
Theoretical Computer Science 325 (2004) 361–372

www.elsevier.com/locate/tcs

A space-efficient algorithm for sequence alignment
with inversions and reversals�

Zhi-Zhong Chena,1, Yong Gaob, Guohui Linb,∗,2,
Robert Niewiadomskib, Yang Wangb, Junfeng Wub

aMathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan
bDepartment of Computing Science, Faculty of Sciences, University of Alberta, 2-21 Athabasca Hall,

Edmonton, Alberta, Canada T6G 2E8

Received 10 October 2003; accepted 20 February 2004

Abstract

A dynamic programming algorithm to find an optimal alignment for a pair of DNA sequences has
been described by Schöniger and Waterman. The alignments use not only substitutions, insertions, and
deletions of single nucleotides, but also inversions, which are the reversed complements, of substrings
of the sequences. With the restriction that the inversions are pairwise non-intersecting, their proposed
algorithm runs in O(n2m2) time and consumes O(n2m2) space, wheren andm are the lengths of
the input sequences, respectively. We develop a space-efficient algorithm to compute such an optimal
alignment which consumes only O(nm) space within the same amount of time. Our algorithm enables
the computation for a pair of DNA sequences of length up to 10,000 to be carried out on an ordinary
desktop computer. Simulation study is conducted to verify some biological facts about gene shuffling
across species.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Sequence alignment; Inversion; Reversal; Dynamic programming

� An extended abstract appeared in the Proceedings of the Ninth International Computing and Combinatorics
Conference (COCOON 2003). Lecture Notes in Computer Science, Vol. 2697, Springer, Berlin, 2003, pp. 57–67.

∗ Corresponding author.
E-mail addresses:chen@r.dendai.ac.jp(Z.-Z. Chen),ygao@cs.ualberta.ca(Y. Gao), ghlin@cs.ualberta.ca

(G. Lin), niewiado@cs.ualberta.ca(R. Niewiadomski),ywang@cs.ualberta.ca(Y. Wang),jeffwu@cs.ualberta.ca
(J. Wu).

1 Supported in part by the Grant-in-Aid for Scientific Research of the Ministry of Education, Science, Sports
and Culture of Japan, under Grant No. 14580390. Part of the work done while visiting at University of Alberta.

2 Supported by NSERC Grants RGPIN249633 and A008599, PENCE, AICML, CFI, and a Startup Grant from
the University of Alberta.

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.02.040

http://www.elsevier.com/locate/tcs
mailto:chen@r.dendai.ac.jp
mailto:ygao@cs.ualberta.ca
mailto:ghlin@cs.ualberta.ca
mailto:niewiado@cs.ualberta.ca
mailto:ywang@cs.ualberta.ca
mailto:jeffwu@cs.ualberta.ca

362 Z.-Z. Chen et al. / Theoretical Computer Science 325 (2004) 361–372

1. Introduction

Sequence alignment has been well studied in the 1980s and 1990s, where a bunch of
algorithms have been designed for various purposes. The interested reader may refer to[2]
and the references therein. Normally, the input sequence is considered as a linear series
of symbols taken from a fixed alphabet, which consists of four nucleotides in the case
of DNA/RNA sequences or 20 amino acids in the case of proteins. An alignment of two
sequences is obtained by first inserting spaces into or at the ends of the sequences and then
placing the two resulting sequences one above the other, so that every symbol or space in
either sequence is opposite to a unique symbol or space in the other sequence.An alignment,
which is associated with some objective function, can be naturally partitioned into columns
and the column order is required to agree with the symbol orders in the input sequences.
In other words, these alignments use substitutions, insertions, and deletions of symbols
only and are callednormal alignmentsin this paper. For our purpose, we limit the input
sequences to DNA sequences.

