
Stock trading with cycles: A financial application of ANFIS
and reinforcement learning

Zhiyong Tan a, Chai Quek a,⇑, Philip Y.K. Cheng b

a Centre for Computational Intelligence (Formerly the Intelligent Systems Laboratory), School of Computer Engineering, Nanyang Technological University, Blk N4 #2A-32,
Nanyang Avenue, Singapore 639798, Singapore
b Australian Catholic University, Department of Business and Informatics, 7 Mount St., Sydney, Australia

a r t i c l e i n f o

Keywords:
Stock trading
Price cycles
Investment decisions
ANFIS
Reinforcement learning

a b s t r a c t

Based on the principles of technical analysis, this paper proposes an artificial intelligence model, which
employs the Adaptive Network Fuzzy Inference System (ANFIS) supplemented by the use of reinforce-
ment learning (RL) as a non-arbitrage algorithmic trading system. The novel intelligent trading system
is capable of identifying a change in a primary trend for trading and investment decisions. It dynamically
determines the periods for momentum and moving averages using the RL paradigm and also appropri-
ately shifting the cycle using ANFIS-RL to address the delay in the predicted cycle. This is used as a proxy
to determine the best point in time to go LONG and visa versa for SHORT. When this is coupled with a
group of stocks, we derive a simple form of ‘‘riding the cycles – waves”. These are the derived features
of the underlying stock movement. It provides a learning framework to trade on cycles. Initial experimen-
tal results are encouraging. Firstly, the proposed framework is able to outperform DENFIS and RSPOP in
terms of true error and correlation. Secondly, based on the test trading with five US stocks, the proposed
trading system is able to beat the market by about 50 percentage points over a period of 13 years.

! 2010 Published by Elsevier Ltd.

1. Introduction

Numerous market gurus such as G. Soros, W. Henry II, and
L. Hite have accumulated huge fortunes through the judicious
application of technical analysis and its concepts. Despite the
claims and refutes put forward by the proponents of the Efficient
Market Hypothesis (Fama, 1970) and the Random Walk Hypothesis
(Malkiel, 1973), technical analysis does have its place in the finan-
cial world of trading and investments. The objective of this paper is
to propose an artificial intelligence model; which employs the
Adaptive Network Fuzzy Inference System (ANFIS) and supple-
mented by reinforcement learning, as a non-arbitrage algorithmic
trading system. Such a novel intelligent trading system is able to
judiciously identify a change in a trend for investment decisions.

The origin of trend analysis can be attributed to the Dow The-
ory, named after its creator Charles Dow. Many of today’s more
sophisticated models are essentially variants of Dow’s approach.
The Dow Theory posits that there are three trends in stock prices;
namely:

! The primary trend is the long-term movement of prices, lasting
from several months to several years.

! The secondary or intermediate trends are the short-term devia-
tions of prices from the underlying trend. These deviations are
eliminated by corrections and prices revert back to the underly-
ing trend.
! The tertiary or minor trends are daily fluctuations.

Our study attempts to identify the change of a primary trend or
a broad movement. In our study, a primary up trend, followed by a
primary down trend and a primary up trend again would consti-
tute a cycle. The secondary and tertiary trends or short-term wave
cycles are eliminated by a smoothing technique.

Artificial intelligent models based on neural networks, genetic
algorithm and fuzzy neural techniques can learn to detect complex
patterns inherent in the data. Mathematically, these AI techniques
are universal non-linear function approximators capable of captur-
ing and modelling almost any input–output relationships.

Artificial intelligence models also have advantages over statisti-
cal models. Relatively, they are more efficient and effective than
statistical models in pattern recognition (cycles is a pattern) and
prediction. Unlike most of the statistical models, they do not re-
quire any specific distribution of data or underlying theory. They
are able to manage non-linear or complex relationships better
and at the same time accommodate relatively larger number of
variables. Another advantage of artificial intelligence models is
that they can learn patterns from the past data, a feature that

0957-4174/$ - see front matter ! 2010 Published by Elsevier Ltd.
doi:10.1016/j.eswa.2010.09.001

⇑ Corresponding author. Tel.: +65 67904926; fax: +65 6792 6559.
E-mail address: ashcquek@ntu.edu.sg (C. Quek).

Expert Systems with Applications 38 (2011) 4741–4755

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2010.09.001
mailto:ashcquek@ntu.edu.sg
http://dx.doi.org/10.1016/j.eswa.2010.09.001
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

cannot be matched by statistical models. But not all artificial intel-
ligence models are the same. It is illustrated in this paper that, the
Adaptive Network Fuzzy Inference System (ANFIS), when supple-
mented by the reinforcement learning paradigm, is a powerful
and valuable tool in predicting stock cycles, and hence is a signifi-
cant tool in stock investment decisions.

The rest of the paper is organized as follows. A brief literature
review is presented in Section 2. Section 3 outlines the formalism
for reinforcement learning as well as the processes of cycle deter-
mination and shifting in stock cycles. Experimental results demon-
strating the derivation of stock cycles based on GM stock are also
analyzed in Section 3. ANFIS-RL will be introduced to predict the
next inflexion point together with a concise introduction to ANFIS
in Section 4. Section 5 presents the mathematical description of a
maximum reward reinforcement learning based trading system
using ANFIS-RL. Extensive experiments were undertaken with dy-
namic asset switching based on the detection of peaks and troughs
within a portfolio of stock counters and the results are presented in
Section 5. A conclusion is presented in Section 6.

2. Literature review

Numerous literature employ trends to decide on the timing to
trade. Research by Lee, Liu, and Chen (2006) and Kamijo and
Tanigawa (1990) capitalised on candlestick patterns to trade. Lee
et al. (2006) employed a knowledge based method by representing
candlestick patterns with fuzzy time series while Kamijo and
Tanigawa (1990) employed a recurrent neural network to recog-
nize the triangular pattern after a series of candlesticks.

Ang and Quek (2006), Tan, Quek, and Yow (2007) Cheng, Quek,
and Mah (2007) employ novel neuro-fuzzy systems in their design
of such trading systems. Their trading system utilized technical
indicators such as moving average crossover and Relative Strength
Index. On the other hand, Kuo, Chen, and Hwang (2001),
Moral-Escudero, Ruiz-Torrubiano, and Suarez (2006) and Huang,
Pasquier, and Quek (2009) made use of genetic algorithms (GA)
and fuzzy logic in their design of the trading systems. GA is used
to determine the best set of trading rules or to address the combi-
natorial problem in asset allocation. Moody and Saffell (2001) and
Moody and Wu (300) proposed a trading system that made use of
direct reinforcement learning to learn to trade a portfolio of assets
and to optimize the portfolio by making use of the Sharpe ratio and
the downside deviation. There are also several research efforts de-
voted to stock selection, where Zargham and Sayeh (1999) used
weighted fuzzy rules to select stocks based on some rule of thumb
in investing and Fan and Palaniswami (2001) employed support
vector machine to select stocks. These trading systems generally
have subjective rules or suffer from black box characteristic or in-
volved in unnecessary trades.

One of the classic problems, optimal option pricing had been at-
tempted by Tsitsiklis and Roy (1999). Recent work by Quah and
Quek (2005) and Quah, Quek, and Leedham (2005) proposes an ac-
tor-critic model that made use of Fuzzy Input Takagi–Sugeno–Kang
(FITSK) (Quah & Quek, 2006) and maximum reward reinforcement
learning to approximate the optimal stopping time, which
achieved a superior performance to Tsitsiklis and Roy (1999) in
terms of reward and input dimension.

There are several interesting studies on business cycles.
Gallegos (2004) utilises time series theory to identify market cycles
in Sweden while Plummer (2005) adopts a different approach by
using the price momentum in the decision process. Generally,
the values for the parameters are subjective and the cycles found
are not well-defined. Lucas, Dijk, and Kloek (2002) tried out several
stock selection styles and found that the best performance are de-
rived from investment using the business cycle. Sarantis (2001)

employed the STAR model (smooth transition autoregressive mod-
el) to investigate the cyclical properties for seven countries and
Blackman (2004) investigated the possibility of investment based
on business cycles in mutual funds. However many of these re-
search efforts do not provide much empirical evidence and the ac-
tual applicability.

3. Cycle finding and shifting

In this section, reinforcement learning is applied to judiciously
determine cycles. These cycles are fed to the proposed framework
in Section 4, as training data. Cycles of stock prices are often periodic
and coincidently reflect major events such as Gulf war and Great
Depression (Plummer, 2005; Sarlan, 2001). Some of the earliest stud-
ies were undertaken by Jugular and Kitchin and in these studies, cy-
cles of different length are found. A long cycle of 9–11 years was
discovered by Jugular and on the other hand, a shorter cycle was
found by Kitchin (1923), which is around 3–4 years. In a recent study
by Plummer (2005), a relationship between the cycles had been ob-
served. The observed relationship demonstrates that a long cycle is
composed of three shorter cycles. In the case for Jugular and Kitchin,
the Jugular cycle is made up of three Kitchin cycles. In this paper, in
order to operate within a shorter investment period, the period of the
cycle to be used in this paper is one-third of the Kitchin cycle, which
is around 300 days or 1 year.

3.1. Mathematical definitions in reinforcement learning (RL)

Reinforcement learning (RL) is a trial and error learning process,
whereby the agent learns through its interaction with the environ-
ment, very much akin to a form of learning (in psychology) exhib-
ited by human in discovering new knowledge through a system of
reward and punishment based on the outcome of an action under-
taken by the human (Skinner, 1953). The agent does not have any
idea as to what the actual correct action would achieve but it at-
tempts to evaluate the different actions from the feedback pro-
vided by the environment. The feedback in this case is a reward
and does not quantify whether the action is correct or otherwise.
After several trials, the agent will have gained sufficient experience
that it could exploit should it encounter similar situation.

