm’s space complexity is O(rn). On the other hand, in our algorithm Layer-DC, as
the pattern string length increases the size of the region necessary to consider in each layer decreases
as well as the number of entry and exit vertices on each layer. Therefore the space requirement of our
algorithm for the long pattern string HKSTH is even less compared with that for the short pattern
string HKSH as shown in Figure 8 and Figure 9. Thus as the length of the pattern string increases
our algorithm Layer-DC performs significantly better over Algorithm CPSA-DC. Since our algorithm
Layer-DC avoids redundant computations on each layer, we expect that the execution time of our
algorithm Layer-DC is faster than that of Algorithm CPSA-DC.

Sequences for CPSA CPSA−DC Layer−DC CPSA−DC/Layer−DC
Seq1 and Seq2 2, 340 264 8.86
Seq1 and Seq3 2, 010 262 7.67
Seq1 and Seq4 1, 980 174 11.37
Seq2 and Seq3 2, 010 264 7.61
Seq2 and Seq4 1, 980 307 6.45
Seq3 and Seq4 1, 980 174 11.37

Figure 8: The numbers of vertices loaded into memory by Algorithm CPSA-DC and Algorithm
Layer-DC, and the performance ratio of Algorithm Layer-DC over Algorithm CPSA-DC for all the
CPSA problems in the Data Set 1 in Figure 7 and Data Set 2 in Figure 8 in Chin et al. [2]. We use
the first 4 sequences and string HKSH as the pattern.

5 Concluding Remarks

We develop a space-efficient algorithm for the constrained pairwise sequence alignment problem based
on our previous layer-by-layer strategy [5] and the Hirschberg’s divide-and-conquer approach [6]. By
applying the divide-and-conquer approach layer by layer and applying the linear-space pairwise se-
quence alignment algorithm on each layer simultaneously, we can obtain a O(n + α)-space algorithm
for the CPSA problem where α ¿ n in practice. Our analysis on real data shows that our algorithm
requires less space than the algorithm proposed by Chin et al. [2], especially for long pattern strings.
Our algorithm can also be used in progressive CMSA algorithms to reduce the space requirement.

246 He and Arslan

Sequences for CPSA CPSA−DC Layer−DC CPSA−DC/Layer−DC
Seq1 and Seq2 2, 808 189 14.86
Seq1 and Seq3 2, 412 195 12.37
Seq1 and Seq4 2, 376 139 17.09
Seq2 and Seq3 2, 412 189 12.76
Seq2 and Seq4 2, 376 193 12.31
Seq3 and Seq4 2, 376 132 18.00

Figure 9: The numbers of vertices loaded into memory by Algorithm CPSA-DC and Algorithm
Layer-DC, and the performance ratio of Algorithm Layer-DC over Algorithm CPSA-DC for all the
CPSA problems in the Data Set 1 in Figure 7 and Data Set 2 in Figure 8 in Chin et al. [2]. We use
the first 4 sequences and string HKSTH as the pattern.

References

[1] Arslan, A. N. and Eğecioğlu, Ö., Algorithms for the constrained common sequence problem, Proc.
Prague Stringology Conf. 2004, 24–32, 2004.

[2] Chin, F. Y. L., Ho, N. L., Lam, T. W., Wong, P. W. H., and Chan, M. Y. A., Efficient constrained
multiple sequence alignment with performance guarantee, Proc. IEEE Comp. Systems Bioinform.
(CSB 2003), 337–346, 2003.

[3] Chin, F. Y. L., Santis, A. D., Ferrara, A. L., and Ho, N. L., Kim, S. K., A simple algorithm for
the constrained sequence problems, Information Processing Letters, 90:175–179, 2004.

[4] Hart, P., Nilsson, N., and Raphael, B., A formal basis for the heuristic determination of minimum
cost paths, IEEE Trans. Syst. Sci. Cybernet., 4(2):100–107, 1968.

[5] He, D. and Arslan, A. N., A fast algorithm for the Constrained Multiple Sequence Alignment
problem, Proc. 11th Int. Conf. Automata and Formal Languages (AFL 2005), (eds. Ésik, Z. and
Fülöp, Z.), Institute of Informatics, University of Szeged, 131–143, 2005.

[6] Hirschberg, D. S., A linear space algorithm for computing maximal common subsequences, Com-
mun. ACM, 18:341–343, 1975.

[7] Lu, C. L. and Huang, Y. P., A memory-efficient algorithm for multiple sequence alignment with
constraints, Bioinformatics, 21(1):20–30, 2005.

[8] Tang, C. Y., Lu, C. L., Chang, M. D.-T., Tsai, Y.-T., Sun, Y.-J., Chao, K.-M., Chang, J.-
M., Chiou, Y.-H., Wu, C.-M., Chang, H.-T., and Chou, W.-I., Constrained multiple sequence
alignment tool development and its applications to rnase family alignment, Proc. 1st IEEE Comp.
Society Bioinform. Conf. (CSB 2002), 127–137, 2002.

[9] Tsai, Y.-T., The constrained common sequence problem, Information Processing Letters, 88:173–
176, 2003.

[10] Tsai, Y.-T., Lu, C. L., Yu, C. T., and Huang, Y. P., MuSiC: A tool for multiple sequence
alignment with constraint, Bioinformatics, 20(14):2309–2311, 2004.

[11] Waterman, M. S., Introduction to Computational Biology, Chapman and Hall, 1995.

	03-He-pagesetI_3.pdf
	03-He-pagesetII_3.pdf