In the literature, a number of algorithms[2] have been designed to compute an opti-
mal normal alignment between two DNA sequences, under various pre-determined score
schemes. A score scheme basically specifies how to calculate the score associated with
an alignment. In this paper, the score schemes are symbol-independent. The simplest such
score scheme would be the notion ofLongest Common Subsequence, where every match
column gets a score of 1 and every other column gets a score of 0 and the objective is to
maximize the sum of the column scores. In the more general linear gap penalty score scheme
specified by a triple(wm, ws, wi), every match column gets a scorewm, every substitution
column gets a scorews, and every insertion or deletion (anindel) gets a scorewi . The linear
gap penalty score schemes assume that every single nucleotide mutation is independent of
the others, which appears to be not biologically significant. The most commonly used score
scheme nowadays is the so-calledaffine gap penalty score scheme. Given an alignment, a
maximal segment of consecutive spaces in one sequence is called agap, whose length is
measured as the number of spaces inside. An affine gap penalty score scheme is defined
by a quadruple(wm, ws, wo, we), wherewm is the score for a match,ws is the score for a
replacement/substitution, andwo + we × � is the penalty for a gap of length�. Intuitively,
affine gap penalty score schemes assume that single nucleotide mutations might depend on
its neighboring nucleotide mutations. As an example, under the affine gap penalty score
scheme(10, −11, −15, −5), the following alignment has a score of 4:

1234567890123456789012345
-CCAATCTAC----TACTGCTTGCA
||| ||| | ||||| ||
GCCACTCT-CGCTGTACTG--TG--

In fact, one can easily verify that the above alignment is optimal for DNA sequences
CCAATCTACTACTGCTTGCAandGCCACTCTCGCTGTACTGTGunder this specific score
scheme.

Alignments are used to reveal the information content of genes in DNA sequences and
to make inferences about the relatedness of genes or more general inferences about the
relatedness of long-range segments of DNA sequences. With many genomic projects been

Z.-Z. Chen et al. / Theoretical Computer Science 325 (2004) 361–372 363

carried out, emphasis has been put on the study on the genetic linkage among species and/or
organisms. The sequences thus under consideration could come from different species and
inferences can be made about the relatedness of species. In this aspect, the normal sequence
alignment has the limitation on using evolutionary transformations to substitutions and
indels. It has been widely accepted that duplications and inversions are common events in
molecular evolution[3,7]. Some pioneer work on studying sequence alignment/comparison
with inversions is done by Wagner[6] and Schöniger and Waterman[5]. In particular, in[5],
a dynamic programming algorithm is developed to compute an optimal (local) alignment
with inversions. The algorithm runs in O(n2m2) time and consumes O(n2m2) spaces, where
n andmare the lengths of two input sequences, respectively.

The high order of running time seems computationally impractical, nonetheless, it is
the huge space requirement that actually makes the computation infeasible. For instance,
suppose the algorithm needs1

4n2m2 byte memory, then an optimal alignment between two
sequences of length 250 would not be carried out in a normal desktop of 1 GB memory.
Schöniger and Waterman[5] designed an algorithm to compute asuboptimalalignment
with inversions restricted to a constant number ofhighest scoring inversions. This latter
algorithm runs in O(nm+∑k

i=1 �i) time and requires an order of O(nm+∑k
i=1 �i) space,

wherek is the number of restricted highest scoring inversions and�is are their lengths,
respectively. In this paper, we develop a space-efficient algorithm to compute anoptimal
alignment with non-restricted inversions, in terms of both the number and their scores, within
O(m2n2) time. The algorithm is non-trivial in the sense that deep computation relationships
are carefully characterized.

Another related work is recently done by Muthukrishnan and Sahinalp[4], where they
consider the problem of minimizing the number of character replacements (no insertions and
deletions) and reversals and propose an O(n log2 n)-time deterministic algorithm, where
n is the length of either sequence.

1.1. Problem description

In this paper, we will consider in detail sequence alignment with inversions. The readers
will see that our proposed algorithms can deal with reversals, and both inversions and
reversals, too. Aninversionof a DNA substring is defined to be the reverse complement
of the substring. In the following discussion, we would not put a limit on the number of
inversions in the alignments, but we do want to put a lower bound on the lengths of inversions,
for the reason that we believe inversions correspond to some conserved coding regions and a
conserved region must have a least number of nucleotides inside. We letL denote this lower
bound. In the extreme case whereL = 0, it becomes the problem considered in[5]. The
inversions are restricted to be on one of the two input sequences (by symmetry) and they
are not allowed to intersect one another. Moreover, the substrings from the other sequence
against which those inversions are aligned are not allowed to intersect one another either.

The score schemes used in this paper are all affine gap penalty ones. For the sake of
comparison, the parameters in the schemes may be different in different simulations. We
associate each inversion with a (constant) penalty ofC [5], to compensate for the fact that
the inversion is an evolutionary event.