In general, a reinforcement learning system consists of three
main elements; namely: the policy, the reward function and the
value function (Sutton, 1998). The policy is the mapping from the
state of the environment to the probabilities of deciding its action.
The state of the environment is a form of representation of the
environment at that time. It can be as simple as the actual repre-
sentation of the environment or it can be some form of prepro-
cessed data, which is able to represent the current environment
better. This mapping can be represented with using a lookup table
or any other suitable forms of representation. This lookup table
with the expected rewards and actions is the experience of the
agent and will be called upon during exploitation.

In this section, a brief introduction to the mathematical formu-
lation in RL paradigm will be provided. These formulations will be
applied to all the RL applications in this paper for updating the
experience during exploration and for generating the expected
reward during exploitation. The reward function is the expected
reward for the agent. The mathematical definition of the expected
return in a state is described in Eq. (3.1)

QðaÞ ¼ r1 þ r2 þ r3 þ & & & þ rk

k
; ð3:1Þ

where k is the number of times action a is chosen and r1. . .k are the
individual reward for each time.

Eq. (3.1) can be modified as a recursive form, for easy updating
and is stated in Eq. (3.2)

4742 Z. Tan et al. / Expert Systems with Applications 38 (2011) 4741–4755

Q kþ1 ¼
1

kþ 1

Xkþ1

i¼1

ri ¼
1

kþ 1
rkþ1 þ

Xk

i¼1

ri

 !

¼ 1
kþ 1

ðrkþ1 þ kQk þ Qk ' QkÞ

¼ Qk þ
1

kþ 1
ðrkþ1 ' Q kÞ: ð3:2Þ

The return function over the long run is usually defined as the accu-
mulated reward over the future time steps. It is defined in Eq. (3.3)

Rt ¼ rtþ1 þ crtþ2 þ c2rtþ3 þ & & & ¼
X1

k¼0

ckrtþkþ1; ð3:3Þ

where c is the discount rate.
The discount rate, c, determines the present value of the future

rewards that can be achieved over time. It can be interpreted as
follows:

! When the discount rate is high, the agent will take the future
rewards more seriously.
! When the discount rate is small, the agent will only be con-

cerned with the current reward.

With the Markov property, one is able to determine the proba-
bility of the next state based on only the current state and action.
This is formulated in Eq. (3.4)

Pa
SS0 ¼ Prfstþ1 ¼ S0jst ¼ S; at ¼ ag; ð3:4Þ

where st is the current state and at is the action taken in the current
state.

With the current state, current action and the next state, one is
able to compute the expected value of the next state. This is formu-
lated in Eq. (3.5)

Ra
SS0 ¼ Efrtþ1jst ¼ S; at ¼ a; stþ1 ¼ S0g; ð3:5Þ

where E is the expectation function of the next reward, st is the cur-
rent state, st+1 is the next state and at is the current action.

Eq. (3.3) can then be updated as follows in Eqs. (3.6) and (3.7)

VtðsÞ ¼ EfRt jst ¼ sg ¼ E
X1

k¼0

ckrtþkþ1

!!!!!st ¼ s

()

; ð3:6Þ

where c is the discount rate.
Under policy p,

VpðsÞ ¼ EpfRtjst ¼ sg ¼ Ep
X1

k¼0

ckrtþkþ1

!!!!!st ¼ s

()

¼ Ep rtþ1 þ c
X1

k¼0

ckrtþkþ2

!!!!!st ¼ s

()

¼
X

8a2AðsÞ
pðs; aÞ

X
Pa

ss0 Ra
ss0 þ cVpðs0Þ

" #
; ð3:7Þ

where Ep is the expectation function for the policy p, a is an action
that belongs to the set of actions, Pa

ss0 is the probability from s to
s0, and c is the discount rate and Ra

ss0 is the future reward.
Given the current state and action taken, one can also formulate

the action-value function in a recursive manner. This is formulated
in Eq. (3.8).

Under policy p,

Qpðs; aÞ ¼ EpfRt jst ¼ s; at ¼ ag

¼ Ep
X1

k¼0

ckrtþkþ1

!!!!!st ¼ s; at ¼ a

()

¼ Epfrtþ1 þ cVpðs0Þjst ¼ s; at ¼ ag

¼
X

8s02S0
Pa

ss0 Ra
ss0 þ cVpðs0Þ

" #
; ð3:8Þ

where Ep is the expectation function for the policy p, s0 is a state
that belongs to the set of states, Pa

ss0 is the probability from s to s0,
c is the discount rate and Ra

ss0 is the future reward.
An optimal policy will be the policy that has the highest state-

value and is defined in Eq. (3.9)

V(ðsÞ ¼max
p

VpðsÞ for all s 2 S: ð3:9Þ

Likewise to represent an optimal state-value function, Eq. (3.7) has
to be updated as shown in Eq. (3.10). This is also known as the Bell-
man optimality equation for V*.

Under optimal policy,

V(ðsÞ ¼max
p

VpðsÞ ¼max
a

Qp(ðs; aÞ

¼max
a

X

8s02S0
Pa

ss0 Ra
ss0 þ cV(ðs0Þ

" #
; ð3:10Þ

where c is the discount rate, s0 is the next state, a is the action taken,
Pa

ss0 is the probability from s to s0 and Ra
ss0 is the future reward.

3.2. Formulation of rewards and states in cycle finding

This section discusses the formulation and the implementation
of the tuning of the two parameters, momentum period and the
moving average period using RL. The momentum or the rate of
change of the stock price represents the market sentiments on
the trading of the stock. As the rate of change decreases, it is as-
sumed that the stock is overbought and vice versa. The moving
average, on the other hand, is used to remove the short-term trend
and noise in the cycle. The use of these two parameters promises
well-defined cyclical patterns, if available.

3.2.1. Reward
The cycles used in this paper, has a period from 260 days

(1 year = 52 weeks) to 340 days (1/1/4 year). These cycles are gen-
erated by tuning these two parameters; namely: momentum and
moving average. The detection of trough is mathematically formu-
lated in Eq. (3.12) using Eq. (3.11)

Trendx ¼ Cyclet ' Cycletþx; ð3:11Þ

where t is the current day and x 2 {40,80}

Trough ¼ t
Trend'40 < 0; Trend'80 < Trendt'40;

Trend40 < 0; Trend80 < Trendtþ40;

Cyclet < Cyclet'1; Cycletþ1 > Cyclet ;

8
><

>:

9
>=

>;

!!!!!!!
ð3:12Þ

where t is the current day.
Similarly, the detection of peak is formulated in Eq. (3.13)

Peakx ¼ t
Trend'40 > 0; Trend'80 > Trendt'40;

Trend40 > 0; Trend80 > Trendtþ40;

Cyclet > Cyclet'1; Cycletþ1 < Cyclet;

8
><

>:

9
>=

>;

!!!!!!!
ð3:13Þ

where t is the current day.
Using Eq. (3.12), the period of a cycle can be formulated as

shown in Eq. (3.14)

Periodx ¼ Troughxþ1 ' Troughx; ð3:14Þ

where x is the index of Period.
As such, the reward for the agent to determine a single cycle

will be formulated as described in Eq. (3.15)

rx ¼minð340' Periodx; Periodx ' 260Þ; ð3:15Þ

where x is the index for Period.
However, Eq. (3.15) is a biased reward function. Consider the

case, where the period is 300 days, the agent will receive a reward
of 40. This is unjustified as any period within the range should be
acceptable. To remove the bias, zero is included into Eq. (3.15).

Z. Tan et al. / Expert Systems with Applications 38 (2011) 4741–4755 4743

Eq. (3.16) shows an updated equation and Figs. 3.1 and 3.2 show
the reward functions for Eqs. (3.15) and (3.16) respectively. By ana-
lyzing Fig. 3.2, it can be observed that the same reward value is
given to the agent for any cyclical period between 260 and 340 days

rx ¼minð340' Periodx; Periodx ' 260;0Þ: ð3:16Þ

Thus, the reward for the agent using a particular set of parameters is
described in Eq. (3.17):

Rðmom;maÞ ¼ 1
N

Xn¼N

n¼1

rn; ð3:17Þ

where N is the total number of cycles found, mom is the momentum
period used and ma is the moving average period.

However, Eq. (3.17) does not assure the agent of the number of
cycles found. Thus a better formulation is required and is described
in Eqs. (3.18) and (3.19)

MinN ¼ TotalDays' 2 (340
340

; ð3:18Þ

where MinN is the minimum number of cycles and TotalDays is the
number of days in the financial times series

MaxN ¼ TotalDays' 2 (260
260

; ð3:19Þ

where MaxN is the maximum number of cycles and TotalDays is the
number of days in the financial times series.

Eqs. (3.18) and (3.19) are used to determine the acceptable min-
imum and maximum number of cycles. The reduction is needed to
consider the case where there are non-cycles at the head and tail of
the financial time series. Thus, the final reward formulation can be
mathematically described by Eq. (3.20)

Rðmom;maÞ

¼
260 (ðN'MinNÞþRðmom;maÞ N <MinN;
260 (ðMaxN'NÞþRðmom;maÞ N >MaxN;
Rðmom;maÞ MaxN P N P MinN;

8
><

>:
ð3:20Þ

where N is the number of cycles found, mom is the momentum per-
iod used, ma is the moving average period used, MaxN and MinN are
the maximum and minimum number of cycles.