364 Z.-Z. Chen et al. / Theoretical Computer Science 325 (2004) 361–372

Now it is ready to formulate the computational problem we will be considering in the
paper. The input is a pair of DNA sequencesS1 andS2 over the nucleotide alphabet� =
{A,C,G,T}, together with an affine gap penalty score scheme(wm, ws, wo, we), inversion
lower boundL, and inversion penaltyC. The goal is to compute an optimal alignment
betweenS1 andS2 with inversions. For simplicity, we associatestandard similaritywith an
optimal normal alignment, which takes substitutions and indels only; and we useinversion
similarity to associate with an optimal alignment taking inversions in addition (called an
optimal inversion alignment). Both similarities (also called sequence identities hereafter)
are defined to be the ratio of the number of match columns in the alignment over the length
of the shorter sequence.

1.2. Organization

The paper is organized as follows: In Section 2, we will detail our algorithm to compute
an optimal inversion alignment between a pair of DNA sequencesS1 andS2. The algorithm
runs in O(m2n2) time and requires only O(mn) space, wheremandn are the lengths ofS1
andS2, respectively. In Section 3, we show the simulation results of our algorithm applied
to real instances including those tested in[5]. We conclude the paper with some remarks in
Section 4.

2. The algorithms

Let S1[1 . . . m] andS2[1 . . . n] denote the two input sequences of lengthmandn, respec-
tively. For simplicity of presentation, we simplify the problem a little by requiring that gaps
in non-inversion regions and inversion regions are counted separately and independently.
The a little more complex model, where adjacent gaps in non-inversion regions and inver-
sion regions are merged into one, can be solved as well using our algorithm. We letS[i]
denote the complement nucleotide ofS[i] (the Watson–Crick rule); letS1[i1 . . . i2] denote
the inversion ofS1[i1 . . . i2], i.e.,S1[i2] S1[i2 − 1] . . . S1[i1].

2.1. A less space-efficient algorithm

In this subsection, we introduce a less space-efficient dynamic programming algorithm
which is conceptually simple to understand. This algorithm is for linear gap penalty score
scheme (i.e., we would not usewo andwe here, but usewi instead which is the score for
an indel). The more complicated yet more space-efficient algorithm in Section 2.2 for the
affine gap penalty score scheme will be a refinement of this simple algorithm.

2.1.1. Inversion table computation
Suppose thatS1[i1, i2] andS1[i3, i4] are two inversion substrings in sequenceS1, then by

the length constraint and non-intersecting requirement we havei2− i1�L−1, i4− i3�L−
1, and eitheri2 < i3 or i4 < i1. For every quartet(i1, i2, j1, j2), where 0� i1� i2�m

and 0� j1� j2� n, let I [i1, i2; j1, j2] denote the standard sequence similarity between
two substringsS1[i1 . . . i2] andS2[j1 . . . j2] (i.e., without inversions). As an easy example,

Z.-Z. Chen et al. / Theoretical Computer Science 325 (2004) 361–372 365

S1 = ACGTandS2 = ACGA, thenS1[2 . . . 4] = CGTand thusS1[2 . . . 4] = ACG, and
S2[1 . . . 3] = ACG. Therefore,I [2, 4; 1, 3] = 3wm.

Let w(a, b) denote the score of matching nucleotidea against nucleotideb, wherea and
b are both in the alphabet (which includes nucleotidesA, C,G, T). Therefore,

w(a, b) =
{

wm if a = b,

ws if a �= b.

Let S1[0] = S2[0] = −. To assist theinversion table Icomputation,I is enlarged to include
the following boundary entries:
• I [i + 1, i; j1, j2] = (j2 − j1 + 1)wi , where 0� i�m and 0� j1� j2� n;
• I [i1, i2; j + 1, j] = (i2 − i1 + 1)wi , where 0� i1� i2�m and 0� j� n.

The recurrence relation for computing a general entryI [i1, i2; j1, j2] is as follows:

I [i1, i2; j1, j2] = max




I [i1 + 1, i2; j1, j2 − 1] + w(S1[i1], S2[j2]),
I [i1 + 1, i2; j1, j2] + wi,

I [i1, i2; j1, j2 − 1] + wi,

where 1� i1� i2�m and 1� j1� j2� n.
Notice that Table 1 contains in total1

4(m + 1)2(n + 1)2 entries and filling each of them
takes a constant amount of time.

2.1.2. Dynamic programming table computation
Let DP [i, j] denote the score of an optimal inversion alignment between prefixes

S1[1 . . . i] and S2[1 . . . j], where 0� i�m and 0� j� n. The boundary entries of the
dynamic programming table DPare:
• DP [0, j] = j × wi , where 0� j� n;
• DP [i, 0] = i × wi , where 0� i�m.

Recall that every inversion inS1, as well as its aligned segment inS2, must have length
at leastL. The recurrence relation for computing a general entryDP [i, j] is as follows:
• Wheni�L andj�L,

DP [i, j] = max




DP [i − 1, j − 1] + w(S1[i], S2[j]),
DP [i − 1, j] + wi,

DP [i, j − 1] + wi,

max
1� i′� i−L+1
1� j ′� j−L+1

{
DP [i′ − 1, j ′ − 1] + I [i′, i; j ′, j]

}
− C,

where the last entry says that an inversion happens atS1[i′, i] and therefore a penalty of
C should be paid.

• In the other case,

DP [i, j] = max




DP [i − 1, j − 1] + w(S1[i], S2[j]),
DP [i − 1, j] + wi,

DP [i, j − 1] + wi .

366 Z.-Z. Chen et al. / Theoretical Computer Science 325 (2004) 361–372

Since the dynamic programming table contains(m+1)(n+1) entries and entryDP [i, j]
takes up to O(ij) time to fill, the running time of the overall algorithm is
O(m2n2).

The correctness of the algorithm follows directly from the recurrences and therefore we
have the following conclusion.

Theorem 2.1. The inversion similarity betweenS1[1 . . . m] and S2[1 . . . n] can be com-
puted inO(m2n2) time usingO(m2n2) space.

2.2. A space-efficient algorithm for affine gap penalty score schemes

In the algorithm in Section 2.1 we divide the computation into two phases. In the first
phase, we prepare all the possible inversions together with their all possible aligned sub-
strings from the other sequence and the associated scores. Direct extension can lead to an
algorithm for affine gap penalty score schemes, running in the same amount of time and
requiring the same amount of space. In the following, we present a single-phase computa-
tion. We fill the dynamic programming table row-wise. Furthermore, when filling theith
row, we compute all possible inversions ending at positioni. We will prove that there are
O(mn) such possible inversions and each can be calculated in constant time based on the
intermediate results of computation for the(i − 1)th row. This single-phase computation
still takes O(m2n2) time, nonetheless requires O(mn) space only.

LetDPM[i, j], DPI [i, j], andDPD[i, j] denote the scores of an optimal inversion align-
ment between prefixesS1[1 . . . i] andS2[1 . . . j], where 0� i�m and 0� j� n, such that
the last operation is either a match or a mismatch, an insertion, and a deletion, respectively.
The boundary entries of these dynamic programming tables are:
• DPM[0, 0] = DPI [0, 0] = DPD[0, 0] = 0;
• DPI [0, j] = wo + j × we, where 1� j� n;
• DPD[i, 0] = wo + i × we, where 1� i�m.

Let I
i,j
M [i′, j ′], I

i,j
I [i′, j ′], andI

i,j
D [i′, j ′] denote the sequence similarities between in-

versionS1[i′ . . . i] andS2[j ′ . . . j], where 1� i′� i�m and 1� j ′� j� n, such that the
last operation is either a match or a mismatch, an insertion, and a deletion, respectively.
Again, to assist the computation for these 3 inversion tables, they are enlarged to include
the following boundary entries:

• I
i,j
M [i + 1, j + 1] = I

i,j
I [i + 1, j + 1] = I

i,j
D [i + 1, j + 1] = 0;

• I
i,j
I [i + 1, j ′] = wo + (j − j ′ + 1)we, where 1� j ′� j ;

• I
i,j
D [i′, j + 1] = wo + (i − i′ + 1)we, where 1� i′� i.