3.2.2. States
A state is a representation of the environment. In this case, the

environment is the stock data and to represent it efficiently, each
stock is being quantified by the percentage standard deviation of
the time series, see Eq. (3.22) and the correlation to an index, see
Eq. (3.21). As such, similar stocks are being grouped together and
are presented as a state. There are two benefits. Firstly, the agent
will be exploring (learning) more intelligently by averaging the
past and new experience together. Secondly, the exploitation will
be more efficient as the state-reward table is smaller

CorrðX;YÞ ¼
P

XY '
P

XY
Nffi

P
X2 '

P
Xð Þ2

N

% & P
Y2 '

P
Yð Þ2

N

% &s ; ð3:21Þ

where X is the financial time series of the stock data, Y is the time
series of the Dow Jones Index and N is the number of data

Percent StdDev ¼ round

ffi
1
N

XN

i¼1

ðxi ' !xÞ2
vuut =!x

2

4

3

5) 10

8
<

:

9
=

;; ð3:22Þ

where N is the number of stock data, xi is the closing price, !x is the
mean of the stock price and round{} is to round it to the nearest
integer

StateStock ¼ ðCorrðStock;DowJonesÞ; Percent StdDevÞ: ð3:23Þ

Eq. (3.23) shows the formulation of the state.

3.2.3. Flow of the algorithm
The investor will attempt different combinations of the moving

average period and the momentum period to achieve the respec-
tive reward. It follows the flow in Fig. 3.3.

The state of the stock is computed using Eq. (3.23). If a past
experience exists, generate a random number to decide whether
the agent should exploit the experience by getting the highest re-
ward in the state-reward or to explore (learn) the new experience.
To explore, the cycle data is computed with a set of parameters
(moving average period and momentum period). Using the cycle
data as input for Eq. (3.12), the trough is determined and is used
to compute the reward using Eq. (3.20). The reward is then up-
dated to the state table with Eq. (3.2). This exploration process will
continue till all the possible combinations of the parameters have
been attempted. The parameters will be bounded from 60 to
260 days. The minimum and maximum bounds are justified as
our main concern is on the longer trend of the stock. The tuning
of parameters is undertaken in steps of 5.

3.3. Experiments on cycle finding

3.3.1. Singapore market
In the Singapore market, the macroscopic aspect of the market

is evaluated first. The indices of the various industries from the
year 2000 to 2006 are used as the input data. Fig. 3.4 shows the cy-
cle found for the hotel index and Fig. 3.5 shows the cycles found for
different industries.

The ‘Close’ in Fig. 3.4 is the closing stock price/index value on
that particular day and ‘Tuned’ is the cycle data identified in Sec-
tion 3.2.3. These parameters are used throughout Figs. 3.7, 3.8,
3.9 and 3.10. From Fig. 3.5, it can be seen that the cycles for the
different industries approximately coincides with one another.

Reward Function (5.5)

-300

-250

-200

-150

-100

-50

0

50

100

1 39 77 115 153 191 229 267 305 343 381419 457 495 533 571

Period for one cycle

Reward

Fig. 3.1. Biased reward function.

Reward Function (5.6)

-300

-250

-200

-150

-100

-50

0
1 39 77 115 153 191 229 267 305 343 381 419 457 495 533 571

Period for one cycle

Reward

Fig. 3.2. Unbiased reward function.

4744 Z. Tan et al. / Expert Systems with Applications 38 (2011) 4741–4755

However, some industries have leading cycles and others have lag-
ging cycles. In order to apply the proposed novel trading strategy, it
was hoped that uncorrelated cycles could be identified. As such,
the most leading and lagging industries; namely the finance and
hotel were selected in the microscopic analysis. In each industry,
two stocks from the year 2000 to 2006 were selected based on
their market capitalization. By doing so, it was hoped that uncorre-
lated cycles could be found.

Fig. 3.6 shows the four companies selected from the two
industries. DBS and Kim Eng Securities are in the finance industry
and Hotel Plaza and Hotel Negara are in the hotel industry. By
analyzing Fig. 3.6, cycles that are completely out of sync can pos-
sibly be determined and a trader can capitalise on these cycles to
buy Kim Eng Securities at the trough as indicated and sold it in
the peak in year 2004 before switching to Hotel Plaza at the

trough. This observation demonstrates that the proposed trading
strategy is plausible and highly applicable.

3.3.2. US market
In this experiment, the applicability and scalability of the algo-

rithm were tested on 20+ stocks from the US market. These
stocks have at least 12 years of history from the year 1994 to
2006. The system will utilize the data from the first 6 years to
determine the parameter values and subsequently attempts to
use these sub-optimal parameters for generating the cycle for
the following 6 years. These sub-optimal parameters and the cy-
cles are then compared against the optimal parameters and the
optimal cycle.

Preprocess

Trough finder

Compute Reward

Check State

Exploit?

State Learned?

State Table

Take the optimum
parameters

All possibilities tried?Return the optimum
parameters

Stock Data

No

Yes

No

Yes

Yes No

Update
value

Fig. 3.3. Flowchart of the cycle tuning module as a reinforcement learning process.

Actual Data with cycles

0

200
400

600

800

1000
1200

1400

1/
3/

20
00

7/
3/

20
00

1/
3/

20
01

7/
3/

20
01

1/
3/

20
02

7/
3/

20
02

1/
3/

20
03

7/
3/

20
03

1/
3/

20
04

7/
3/

20
04

1/
3/

20
05

7/
3/

20
05

1/
3/

20
06

Date

In
de

x
Va

lu
e

-20.00%
-15.00%
-10.00%
-5.00%
0.00%
5.00%
10.00%
15.00%
20.00%
25.00%

Ra
te

 o
f C

ha
ng

e

Close Tuned

Fig. 3.4. Cycles for hotel industry.

Cycles for Different Industries

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

1/
3/

20
00

7/
3/

20
00

1/
3/

20
01

7/
3/

20
01

1/
3/

20
02

7/
3/

20
02

1/
3/

20
03

7/
3/

20
03

1/
3/

20
04

7/
3/

20
04

1/
3/

20
05

7/
3/

20
05

1/
3/

20
06

Date

Ra
te

 o
f C

ha
ng

e

Construction Multi-Industry
Property Hotel
Finance

Fig. 3.5. Cycles for various industries.

Z. Tan et al. / Expert Systems with Applications 38 (2011) 4741–4755 4745

From the experimental results, it can be observed that there are
some differences between the parameters found for the 6-year and
12-year period. Most of them only differ from the optimal param-
eters by at most 10 days. However, there are a few stocks that have

significant difference in their parameters. The analysis of two such
stocks, Bear Sterns and Oracle, are shown below.

The sub-optimal parameters for Bear Sterns are 135 and
210 days for the momentum and moving average period respec-
tively. On the other hand, the optimal parameters are 220 and
130 days for the momentum and moving average period. There is
a difference of approximately 70 days for each parameter. Fig. 3.7
shows the cycle for Bear Sterns using the optimal parameters
and Fig. 3.8 shows the cycle for Bear Sterns that made use of the
sub-optimal parameters. Statistically, these cycles have a correla-
tion coefficient of 0.9354 and graphically, significant inflexion
points as indicated on both figures are similar to each other as indi-
cated in the figures.

Another stock that has wide differences in the parameters is
Oracle. The sub-optimal parameters for Oracle are 155 and
230 days for the momentum and moving average period respec-
tively. On the other hand, the optimal parameters are 160 and
85 days for the momentum and moving average period. There is
a difference of at most 145 days in the moving average period.
Fig. 3.9 shows the cycle for Oracle using the optimum parameters
and Fig. 3.10 shows the cycle for Oracle that made use of the sub-
optimal parameters. These cycles have a correlation coefficient of
0.7209.

Bear Sterns (w/optimal parameters)

0

20

40

60

80

100

120

140

160

6/
24

/1
99

4

6/
24

/1
99

5

6/
24

/1
99

6

6/
24

/1
99

7

6/
24

/1
99

8

6/
24

/1
99

9

6/
24

/2
00

0

6/
24

/2
00

1

6/
24

/2
00

2

6/
24

/2
00

3

6/
24

/2
00

4

6/
24

/2
00

5

Date

St
oc

k
Pr

ic
e

-30.00%
-20.00%
-10.00%
0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

R
at

e
of

 C
ha

ng
e

Close Tuned

Fig. 3.7. Optimum cycles for Bear Sterns.

Bear Sterns (w/sub-optimal parameters)

0

20

40

60

80

100

120

140

160

6/
24

/1
99

4

6/
24

/1
99

5

6/
24

/1
99

6

6/
24

/1
99

7

6/
24

/1
99

8

6/
24

/1
99

9

6/
24

/2
00

0

6/
24

/2
00

1

6/
24

/2
00

2

6/
24

/2
00

3

6/
24

/2
00

4

6/
24

/2
00

5

Date

St
oc

k
Pr

ic
e

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

R
at

e
of

 C
ha

ng
e

Close Tuned

Fig. 3.8. Cycles for Bear Sterns using sub-optimal parameters.

Oracle (w/Optimal parameters)

0

20

40

60

80

100

120

140

6/
24

/1
99

4

6/
24

/1
99

5

6/
24

/1
99

6

6/
24

/1
99

7

6/
24

/1
99

8

6/
24

/1
99

9

6/
24

/2
00

0

6/
24

/2
00

1

6/
24

/2
00

2

6/
24

/2
00

3

6/
24

/2
00

4

6/
24

/2
00

5

Date

St
oc

k
Pr

ic
e

-100.00%

-50.00%

0.00%

50.00%

100.00%

150.00%

200.00%

R
at

e
of

 C
ha

ng
e

Close Tuned

Fig. 3.9. Optimum cycles for Oracle.

Oracle (Non-optimal parameters)

0

20

40

60

80

100

120

140

6/
24

/1
99

4

6/
24

/1
99

5

6/
24

/1
99

6

6/
24

/1
99

7

6/
24

/1
99

8

6/
24

/1
99

9

6/
24

/2
00

0

6/
24

/2
00

1

6/
24

/2
00

2

6/
24

/2
00

3

6/
24

/2
00

4

6/
24

/2
00

5

Date

St
oc

k
Pr

ic
e

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

R
at

e
of

 C
ha

ng
e

Close Tuned

Fig. 3.10. Cycles for Oracle using sub-optimal parameters.

Perfect Combination

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%
1/

3/
20

00

7/
3/

20
00

1/
3/

20
01

7/
3/

20
01

1/
3/

20
02

3/
20

02

1/
3/

20
03

7/
3/

20
03

1/
3/

20
04

7/
3/

20
04

1/
3/

20
05

7/
3/

20
05

1/
3/

20
06

Date

Ra
te

 o
f C

ha
ng

e

7/

Kim Eng Plaza
Negara DBS

Sell1

Buy1
Buy2

Sell2

Fig. 3.6. Perfect combination for trading.

4746 Z. Tan et al. / Expert Systems with Applications 38 (2011) 4741–4755

From these analyses, it can be observed that generally the
parameters found in the first 6 years, can be applied to the next
6 years. But it will be advisable if the tuning can be done periodi-
cally for every 3–4 years to ensure that the cycles are well-defined.

3.4. Formulation of cycle shifting using reinforcement learning

The goal for a potential investor is to determine the shift that
can fit the tuned cycles to the actual price movements. Therefore
the reward for the agent will be the Pearson’s linear correlation
coefficient that is computed using the shifted price movement with
the tuned cycles. The reward is mathematically formulated in Eq.
(3.24)

Reward ¼
P

XY '
P

XY
Nffi

P
X2 '

P
Xð Þ2

N

% & P
Y2 '

P
Yð Þ2

N

% &s ; ð3:24Þ

where X is the tuned cycle and Y is the actual price movement.
Fig. 3.11 shows the flow of the algorithm. Initially, the size of

the entire tuned cycle will be found and this size will be the win-
dow size for the actual stock data. The window will initially end at
the last stock data and will gradually be shifted to the left. On every
shift, the reward (correlation) will be computed based on the win-
dow and the cycle.

The amount of shift depends on the moving average period
(Gallegos, 2004) and can be mathematically formulated in Eq.
(3.25). As the agent steps through, this window will be shifted by
a step size of 5 days. After all iterations, the shift that achieves
the highest correlation coefficient will be considered the optimal
shift

No of iterations ¼ MAperiod
2

% &'
5; ð3:25Þ

where MAperiod is the moving average period.

3.5. Experiments on cycle shifting

Experiments were performed on the same basket of stocks used
in Section 3.3.2. One of the stocks, General Motors, is being demon-
strated and analyzed in this section.

Fig. 3.12 shows the tuned cycles for General Motors. The param-
eters ‘Close’ is the closing price of the stock on that day and ‘Not
Shifted’ or ‘Shifted’ are the cycles before being shifted and after shifted respectively. From the indications in the figure, it can be

observed that the peak of the identified cycle lags the peak of the
actual price by around 80 days.

Fig. 3.13 shows the cycle after the automatic shifting achieved
through reinforcement learning. The automated shifting algorithm
manages to identify a shift of 65 days. It can be observed that the
cycle had been shifted nearer to the actual inflexion point, lagging
from the actual inflexion by only 15 days. Thus, it can be observed
that the shifted cycle is able to better reflect the actual turning
points fairly accurately as illustrated with the indicators.

4. ANFIS-RL*

ANFIS-RL* is a framework that employs ANFIS as a function
approximator. This framework attempts to optimize the perfor-
mance of ANFIS in terms of accuracy and correlation. In this frame-
work, three different forms of learning can be observed, from
unsupervised learning of the data to supervised learning of the net-
work and then finally to reinforcement learning of the different
models. The function approximator will subsequently be employed
in Section 5 to identify inflexion points for trading.

Return the optimum
shift

Stock Data

Yes

No

Compute Reward Tune Cycles

Parameters
Tunner

Shifter

All possibilities
tried?

Fig. 3.11. Flow of the shift tuning algorithm.

General Motors

0

10

20

30

40

50

60

70

80

90

100

6/
16

/1
99

4

6/
16

/1
99

5

6/
16

/1
99

6

6/
16

/1
99

7

6/
16

/1
99

8

6/
16

/1
99

9

6/
16

/2
00

0

6/
16

/2
00

1

6/
16

/2
00

2

6/
16

/2
00

3

6/
16

/2
00

4

6/
16

/2
00

5

6/
16

/2
00

6

Date

St
oc

k
Pr

ic
e

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

R
at

e
of

 C
ha

ng
e

Close Not Shifted

Fig. 3.12. Un-shifted cycle of General Motors.

General Motors (Shifted)

0

10

20

30

40

50

60

70

80

90

100

6/
16

/1
99

4

6/
16

/1
99

5

6/
16

/1
99

6

6/
16

/1
99

7

6/
16

/1
99

8

6/
16

/1
99

9

6/
16

/2
00

0

6/
16

/2
00

1

6/
16

/2
00

2

6/
16

/2
00

3

6/
16

/2
00

4

6/
16

/2
00

5

6/
16

/2
00

6

Date

St
oc

k
Pr

ic
e

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

R
at

e
of

 C
ha

ng
e

Close Shifted

Fig. 3.13. Shifted cycle of General Motors.

Z. Tan et al. / Expert Systems with Applications 38 (2011) 4741–4755 4747

4.1. ANFIS

Artificial neural network is a network of artificial neurons that
mimics the signaling and processing of the human brain. They have
very strong pattern recognition ability but suffer from the inherent
problem of being a black box, as they are not able to explain the
causal relationship between the inputs and the results (outputs).
On the other hand, fuzzy systems model human reasoning ability
in an environment of uncertainty. These systems employed the
use of fuzzy IF-THEN rules that are similar to human reasoning.
These fuzzy logics are easy to comprehend and they tend to be tol-
erant to imprecise data. There are two main models for fuzzy sys-
tems; namely: the Mamdani and the Sugeno. Their difference lies
in the way their outputs are interpreted. Mamdani model gener-
ates a fuzzy logical system that has a highly interpretable conse-
quent; while Sugeno model generates a consequent that is a
crisp function of the inputs. The latter is computationally more
accurate but not as interpretable as the former.

Neuro-fuzzy systems are hybrid systems, integrating neural
networks with fuzzy systems. These systems do not suffer from
the limitation of a black box and is able to perform in an environ-
ment of uncertainty. Neuro-fuzzy systems such as Pseudo Outer-
Product based Fuzzy Neural Network (POPFNN) (Quek & Zhou,
1999, 2006), eFSM (Tung & Quek, 2010) and SeroFNN (Javan &
Quek, 2010) – are examples of Mamdani model, ANFIS (Jang, Sun,
& Mizutani, 1997), MS-TSKFnn (Wang, Quek, & Ng, 2004),
GA_TSKFnn (Tang, Quek, & Ng, 2005) and FITSK (Quah & Quek,
2006) – examples of Sugeno model are gaining recognition in sev-
eral different areas such as finance, security and health care, as
their performance and interpretability are superior to other sys-
tems such as radial basis function (RBF) networks.

The Adaptive Neuro-Fuzzy Inference System (ANFIS) implements
the TSK fuzzy model. The inference process based on the TSK fuzzy
model is shown in Fig. 4.1.

The ANFIS network has a five-layered structure as illustrated in
Fig. 4.1. For the ANFIS network, the inputs and outputs are not con-
sidered part of the network structure. Moreover, the network
structure is predetermined by the user prior to commence of train-
ing. The training cycle of the ANFIS network thus tunes the param-
eters of the network (known as parameter learning) but do not
modify the connectionist structure of the network. In this intro-
duction, the input nodes to the ANFIS network are denoted as Li,
where i 2 {1. . .n1}. The label n1 refers to the number of inputs to

the ANFIS network. The vector X = [X1, . . . ,Xi, . . . ,Xn1]T denotes the
numerical inputs presented to the ANFIS network. The output is
denoted as f. Here, only the multiple-inputs-and-single-output
(MISO) system is considered. This is because a multiple-inputs-
and-multiple-outputs (MIMO) system can be readily decomposed
into several MISO systems.

With reference to Fig. 4.2, layer 1 essentially consists of the lin-
guistic terms (fuzzy sets) of the input nodes to the ANFIS network.
The jth linguistic term of the ith input is denoted as ILi,j. The label Ti

denotes the number of linguistic terms that input Li has. Each input
node Li may have different number of linguistic terms Ti. Hence, the
number of nodes in layer 1 is

Pn1
i¼1Ti. Layer 2 of the ANFIS network

is the fuzzy rule base that models the underlying characteristics of
the numerical training data. The rule nodes are denoted as Rk,
where k 2 {1. . .n3}. There are n1 nodes (fuzzy terms) from layer 1
(one from each input variable) feeding into an arbitrary node Rk

in layer 2. The label n3 refers to the number of fuzzy rules in the
ANFIS network. Layer 3 is the normalization layer of the ANFIS net-
work. There is full connectivity between the nodes of layer 2 and
layer 3. The number of nodes in layer 3 (denoted as n4) is deter-
mined by the number of fuzzy rules in the ANFIS network. That
is, n4 = n3. The functionality of each of the layer 3 nodes is to per-
form normalization of the firing strength of the fuzzy rule it repre-
sents. Subsequently, the computation of the rule consequents is
performed at layer 4 of the ANFIS network. Since the ANFIS net-
work adopts the TSK fuzzy model, the consequents of the rules
are functions of the inputs. These functions are denoted as Cm,
where m 2 {1. . .n5}. The label n5 refers to the number of output
functions in layer 4 and is again determined by the number of fuz-
zy rules. Hence, n5 = n3. Each output function Cm may be inter-
preted as Eq. (4.1):

Cm : ðX1; . . . ;Xi; . . . ;Xn1Þ! R; ð4:1Þ

where Xi is the ith numerical input to the ANFIS network and R is
the set of real numbers.