DenoteD̃P [i, j] = max{DPM[i, j], DPI [i, j], DPD[i, j]}. The recurrence relations for
dynamic programming tables computation are:

DPM[i, j] = max




w(S1[i], S2[j]) + D̃P [i − 1, j − 1],
max

1� i′� i−L+1
1� j ′� j−L+1

{
I

i,j
M [i′, j ′] + D̃P [i′ − 1, j ′ − 1]

}
− C,

Z.-Z. Chen et al. / Theoretical Computer Science 325 (2004) 361–372 367

DPI [i, j] = max




DPM[i, j − 1] + wo + we,

DPI [i, j − 1] + we,

DPD[i, j − 1] + wo + we,

max
1� i′� i−L+1
1� j ′� j−L+1

{
I

i,j
I [i′, j ′] + D̃P [i′ − 1, j ′ − 1]

}
− C,

DPD[i, j] = max




DPM[i − 1, j] + wo + we,

DPI [i − 1, j] + wo + we,

DPD[i − 1, j] + we,

max
1� i′� i−L+1
1� j ′� j−L+1

{
I

i,j
D [i′, j ′] + D̃P [i′ − 1, j ′ − 1]

}
− C.

Before computing theseith row entries,I i,j
M , I i,j

I , andI
i,j
D tables are pre-computed using

the following recurrence relations:

I
i,j
M [i′, j ′] = w(S1[i′], S2[j]) + max




I
i,j−1
M [i′ + 1, j ′],

I
i,j−1
I [i′ + 1, j ′],

I
i,j−1
D [i′ + 1, j ′],

I
i,j
I [i′, j ′] = max




I
i,j−1
M [i′, j ′] + wo + we,

I
i,j−1
I [i′, j ′] + we,

I
i,j−1
D [i′, j ′] + wo + we,

I
i,j
D [i′, j ′] = max




I
i,j
M [i′ + 1, j ′] + wo + we,

I
i,j
I [i′ + 1, j ′] + wo + we,

I
i,j
D [i′ + 1, j ′] + we.

.

Notice that the computation ofI
i,j
M , I i,j

I , andI
i,j
D tables needs the values inI

i,j−1
M , I i,j−1

I ,

andI
i,j−1
D tables only. It follows that we may just keep 3 inversion tablesI

i,j−1
M , I

i,j−1
I ,

andI
i,j−1
D after computing entriesDPM[i, j −1], DPI [i, j −1], andDPD[i, j −1]. These

three tables are then used in computing entriesDPM[i, j], DPI [i, j], andDPD[i, j], where
we create three new inversion tablesI

i,j
M , I

i,j
I , andI

i,j
D . After that, those three inversion

tablesI i,j−1
M , I

i,j−1
I , andI

i,j−1
D will no longer be used and thus can be deallocated.

In other words, we need only in total 9 two-dimensional tables during the overall com-
putation, which consume O(mn) space. The overall running time O(m2n2) is obviously
seen from the recurrences, where trying all possible combinations ofi′ andj ′ for pair(i, j)

dominates the computation.

Theorem 2.2. The inversion similarity betweenS1[1 . . . m] and S2[1 . . . n], using affine
gap penalty score schemes, can be computed inO(m2n2) time usingO(mn) space.

368 Z.-Z. Chen et al. / Theoretical Computer Science 325 (2004) 361–372

3. Simulation results

It is worth pointing out that the above space-efficient algorithm for affine gap penalty score
schemes only provides us the optimal score, but not the associated alignment. The way we
used to produce the optimal alignments showed in the subsequent part of the paper is to first
use three other tables to record down the last inversion in the optimal inversion alignments
between prefixesS1[1 . . . i] andS2[1 . . . j], corresponding toDPM[i, j], DPI [i, j], and
DPD[i, j], respectively; then use a normal alignment algorithm to compute an optimal
alignment with input sequence segmentsS∗

1[i1, i2] andS2[j1, j2], whereS∗
1[i1, j1] denotes

either the inversion ofS1[i1, j1]orS1[i1, i2] itself; and finally chain these optimal alignments
together as the output inversion alignment forS1 andS2. In this way, we can compute an
optimal alignment in O(m2n2) time using O(mn) space.

3.1. Alignment with inversions

The two DNA sequences in the example in the introduction section areS1 = CCAATCT
ACTACTGCTTGCAandS2 = GCCACTCTCGCTGTACTGTG. Under the affine gap penalty
score scheme specified by(10, −11, −15, −5), we showed there an optimal normal align-
ment. Using the lower boundL = 5 and inversion penaltyC = 2, the following shows an
optimal inversion alignment, associated with a score of 43:

1234567890 123456 78901
-CCAATCTAC gcagta TTGCA
||| ||| | || ||| ||
GCCACTCT-C GCTGTA CTGTG

In the above the lower case substring “gcagta ” is an inversion fromS1[10. . . 15] =
TACTGC.