Since each rule would compute an inferred output (crisp for
ANFIS) based on the input stimulus X = [X1, . . . ,Xi, . . . ,Xn1]T, the fi-
nal network output is the aggregation of all the computed in-
ferred outputs. Hence, the function of the last ANFIS layer (layer
5) is to aggregate all the inferred outputs of the rules through
summation and presents the computed value as the network out-
put. This output is denoted as f. During the training cycle of the
ANFIS network, the numerical training data set S consisting of

Fuzzifier Antecedent
Matching

Rule
Fulfilment

Normalization of rule
firing strengths

Aggregation of rule
outputs to derive

final outputs

Fuzzified
inputs

Degree of
Matching (MV)

Rule firing

Normalized
rule firing

Outputs due to
individual rule

Step 1 Step 2

Step 3

Step 5 tep 4S

Computation of
outputs due to
individual rule

Crisp

outputs

Crisp
inputs

Fig. 4.1. Inference process of the TSK fuzzy model.

4748 Z. Tan et al. / Expert Systems with Applications 38 (2011) 4741–4755

the desired input–output pairs (X(p),Y(p)) (where p 2 {1. . .P} and P
denotes the number of training instances) is fed into the ANFIS
network from the input and output layers. The parameters of
the ANFIS network can be subsequently tuned either using the
negative-gradient-descent-based back-propagation algorithm
(Rumelhart, Hinton, & Williams, 1986) or the hybrid learning
algorithm proposed by Jang et al. (1997).

With reference to Figs. 4.1 and 4.2, one can easily deduce the
correspondence between the steps of the TSK inference process
and the functions of the ANFIS network. Step 1 of the TSK inference
is implicitly performed by the input nodes of the ANFIS network.
The input nodes functioned as singleton fuzzifiers to the inference
process. The function of layer 1 nodes of the ANFIS network is read-
ily mapped to step 2 of the inference process. The membership val-
ues of the numerical inputs with respect to the fuzzy sets are
computed. Layer 2 of the ANFIS network implements step 3 of
the inference process where the firing strengths of the fuzzy rules
are determined. Step 4 of the TSK inference process is performed
by the nodes in layer 3 and layer 4 of the ANFIS network. Layer 3
nodes compute the normalized fuzzy rule strengths while layer 4
derives the inferred output. Layer 5 of the ANFIS network subse-
quently aggregates the inferred outputs to derive the required
crisp output as stated by step 5 of the TSK inference process.

ANFIS is a fuzzy inference system implemented in the frame-
work of an adaptive network, where the membership parameters
are automatically tuned. The fuzzy inference system can be gener-
ated in two ways, either by clustering or non-clustering. Clustering
is a form of unsupervised learning, where unknown data is
grouped into several clusters that are associated to different pat-
terns. Using this method to generate the fuzzy inference system
is able to reduce the curse of dimensionality and can easily gener-
ate the fuzzy inference system without the need to specify the
membership functions. The tuning of the membership parameters
will be done via supervised learning of the input–output pairs that
are given to the system as training data. This employs a hybrid
learning algorithm that synergizes both the back propagation
method and the least squares estimate to improve the learning
performance.

4.2. Design and formulation

In this paper, ANFIS is used as the function approximator to pre-
dict the gradient to the next inflexion point. Initially, a fuzzy infer-
ence system is generated via subtractive clustering. Subsequently,
they undergo tuning through training of the network. Reinforce-
ment learning will be then be applied to determine the optimum
input dimension and radius of influence by evaluating the network
whereby the radius of influence is a parameter for subtractive clus-
tering of the fuzzy inference system.

Over fitting is a problem where the network is trained and eval-
uated using similar data. This is often due to limited data or due to
situation when the validation data is coincidently similar to the
training data. In these cases, it is not uncommon to have 100% cor-
rect classification on the validation data, which is overly optimistic.
The model selected will be incorrect and may subsequently per-
form badly using out-of-sample data. In this paper, K-fold cross
validation will be extended and employed in this framework. The
past data will be split into K parts, with K ' 1 parts as the training
set and 1 part as the testing set. This validation is then executed K
times, trying out all different parts. The advantage of this strategy
is that all the past data have the chance to be trained and evalu-
ated, giving the true error shown in Eq. (4.3) of the model

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE
p

¼

ffi
1
n

Xn

i¼1

ð!yi ' yiÞ
2

vuut ; ð4:2Þ

where n is the number of outputs predicted, !yi is the predicted out-
put and yi is the expected output

TrueError ¼ 1
K

XK

k¼1

RMSEk

 !
; ð4:3Þ

where K is the number of folds and k is the index of each fold.
However the true error is often insufficient to gauge the perfor-

mance of the model and, the correlation as shown in Eq. (3.24), is
often used to complement the RMSE for benchmarking of the per-
formance. In order to adopt this measure in K-fold cross validation,
Eq. (3.24) have to be updated to Eq. (4.4)

MeanCorrx ¼
1
K

XK

k¼1

Corrðy; ~yÞ; ð4:4Þ

where x is the model used, K is the number of folds used, y is the
expected value and ~y is the predicted value.

Thus, a performance measure employing these two measures is
proposed in this study. This is illustrated in Eq. (4.5)

RewardxðRxÞ ¼
1

ðTrueErrorxÞ
)MeanCorr; ð4:5Þ

where x is the model used and MeanCorr is the mean correlation
coefficient.

The tuning of the two parameters will be done simultaneously
to determine the model that yields the highest reward which is ex-
pressed in Eq. (4.5). After the optimum parameters are found, the
entire past data set will be used to train the network, ANFIS.

Fig. 4.3 shows the flow chart of the learning process for the
training and evaluation of ANFIS. The inflexion point detector is a
combination of both the trough and peak finders which are ex-
pressed in Eqs. (3.12) and (3.13). With the identified inflexion

11 nX X

∑

1C

miC

5nC

.

.

.

.

.

.

N
4n

lN

1N1 L

i L

.

.

.

1 nL

.

.

.

,i 1 IL

, ii TIL

1n ,1 IL

, 1 n 1n T IL

1R

kR

3nR

1,1

 1 1, IL T

 IL
1X

i X

1n X

f

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Inputs Output

Fig. 4.2. Structure of the ANFIS network.

Z. Tan et al. / Expert Systems with Applications 38 (2011) 4741–4755 4749

points from the inflexion point detector, the inflexion point sorter
module will then sort them accordingly a trough to peak, peak to
trough sequence.

The tuned cycle will then be preprocessed to generate the train-
ing set. The design of the prediction model employs the past gradi-
ents of the tuned cycle as inputs. These past gradients are spaced
exponentially and can be mathematically formulated as shown in
Eq. (4.6)

Inputx ¼
Cyclet'ð2x)5Þ ' Cyclet

ð2x) 5Þ
; ð4:6Þ

where x is the number of input dimensions and t is the current day.
On the other hand, with the inflexion points identified in the

inflexion point detector, the next valid inflexion point can be deter-
mined. The gradient from the current day to the next inflexion
point can be mathematically formulated as in Eq. (4.6) and will
be used as the expected output data, see Eq. (4.7)

Outputt ¼
Cyclet ' CycleT

T ' t
ð4:7Þ

where T 2 {Inflexion Pts}.
After the data is processed, it will be split into three parts, train-

ing, checking and testing data. ANFIS will make use of the training
data to tune the membership parameters. ANFIS will then be eval-
uated thru reinforcement learning and the reward as expressed in
Eq. (4.5) will be feedback to the framework. The parameters for the
most rewarding model will then be remembered with respect to
the state of the stock. Finally, this model will then be trained with
95% of the past data and the remaining 5% of the data is used for
validation.

4.3. ANFIS-RL*: experimental setup

Stock data from five companies, namely, Citigroup, General
Motors, Walmart, Wyeth and IBM are used to generate their cycles
from 1986 to 1994. These cycles are then used as the training data
in the following experiments. The number of folds, K, used for
K-fold cross validation in the framework is set as 4. Lastly, the
number of training episodes for all the models is 200.

4.4. Model comparison using K-fold cross validation

In this experiment, two neuro-fuzzy models, Dynamic Evolving
Neural Fuzzy Inference System (DENFIS) (Kasabov & Song, 2002)
and Rough Set-Based Pseudo Outer-Product (RSPOP) (Ang & Quek,
2006) are benchmarked against ANFIS_RL*. DENFIS and RSPOP are
based on two different fuzzy models; namely: Sugeno and
Mandami respectively. DENFIS have better prediction capability
as compared to ANFIS (Jang et al., 1997) and RSPOP has better
interpretability than Sugeno type model. Default parameters for
DENFIS are set and RSPOP will be using three labels for the fuzzy
inference system.

Table 4.1 shows the mean true error, correlation coefficient and
the proposed performance measure. ANFIS-RL* has the smallest
mean true error and highest mean correlation. However, consider-
ing the worse case in the true error measure, where the standard
deviation is taken into consideration, it is observed that RSPOP
with four input dimensions has the best performance. On the other
hand, DENFIS has the highest mean correlation. However, if the
overall performance measure is considered, it can be observed that
ANFIS-RL* is able to consistently achieve the highest correlation to

Tuned Cycle

Inflexion Point
Detector

Inflexion Points
Sorter Preprocess Data

ANFIS

Reinforcement
Learning

Remember Optimum Input
Dimension and Optimum

Radius of Influence

Stock Data

Get State

Cycle Finding

Troughs & Peaks

Processed Data

Evaluation Results : RMSE

Input Dimension

Radius of Influence

Fig. 4.3. Framework of ANFIS-RL*.

Table 4.1
Overall performance measures.

Model Input dim. True error Correlation Overall performance

Mean Std. deviation Mean Std. deviation

DENFIS 4 0.1423 0.0406 0.6556 0.1060 4.6089
DENFIS 5 0.1598 0.0478 0.5733 0.1137 3.5884
RSPOP 4 0.1399 0.0381 0.6281 0.1533 4.4884
RSPOP 5 0.1547 0.0512 0.5945 0.1261 3.8419

ANFIS-RL* Variable 0.1363 0.0511 0.6638 0.1078 4.8696

4750 Z. Tan et al. / Expert Systems with Applications 38 (2011) 4741–4755

true error ratio. Thus, the proposed framework is able to optimize
the performance of the network through reinforcement.

4.5. Prediction evaluation

In this subsection, simulation benchmark is based on the two
different performance measures and the final model will then be
evaluated with the entire dataset. The two different performance
measures are the proposed performance measure as expressed in
Eq. (4.5) – reward and Eq. (4.3) – true error a function of RMSE.
The objective of this experiment is to determine the impact of
the proposed performance measure (Rx).

From Figs. 4.4 and 4.5, it can be observed that using the
proposed performance measure, ANFIS is able to provide a more
stable predicted output than using the performance measure.
This is illustrated in the indicated area whereby the prediction,
using the proposed performance measure – (Rx), does not generate
large fluctuation. Such fluctuations are intolerable in certain
applications.

4.6. Detection of inflexion region

Even though, there is a prediction to the next inflexion point but
one is still unable to identify an inflexion point. In this section we
shall formulate the identification mathematically.

From Eq. (4.7), it can be observed that as the cycle approaches
the inflexion points, the value for Cyclet will be very close to CycleT.
This implies that Outputt will approach near to zero when the cur-
rent day is near to the inflexion point. To know whether it is a
trough or peak, the trading system needs to know the past trend.
We can mathematically formulate the past trend in Eq. (4.8)

Past Trend ¼ Cyclet ' Cyclet'X ; ð4:8Þ

where t is the current day and X is a parameter value that is found
via reinforcement learning.

With the past trend and the predicted gradient from ANFIS-RL*,
the inflexion point can be identified via Eqs. (4.9) and (4.10)

ðPast Trend < 0Þ ^ ðPredicted * 0Þ! Trough; ð4:9Þ
ðPast Trend > 0Þ ^ ðPredicted * 0Þ! Peak: ð4:10Þ

Using Eq. 4.11, Eqs. (4.9) and (4.10) can be updated as Eqs. (4.12)
and (4.13)

Offset) Predicted > 'Precision ^ Offset) Predicted

< Precision! Inflexion; ð4:11Þ

where Offset and Precision are parameters that are identified via
reinforcement learning

ðPast Trend > 0Þ ^ Inflexion! Peak; ð4:12Þ
ðPast Trend > 0Þ ^ Inflexion! Trough: ð4:13Þ

The parameter, Precision in Eq. (4.11) marks out the region where a
value will be deemed as an inflexion point. The other parameter,

Offset is a multiplicative factor to reduce the lagging effect of the
tuned cycle.

5. Maximum reward reinforcement learning in trading

Maximum reward reinforcement learning is claimed in Quah
and Quek (2005) to be more appropriate in applications, where
the use of cumulative rewards is unjustifiable. Stock trading is
one such application where the profit is non-cumulative. In addi-
tion to this, maximum reward reinforcement learning had shown
superior performance in finding optimal solution without being
hindered by sub-optimal solutions (Quah & Quek, 2005).

5.1. Mathematical definitions for maximum reward reinforcement
learning

In this subsection, equations for reinforcement learning will be
modified to implement the maximum reward reinforcement learn-
ing paradigm. The reward function,Rt, is modified as shown in Eq.
(5.1)

Rt ¼maxðrtþ1 þ crtþ2 þ c2rtþ3 þ & & &Þ ¼max
X1

k¼0

ckrtþkþ1

 !
; ð5:1Þ

where c is the discount rate.
Using Eq. (5.1), Eqs. (3.7), (3.8) and (3.10) are updated as 5.2, 5.3

and 5.4 respectively.
Under policy p,

VpðsÞ ¼ EpfRt jst ¼ sg ¼ Ep max
8k2½0;1,

ðckrtþkþ1Þ
!!!!st ¼ s

()

¼ Ep maxðrtþ1; c max
8k2½0;1,

ðckrtþkþ2ÞÞ
!!!!st ¼ s

()

¼
X

8a2AðsÞ
pðs; aÞ

X

8s02S0
Pa

ss0 max Ra
ss0 ; cVpðs0Þ

* +" #
; ð5:2Þ

where Ep is the expectation function for the policy p, c is the dis-
count rate, a is an action, Pa

ss0 is the probability from s to s0 and Ra
ss0

is the future reward.
Under policy p,

Qpðs; aÞ ¼ EpfRt jst ¼ s; at ¼ ag

¼ Ep max
8k2½0;1,

ðckrtþkþ1Þ
!!!!st ¼ s; at ¼ a

()

¼ Ep maxðrtþ1; c max
8k2½0;1,

ðckrtþkþ2Þ
!!!!st ¼ s; at ¼ a

()

¼
X

8s02S0
Pa

ss0 max Ra
ss0 ; cVpðs0Þ

* +" #
; ð5:3Þ

where Ep is the expectation function for the policy p, c is the dis-
count rate, s0 is a state that belongs to the set of states, Pa

ss0 is the
probability from s to s0 and Ra

ss0 is the future reward.
Under optimal policy,

Prediction (General Motors)

-1

-0.5

0

0.5

1

1 97 19
3

28
9

38
5

48
1

57
7

67
3

76
9

86
5

96
1

10
57

11
53

12
49

13
45

14
41

Day

G
ra

di
en

t t
o

Ne
xt

In

fle
xi

on
 P

oi
nt

Predicted Output Expected Output

Fig. 4.4. Prediction based on true error (Eq. (4.3)) as reward.

Prediction (GM)

-0.40
-0.20
0.00
0.20
0.40
0.60
0.80
1.00

1 96 19
1

28
6

38
1

47
6

57
1

66
6

76
1

85
6

95
1

10
46

11
41

12
36

13
31

14
26

Day

G
ra

di
en

t t
o

Ne
xt

In

fle
xi

on
 P

oi
nt

Predicted Output Expected Output

Fig. 4.5. Prediction based on proposed performance measure (Rx) (Eq. (4.5)) as
reward.

Z. Tan et al. / Expert Systems with Applications 38 (2011) 4741–4755 4751

V(ðsÞ ¼max
p

VpðsÞ ¼max
a

Qp(ðs; aÞ

¼max
a

X

8s02S0
Pa

ss0 max Ra
ss0 ; cV(ðs0Þ

* +" #
; ð5:4Þ

where c is the discount rate, s0 is the next state, a is the action taken,
Pa

ss0 is the probability from s to s0 and Ra
ss0 is the future reward.

5.2. Learning to trade

The proposed learning will be different from Moody & Saffell’s
(2001) in terms of concept and technique. Conceptually, the agent
will learn to trade at potential states (troughs or peaks) based on
actual price actions to get potential high returns. In terms of tech-
nique, the agent will learn to trade in a value based approach. This
agent will be termed as Max-Reward trading agent (the ‘‘agent”)
subsequently.

The inexperienced agent will undergo an evaluative learning
session prior to actual trade. To learn when to buy, the selling
day is first fixed at the peaks of each cycle. The agent will then re-
trieve the state of the current day which composed of three pro-
cessed components; they are computed from the historical price
data. These are mathematically formulated in Eqs. (5.5) and (5.6)

Past TrendT ¼ round
pricecurrent ' pricecurrent'T

T
) 10

% &
; ð5:5Þ

where T 2 {30,70,90}.
The timing intervals, {30,70,90}, are arbitrary values to repre-

sent the past short, medium and long term trend. As the gradient
is a continuous value, it will be rounded to the nearest discrete va-
lue. Since the state is represented by three components, it can be
expressed as in Eq. (5.6)

Statecurrent ¼ ðPast Trend30; Past Trend70; Past Trend90Þ: ð5:6Þ

With knowledge of the current state, the agent will buy on that day
and sell at the next peak. The agent will then evaluate his action by
using the multiplicative profit (Moody & Saffell, 2001) as a form of
reward. The reward formulation is shown in Eqs. (5.7) and (5.8)

Multiplicative Profit ¼ ðWt 'WoÞ=Wo; ð5:7Þ

where Wt is the current wealth and Wo is the initial wealth.
The wealth of the trading system is formulated in Eq. (5.8)

Wt ¼Wo

aT

t¼1

f1þ Rtg; ð5:8Þ

where Wt is the current wealth, Wo is the initial wealth and

f1þ Rtg ¼ f1þ ðzt=z0 ' 1Þgf1' 2dg;

where z0 is the initial price, zt is the current price of the securities
and d is the transaction rate.

In Eq. (5.8), the transaction rate is fixed at 0.5%, to simulate as
the brokerage charges and miscellaneous handling fees. After the
reward is given, the agent will update his experience using Eq.
(3.2). This trial and error learning will continue until there is no
more peak for the agent to learn to buy. This process is exactly
the same in learning to sell, except that the trough is used for
the buying and the selling will be done on every day until there
is no more peak left.

5.3. Decision making process

During trading, the agent will exploit his experience to decide
on the trading signals. The agent will attempt to retrieve the cur-
rent state using Eq. (5.6) and will decide on its actions. Prior to
decision making, Eqs. 5.2, 5.3 and 5.4 are modified as undiscounted

equations as shown in Eqs. 5.9, 5.10 and 5.11. This modification
will allow the agent to take the future values seriously.

Under policy p,

VpðsÞ ¼
X

8a2AðsÞ
pðs; aÞ

X

8s02S0
Pa

ss0 max Ra
ss0 ;V

pðs0Þ
* +" #

; ð5:9Þ

where a is an action that belongs to the set of actions, Pa
ss0 is the

probability from s to s0 and Ra
ss0 is the future reward.

Under policy p,

Qpðs; aÞ ¼
X

8s02S0
Pa

ss0 max Ra
ss0 ;V

pðs0Þ
* +" #

ð5:10Þ

where s0 is a state that belongs to the set of states, Pa
ss0 is the prob-

ability from s to s0 and Ra
ss0 is the future reward.