In [5], it has been calculated under the same score scheme thatS1[10. . . 15] vs. S2[10
. . . 15] is the highest scoring inversion andS1[7 . . . 9] vs.S2[13. . . 15] is the second highest.
And using these two highest scoring inversions, the output inversion alignment in their
paper is exactly the same as ours as shown. Therefore, our work confirms that the inversion
alignment computed using two highest scoring inversions for the above instance in[5] is in
fact an optimal one.

A biological instance used for simulation in[5] consists of a DNA sequence from
D. yakubamitochondria genome using nucleotides 9987–11,651 and a DNA sequence
from mouse mitochondria genome using nucleotides 13,546–15,282. Under the affine gap
penalty score scheme specified by(10, −9, −15, −5) and inversion penaltyC = 20, by
pre-computing a list of 400 highest scoring inversions, the alignment output in[5] found
an inversion substring inD. yakubaconsisting of nucleotides 7–480 which aligns to nu-
cleotides 58–542 from mouse. The putative organization of genes in the two DNA sequences
is described in Table1.

So the identified inversion to some extent detects the biologically correct inversion. In our
simulation, we use the same score scheme and again add the lower bound on the inversion
lengthsL = 5.

Z.-Z. Chen et al. / Theoretical Computer Science 325 (2004) 361–372 369

Table 1
Putative organization of genes in the two DNA sequences

D. yakuba Mouse

URF6 1–525 519–1 (inverted)
tRNA Glu 588–520 (inverted)
cytochromeb 529–1665 594–1737

Table 2
Fragmental reversal segments and their aligned partner

D. yakuba Mouse D. yakuba Mouse

15–23 16–25 266–276 277–287
37–41 37–44 283–302 294–315
44–73 47–70 316–322 329–335
78–82 75–79 324–342 337–350

100–114 105–119 350–378 358–383
130–165 134–172 383–387 388–392
180–192 187–199 394–436 399–438
209–227 216–238 437–447 439–449
244–249 255–260 459–512 461–504
254–261 265–272 518–525 510–519

Unfortunately, the algorithm did not detect anygoodinversions. What it found are three
short inversionsS1[344. . . 349] which aligns toS2[326. . . 331], S1[387. . . 391] which
aligns toS2[357. . . 361], andS1[456. . . 463] which aligns toS2[417. . . 424]. With these
three inversions, the detected inversion identity is 0.6853, contrast to the standard identity
0.6847. We did another experiment by cutting out the two URF6 genes from both sequences
and calculating their inversion identity, namely, the first 525 nucleotides fromD. yakuba
and the first 519 nucleotides from mouse. It turned out that the standard identity between
these two substrings is 0.5780 and the inversion identity remains the same as the standard
one without any inversion detected.

3.2. Alignment with reversals

Since the inversion algorithm did not detect any meaningful inversions, we modified the
algorithm to detectreversals, which only reverse a substring but not take the complement.
We define the reversal identity similarly to be the ratio in an optimal reversal alignment. For
the two URF6 genes, by setting the length lower boundL = 5, we found a lot of reversals
which are listed in the Table2. The reversal identity is 0.6301 as detected.

By settingL = 300, we found a reversal substringS1[128. . . 513] which is aligned to
S2[121. . . 507]. The alignment score is improved from 152 to 167 with a little bit identity
sacrifice down to 0.5742. The standard identity between these two segments is 0.5622 with
alignment score 55 (an optimal standard alignment is shown in the top part of Fig.1); The
reversal identity between them is 0.5596 with alignment score 110 (an optimal reversal
alignment is shown in the bottom part of Fig.1).

370 Z.-Z. Chen et al. / Theoretical Computer Science 325 (2004) 361–372

Fig. 1. An optimal standard alignment (top) and an optimal reversal alignment (bottom) betweenS1[128. . . 513]
andS2[121. . . 507].

Z.-Z. Chen et al. / Theoretical Computer Science 325 (2004) 361–372 371

Fig. 2. An optimal reversal alignment betweenS1[143. . . 303] andS2[336. . . 496].