Under optimal policy,

V(ðsÞ ¼max
a

X

8s02S0
Pa

ss0 max Ra
ss0 ;V

(ðs0Þ
* +" #

; ð5:11Þ

where s0 is the next state, a is the action taken, Pa
ss0 is the probability

from s to s0 and Ra
ss0 is the future reward.

In the decision making process, the agent will compare the cur-
rent state value and the future value. The future value can be com-
puted using Eq. (5.11) with the number of look ahead states set as
5. If the future value is lower than the current state-value, then the
agent will decide to buy, as there is no other days that has better
opportunity other than the current day. On the other hand, if the
reverse occurs, the agent will decide to hold. However this control
is still inadequate in some cases. Consider the case where the agent
reaches a state that has a reward of 5% and it is higher than the fu-
ture value, then should he buy? Considering the fact that the pro-
posed investing style is a long term investing, it will be better if the
expected reward is high enough. These stopping criteria can be
mathematically formulated as shown in Eq. (5.12)

~s ¼minftjrt P eV ðstÞ; rt > Yg; ð5:12Þ

where t is the current time and eV ðstÞ is the expected future value
and Y is the expected reward that is identified via RL.

On the other hand, the agent will decide to sell based on the
current profit. Then the agent will get the expected future value
by using Eq. (5.11). If the current reward is higher than the future
value, the agent will decide to sell, since the current reward is
higher than any expected future rewards. This optimal stopping
time is formulated in Eq. (5.13)

~s ¼minftjrt P eV ðstÞg; ð5:13Þ

where t is the current time and eV ðstÞ is the expected future value.
Fig. 5.1 shows the design of the trading system. It consists of

three modules, cycle tuner, ANFIS and the trading agent that are
generated in Sections 3–5 respectively. The cycle tuner, in Section
3, is used to generate the cycle data. This output data is then used
by ANFIS, in Section 4, to predict the next inflexion point of the cy-
cle. The prediction is employed by the trading agent (Section 5) as
an indicator that the stock pricing is now within the inflexion re-
gion. The agent will then exploit its trading experience to decide
on the trading action. With the trading decision, the portfolio will
be updated with the new holdings and capital.

5.4. Experimental setup

Five stocks, having 20+ years of history, from different indus-
tries are randomly selected from the US market, for trading simu-
lation and analysis. These stocks are; namely: Citigroup (Finance),
General Motors (Automotive), Wyeth (Healthcare), IBM (Informa-
tion Technology) and Walmart (Variety Stores). By selecting from
different industries, the stock data will be highly uncorrelated from

4752 Z. Tan et al. / Expert Systems with Applications 38 (2011) 4741–4755

one another and thus will allow the proposed trading system to
switch funds easily. Table 5.1 shows the correlation between the
individual stocks.

In the following experiments, historical data from each stock
from 1986 to 1994 was fed to the cycle finding module to deter-
mine the cycles of each stock. These cycles were then used to train
the inflexion point predictor, ANFIS-RL* (see Section 4) and the
Max-Reward trading agent. Reinforcement learning is then used
to tune the parameters in the trading system (see Section 5). The
simulations span a period of 13 years, starting from 24th August
1994 to 30th August 2006. The trading system will start off with
an initial capital of US$100,000 and each buying or selling will in-
cur a transaction cost of 0.5%.

5.5. Experimental results

Table 5.2 shows the trading performance for trading each indi-
vidual stock. It shows that the trading system is able to achieve an
average of 95% winning trades for the five counters. It can be ob-
served that the average actual return over a year is around
36.91% based on the holding period. If it is based on the simulation
period of 13 years, then the average yearly return is around 13.05%.

This analysis shows that the trading performance is not optimized
yet. To optimize it, the waiting period (peak to trough) must be re-
duced. Furthermore, by analyzing the average return and average
trades, it can be observed that for every trade, the investor can ex-
pect around 36.88% (169.68%/4.6) return.

5.5.1. Trading activity on IBM
In this section, the trading activity of one of the stocks, IBM is

being demonstrated. Fig. 5.2 shows the trading activity on the
counter: IBM. The parameter ‘Close’ is the closing price of the
stock, ‘Trading Signal’ is the trading signal (low to high -> buy;
high to low -> sell) and ‘Cycle’ is the cycle being generated as de-
scribed in Section 3. Table 5.3 shows the detailed trading activity.
Generally, from Fig. 5.2, it can be observed that the trading is
done near the inflexion points of the generated cycle and 3 out
of 4 trades are profitable. On further analysis of the losing trade,
it can be observed that the trading loss is almost negligible com-
pared to the profits made and most importantly, the system is
still trading in the inflexion region. From Fig. 5.2 and Table 5.3,
it can be observed that most of the 13 years is used to wait for
a new buying opportunity. In Section 5.5.3, the trading system
will utilize all the five stocks for trading, attempting to maximize
the number of buying opportunities and thus reducing the wait-
ing period.

5.5.2. Performance benchmark
The return from each individual stock is compared against the

stock market (as proxied by the market indices) returns as well
as the individual stock return, see Table 5.4. This provides an
effective evaluation of the performance of the proposed long

Cycle Tuner

ANFIS

Cycle data
Predicted

inflexion pointTrading Based on
Actual Price

Actions

Buy/Sell/Hold

Stock Data

Daily
Closing price

Daily closing price

Portfolio

Fig. 5.1. Design of the trading system.

Table 5.1
Correlation ratio of stocks.

Correlation IBM Walmart Citigroup Wyeth General Motors

IBM 1.000 0.224 '0.002 0.406 0.566
Walmart 0.224 1.000 0.320 0.273 '0.190
Citigroup '0.002 0.320 1.000 0.028 0.179
Wyeth 0.406 0.273 0.028 1.000 0.312
General Motors 0.566 '0.190 0.179 0.312 1.000

Table 5.2
Trading performance for each stock.

Company Profit
(%)

Wining
trades (%)

No. of
trades

Total holding
period in year

Profit (% per
holding year)

IBM 212.76 75.00 4 4.86 43.73
Walmart 110.69 100.00 4 5.09 21.74
Citigroup 131.68 100.00 3 3.55 37.09
Wyeth 189.30 100.00 6 4.01 47.23
General Motors 203.95

100.00
6 5.87 34.75

Average 169.68 95.00 4.6 4.67 36.91

Trading Actions on IBM

0
50

100
150
200
250
300

8/
24

/1
99

4
2/

24
/1

99
5

8/
24

/1
99

5
2/

24
/1

99
6

8/
24

/1
99

6
2/

24
/1

99
7

8/
24

/1
99

7
2/

24
/1

99
8

8/
24

/1
99

8
2/

24
/1

99
9

8/
24

/1
99

9
2/

24
/2

00
0

8/
24

/2
00

0
2/

24
/2

00
1

8/
24

/2
00

1
2/

24
/2

00
2

8/
24

/2
00

2
2/

24
/2

00
3

8/
24

/2
00

3
2/

24
/2

00
4

8/
24

/2
00

4
2/

24
/2

00
5

8/
24

/2
00

5
2/

24
/2

00
6

Day

St
oc

k
Pr

ic
e

-60.00%
-40.00%
-20.00%
0.00%
20.00%
40.00%
60.00%
80.00%

Ra
te

 o
f C

ha
ng

e

Close Trading Signal Cycle

Fig. 5.2. Trading actions on IBM.

Z. Tan et al. / Expert Systems with Applications 38 (2011) 4741–4755 4753

term trading method. Table 5.4 shows the return of two market
indices (Dow Jones Index and the S&P 500 index) and the five
stocks prices for the period from 1994 to 2006. Comparing the
returns from the indices with Table 5.2, it can be observed that
the average total return of trading a single stock is 8.63% lesser
than the S&P Index and 26.23% lesser than Dow Jones Index.
However, by comparing the yearly return of the indices with
the returns per holding year in Table 5.2, it can be observed that
the proposed investing style is capable of beating the market by
at least around 21.84%. In addition to the analysis above, by ana-
lyzing the trading performance of a buy-and-hold strategy for the
entire trading period, it can be observed that the expected yearly
return of trading a stock using this strategy is '6.8%. The highest
return is from IBM, having a total of 37.06%. However achieving a
37.06% return after a 13-year period is not significant as it im-
plies only a 2.85% yearly return only. Comparing these results
with Table 5.2, it is apparent that the proposed trading system
is able to filter downside periods and capture the upside
potential.

5.5.3. Trading with dynamic asset switching strategy
In Section 6, the trading system is traded using only one

stock and hence, is unable to truly reflect the actual perfor-
mance of the proposed trading strategy and system. In this
section, dynamic asset switching strategy is used to switch

investment funds to another stock as soon as there is a buying
opportunity (trough). By doing so, the entire 13 years of trading
period will be better optimized as there are more trading oppor-
tunities. Table 5.5 shows the trading record for all the trading
done for this 13-year period with these five stocks. Each row
shows the price and day of trade for the stock, together with
the multiplicative wealth and the holding period for that partic-
ular investment.

Comparing the results between Tables 5.5 and 5.2, the total per-
centage profit has increased from an expected return of 167% to
240%, which is around 70% increment. It can be observed that all
the trades are profitable trades. It is apparent that the improve-
ment in the trading performance is due to the reduction in the
waiting time (peak to trough) by applying dynamic asset allocation.
This allows the trading system to judiciously identify more trading
opportunities within the 13 years. Comparing this trading perfor-
mance with the market return, it is apparent that the proposed
trading system has convincingly outperformed them by around
50%.

6. Conclusions

To many, technical analysis is a valuable and profitable tool in
trading and investment decisions. Relying on the principles of
technical analysis, our study proposes a non-arbitrage trading sys-
tem that is built from an optimized Adaptive Neuro-Fuzzy Infer-
ence System, (ANFIS) and supplemented by reinforcement
learning. Reinforcement learning is used to formalize an auto-
mated process for determining stock cycles by tuning the momen-
tum and the average periods. The initial experimental results based
on five US stocks are promising. On average, the total returns from
the five stocks are able to beat the market by about 50 percentage
points.

Admittedly, more rigorous empirical testing, further refine-
ments of the model in identifying the change in trends are required
for the proposed trading system to be more reliable and accept-
able. As an extension of the model, further development work
would also be undertaken for portfolio composition from a given
pool of stocks.

Table 5.3
Trading activities on IBM.

Date bought Price bought Date sold Price sold Profit (%) Holding period (days) Wealth

22-May-96 $110.37 7-April-97 $132.50 20.05 220 $118785.59
28-January-98 $97.00 4-May-99 $212.00 118.56 318 $257135.86
2-December-99 $105.27 7-February-02 $103.91 '1.29 546 $251238.79
15-October-02 $68.48 7-July-03 $86.09 25.72 181 $312743.02
17-September-04 $85.74 NA NA NA NA NA

Total profit $212743.02
Total profit 212.74%

Table 5.4
Returns on Dow Jones Index and S& P 500 Index.

Index/stock Performance

Return (%) Yearly return (%)

S&P (1994–2006) 178.31 13.72
Dow Jones (1994–2006) 195.91 15.07
IBM 37.06 2.85
Walmart '29.87 '2.30
Citigroup '42.51 '3.27
Wyeth 20.56 1.58
General Motors '19.26 '1.48

Table 5.5
Trading performance with dynamic asset allocation strategy.

Company Day bought Price bought Day sold Price sold Wealth Holding period (days)

General Motors 1 $50.38 696 $58.00 $113973.80 695
Wyeth 840 $75.00 922 $94.56 $142261.18 82
Wyeth 942 $49.00 1130 $59.25 $170299.70 188
Walmart 1244 $44.00 1434 $55.38 $212201.94 190
Walmart 1523 $49.75 1894 $62.98 $265946.41 371
Citigroup 1963 $40.71 2285 $46.99 $303902.07 322
Wyeth 2344 $39.65 2740 $44.85 $340320.50 396

Total profit $240,320.50
Total profit 240.32%

4754 Z. Tan et al. / Expert Systems with Applications 38 (2011) 4741–4755

References

Ang, K. K., & Quek, C. (2006). Stock trading using RSPOP: A novel rough set-based
neuro-fuzzy approach. IEEE Transactions on Neural Networks, 17(5), 1301–1315.

Blackman, M. (2004). Understanding cycles – The key to market timing.
Cheng, P., Quek, C., & Mah, M. L. (2007). Predicting the impact of anticipatory action

on US stock market – An event study using ANFIS (a neural fuzzy model).
Computational Intelligence, 23(2), 117–141.

Fama, E. (1970). Efficient capital markets: A review of theory and empirical work.
Journal of Finance, 25, 383–417.

Fan, A., & Palaniswami, M. (2001). Stock selection using support vector machines. In
IJCNN’01, Proceedings of the international joint conference on neural networks,
Washington, DC (Vol. 3, pp. 1793–1798).

Gallegos, A. d. l. T. (2004). Stock market cycles in Sweden. Universidad De Sevilla.
Huang, H. M., Pasquier, M., & Quek, C. (2009). Financial market trading system with

a hierarchical co-evolutionary fuzzy predictive module. IEEE transactions on
Evolutionary Computation, 13(1), 56–70.

Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing: a
computational approach to learning and machine intelligence. IEEE Transactions
on Automatic Control, 42(10), 1482–1484.

Javan, Tan., & Quek, C. (2010). A BCM-theory of meta-plasticity for online self-
reorganizing fuzzy-associative learning. IEEE Transactions on Neural Networks.,
21(6), 985–1003.

Kamijo, K.-I., & Tanigawa, T. (1990). Stock price pattern recognition: A recurrent
neural network approach. In International joint conference on neural networks,
IJCNN (Vol. 1, pp. 215–221).

Kasabov, N., & Song, Q. (2002). DENFIS: Dynamic evolving neural-fuzzy inference
system and its application for time-series prediction. IEEE Transactions on Fuzzy
Systems, 10(2), 144–154.

Kitchin, J. (1923). Cycles and trends in economic factors. The Review of Economic
Statistics, 5(1), 10–16.

Kuo, R. J., Chen, C. H., & Hwang, Y. C. (2001). An intelligent stock trading decision
support system through integration of genetic algorithm based fuzzy neural
network and artificial neural network. Fuzzy Sets and Systems, 118(1), 21–45.

Lee, C.-H. L., Liu, A., & Chen, W. S. (2006). Pattern discovery of fuzzy time series for
financial prediction. IEEE Transactions on Knowledge and Data Engineering, 18(5),
613–625.

Lucas, A., Dijk, R. v., & Kloek, T. (2002). Stock selection, style rotation, and risk.
Journal of Empirical Finance, 9, 1–34.

Malkiel, B. (1973). A random walk down wall street. W.W. Norton & Company Inc.
Moody, J., & Wu, L. (1997). Optimization of trading systems and portfolios. In

Proceedings of the IEEE/IAFE on computational intelligence for financial engineering
(CIFEr), New York City, NY (pp. 300–307).

Moody, J., & Saffell, M. (2001). Learning to trade via direct reinforcement. IEEE
Transactions on Neural Networks, 12(4), 875–889.

Moral-Escudero, R., Ruiz-Torrubiano, R., & Suarez, A. (2006). Selection of optimal
investment portfolios with cardinality constraints. In IEEE congress on

evolutionary computation, CEC2006, Sheraton Vancouver Wall Centre Hotel,
Canada (pp. 2382–2388).

Plummer, T. (2005). Forecasting financial markets: the psychology of successful
investing (5th ed.). Kogan Page.

Quah, K. H., & Quek, C. (2005). Maximum reward reinforcement learning:
Application to optimal stopping in financial derivative pricing. Expert Systems
with Applications, 31(2), 351–359.

Quah, K. H., Quek, C., & Leedham, G. (2005). Reinforcement learning combined with
a fuzzy adaptive learning control network (FALCON-R) for pattern classification.
Pattern Recognition, 38, 513–526.

Quah, K. H., & Quek, C. (2006). FITSK: Online local learning with generic fuzzy input
Takagi-Sugeno-Kang fuzzy framework for nonlinear system estimation. IEEE
Transactions on Systems, Man and Cybernetics, 36(1), 166–178.

Quek, C., & Zhou, R. W. (1999). POPFNN-AARS: A pseudo outer-product based fuzzy
neural network. IEEE Transactions on Systems, Man and Cybernetics, Part B, USA,
29(6), 859–870.

Quek, C., & Zhou, R. W. (2006). Structure and learning algorithms of a nonsingleton
input fuzzy neural network based on the approximate analogical reasoning
schema. Fuzzy Sets and Systems, 157(13), 1814–1831.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal
representations by error propagation. In D. E. Rumelhart et al. (Eds.). Parallel
distributed processing (Vol. 1(8)). Cambridge, MA: MIT Press.

Sarantis, N. (2001). Nonlinearities cyclical behavior and predictability in stock
markets: international evidence. International Journal of Forecasting, 17,
459–482.

Sarlan, H. (2001). Cyclical aspects of business cycle turning points. International
Journal of Forecasting, 17, 369–382.

Skinner, B. (1953). Science and human behavior. New York: MacMillan.
Sutton, R. S. (1998). Reinforcement learning: An introduction. MIT Press.
Tang, A. M., Quek, C., & Ng, G. S. (2005). GA-TSKFNN: Parameters tuning of fuzzy

neural network using genetic algorithms. Expert Systems with Applications,
29(4), 769–781.

Tan, A., Quek, C., & Yow, K. (2007). Maximising winning trades using a novel RSPOP
fuzzy neural network intelligent stock trading system. Applied Intelligence,
29(2), 116–128.

Tsitsiklis, J. N., & Roy, B. V. (1999). Optimal stopping of Markov processes: Hilbert
space theory, approximation algorithms, and an application to pricing high-
dimensional financial derivatives. IEEE Transactions on Automatic Control,
44(10), 1840–1851.

Tung, W. L., & Quek, C. (2010). eFSM – A novel online neural-fuzzy semantic
memory model. IEEE Transactions in Neural Networks., 21(1), 136–157.

Wang, D., Quek, C., & Ng, G. S. (2004). Novel self-organizing Takagi-Sugeno-Kang
fuzzy neural networks based on ART-like clustering. Neural Processing Letters,
20(1), 39–51.

Zargham, M. R., & Sayeh, M. R. (1999). A web-based information system for stock
selection and evaluation. Advance Issues of E-Commerce and Web-Based
Information Systems, 81–83.

Z. Tan et al. / Expert Systems with Applications 38 (2011) 4741–4755 4755

	Stock trading with cycles: A financial application of ANFIS and reinforcement learning
	Introduction
	Literature review
	Cycle finding and shifting
	Mathematical definitions in reinforcement learning (RL)
	Formulation of rewards and states in cycle finding
	Reward
	States
	Flow of the algorithm

	Experiments on cycle finding
	Singapore market
	US market

	Formulation of cycle shifting using reinforcement learning
	Experiments on cycle shifting

	ANFIS-RL*
	ANFIS
	Design and formulation
	ANFIS-RL*: experimental setup
	Model comparison using K-fold cross validation
	Prediction evaluation
	Detection of inflexion region

	Maximum reward reinforcement learning in trading
	Mathematical definitions for maximum reward reinforcement learning
	Learning to trade
	Decision making process
	Experimental setup
	Experimental results
	Trading activity on IBM
	Performance benchmark
	Trading with dynamic asset switching strategy

	Conclusions
	References