We also run our reversal algorithm on a set of mitochondrial genomes to detect if there
are reversals between any pair of them. Indeed, for the complete mitochondrial genome
of Aedes aegypti(accession numberAF380835) and the mitochondrial gene (COX I)
of Desmognathus quadramaculatus(accession numberAF437505), using score scheme
(1, −3, −5, −2) and(L, C) = (5, 2), we detected one reversal of length 161. The reversal
segment starts from position 143 inAF380835 and from position 336 inAF437505 .
The high reversal similarity 0.8944 versus “no significant similarity was found” by using
BLAST 2 Sequences (http://www.ncbi.nlm.nih.gov/BLAST/) indicates some-
thing meaningful. In fact, they both producecytochrome c oxidase subunit I. Fig. 2 shows
this reversal alignment.

4. Conclusions

The space-efficient algorithm developed in this paper enables the computation of an
optimal inversion alignment between two DNA sequences of length up to 10,000 bp on
a normal desktop with 1 GB memory. Previous algorithms either fail on long sequences
or only produce a suboptimal inversion alignment restricted to a number of pre-computed
highest scoring inversions. The simulation conducted shows a disagreement with previous
simulation. Further investigation is necessary, typically on the selection of suitable score
schemes.

The recurrences for computingDPM, DPI , andDPD tables are written for the case
where gaps inside inversion segments and gaps inside non-inversion segments are treated
separately and independently. If two gaps from different categories are adjacent to each,
then they might be counted as one gap. The recurrences can be slightly modified, where one
copy of inversion penaltyC should be merged toDPM[i′ − 1, j ′ − 1], DPI [i′ − 1, j ′ − 1],
andDPD[i′ − 1, j ′ − 1] during the computation, to take care of this case.

Our algorithm can be easily modified to compute an optimal reversal alignment between
sequences. Some simulation has been run which shows something different from inversions.
Our algorithm can also be easily modified to compute an optimal inversion-reversal align-
ment between sequences, allowing both inversions and reversals. Our next task is to conduct
simulation study on applying this inversion-reversal algorithm to detect similar secondary

372 Z.-Z. Chen et al. / Theoretical Computer Science 325 (2004) 361–372

structure units for RNA sequences in the RNase P Database (which is accessible through
“http://www.mbio.ncsu.edu/RNaseP/home.html ”) [1] and hopefully achieve
some biological findings.

Acknowledgements

We would like to thank Dr. Patricia Evans (Computer Science, University of New Bruns-
wick) and Bin Li (Biological Science, University of Alberta) for many helpful discussions.
We would also like to thank the referees for both this journal version and the extended
abstract in COCOON 2003 for many suggestions which improve the presentation.

References

[1] J.W. Brown, The ribonuclease P database, Nucleic Acids Res. 27 (1999) 314.
[2] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge, 1997.
[3] C.J. Howe, R.F. Barker, C.M. Bowman, T.A. Dyer, Common features of three inversions in wheat chloroplast

DNA, Curr. Genet. 13 (1988) 343–349.
[4] S. Muthukrishnan, S.C. Sahinalp, An improved algorithm for sequence comparison with block reversals, in:

Proc. 5th Latin American Theoretical Informatics Symp. (LATIN’02), Lecture Notes in Computer Science,
Springer, Berlin, Vol. 2286, 2002, pp. 319–325.

[5] M. Schöniger, M.S. Waterman, A local algorithm for DNA sequence alignment with inversions, Bull. Math.
Biol. 54 (1992) 521–536.

[6] R.A. Wagner, On the complexity of the extended string-to-string correction problem, in: D. Sankoff,
J.B. Kruskal (Eds.), Time Warps, Strings Edits, and Macromolecules: The Theory and Practice of sequence
Comparison, Addison-Wesley, Reading, MA, 1983, pp. 215–235.

[7] D.X. Zhou, O. Massenet, F. Quigley, M.J. Marion, F. Monéger, P. Huber, R. Mache, Characterization of a large
inversion in the spinach chloroplast genome relative tomarchantia: a possible transposon-mediated origin,
Curr. Genet. 13 (1988) 433–439.

	A space-efficient algorithm for sequence alignment with inversions and reversals62626262
	Introduction
	Problem description
	Organization

	The algorithms
	A less space-efficient algorithm
	Inversion table computation
	Dynamic programming table computation

	A space-efficient algorithm for affine gap penalty score schemes

	Simulation results
	Alignment with inversions
	Alignment with reversals

	Conclusions
	Acknowledgements
	References

