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ABSTRACT

Information in various applications is often expressed as
character sequences over a finite alphabet (e.g., DNA or
protein sequences). In Big Data era, the lengths and sizes
of these sequences are growing explosively, leading to grand
challenges for the classical NP-hard problem, namely search-
ing for the Multiple Longest Common Subsequences (MLC-
S) from multiple sequences. In this paper, we first unveil the
fact that the state-of-the-art MLCS algorithms are unable
to be applied to long and large-scale sequences alignments.
To overcome their defects and tackle the longer and large-
scale or even big sequences alignments, based on the pro-
posed novel problem-solving model and various strategies,
e.g., parallel topological sorting, optimal calculating, reuse
of intermediate results, subsection calculation and serializa-
tion, etc., we present a novel parallel MLCS algorithm. Ex-
haustive experiments on the datasets of both synthetic and
real-world biological sequences demonstrate that both the
time and space of the proposed algorithm are only linear in
the number of dominants from aligned sequences, and the
proposed algorithm significantly outperforms the state-of-
the-art MLCS algorithms, being applicable to longer and
large-scale sequences alignments.

Keywords

Multiple Longest Common Subsequences (MLCS); Non-redu-
ndant Common Subsequence Graph (NCSG); Topological
Sorting; Subsection Calculation and Serialization

1. INTRODUCTION
Information in various applications often can be abstract-

ed as character sequences over a finite alphabet Σ, e.g., DNA
or protein sequences in biology. Searching for the Multiple
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Longest Common Subsequences from a group of sequences
(MLCS) over a finite alphabet Σ is a classical NP-hard prob-
lem [13] and has found many important applications in many
areas, e.g., bioinformatics, computational genomics, pattern
recognition, data mining, etc. For example, in bioinformat-
ics, sequence is the most basic mathematical model, which
can describe the primary structure of the nucleic acid and
protein molecules. Searching for their LCSs/MLCSs is an
important way to identify the sequence similarity, which
can be utilized in gene discovery, the construction of an
evolutionary tree, the evidence of the species’ common o-
rigin [20], etc. With the successful implementation of the
Human Genome Project, the lengths, sizes of biological [4,
8] or other types of sequences are growing explosively and
exponentially [16]. Mining the MLCSs from these sequences
is becoming a more and more important research topic and
facing severe challenges.

In the past forty years, in order to efficiently tackle the
LCS/MLCS problem, various types of LCS/MLCS algo-
rithms [2, 3, 6, 7, 11, 12, 14, 15, 16, 17, 19] and tool-
s (e.g., SAMtools1, BLAST2, Clustal Omega3, etc.) have
been proposed, which can be divided into two categories:
classical dynamic programming and dominant-point-based
algorithms. It has been demonstrated that the dominant-
point-based LCS/MLCS algorithms have an overwhelming
advantage over classical dynamic programming ones due to
their great reduction in the size of search space by orders
of magnitude [16]. In particular, FAST LCS [2] and Quick-
DPPAR [16] are the most efficient parallel MLCS algorithms
among dominant-point-based algorithms. However, it will
be shown in this paper with both theoretical and empiri-
cal study that these algorithms suffer severely from many
unnecessary and redundant storage, computation, compari-
son and deletion of multi-dimensional dominants. Therefore,
this kind of algorithms is essentially inapplicable to long and
large-scale sequences alignments. Moreover, both of the two
types of algorithms are in fact not linear. To overcome this
problem, we present a new problem-solving graphical model
and propose a real linear and parallel algorithm for multiple

1
http://www.htslib.org/

2
http://blast.ncbi.nlm.nih.gov/Blast.cgi

3
http://www.ebi.ac.uk/Tools/msa/clustalo/



longest common subsequences mining, equipped with several
carefully designed strategies. Our main contributions are as
follows:

• We propose a novel problem-solving model, namely
Non-redundant Common Subsequence Graph, NCSG,
and introduce both a forward and a backward parallel
topological sorting strategies on the NCSG, individu-
ally leading to efficiently eliminating existing leading
dominant-point-based MLCS algorithm’ defects and
finding all MLCSs of the aligned sequences at once
with a very low cost of time and space.

• With the introduction of series of well-designed strate-
gies, e.g., optimal computing, subsection calculation
and serialization, reuse of intermediate results and mul-
tiple concurrent execution, we present an efficient par-
allel MLCS algorithm, which is essentially appropriate
to longer and large-scale sequences alignments. The-
oretical study of the time and space complexities for
the proposed parallel MLCS algorithm indicates that
the proposed algorithm is only linear in the number of
dominants from the aligned sequences.

• We validate the proposed parallel MLCS algorithm on
DNA and amino acid sample sequences from real bio-
logical datasets and random synthetic sequences, and
make comparisons in time and space performance be-
tween the proposed algorithm and the existing state-
of-the-art dominant-point-based algorithms. Theoret-
ical study and experimental results justify that our al-
gorithm not only greatly outperforms state-of-the-art
competitors, but also is practical for longer and large-
scale or even big sequences alignments.

The rest of this paper is organized as follows. Section 2
first gives a formal definition of the MLCS problem, and
then briefly reviews the related work on classic dynamic
programming and dominant-point-based algorithms in in-
troducing some necessary preliminaries, and finally reveal-
s some inherent limitations of the leading dominant-point-
based algorithms. To overcome the limitations, Section 3
discusses the proposed novel problem-solving model NCSG
and two topological sorting strategies on the NCSG. Sec-
tion 4 first elaborates upon several well-designed strategies
tackling longer and large-scale sequences alignments, and
then gives our novel efficient parallel MLCS algorithm, fol-
lowed by a detailed study of the time and space complexities.
Comprehensive experiments are conducted in Section 5. Fi-
nally, Section 6 concludes this work.

2. PRELIMINARIES AND RELATED WORK
In this part, we first present series of preliminaries used

in our model and then discuss some related works.

2.1 Definitions of LCS/MLCS Problems
A subsequence of a given sequence over a finite alpha-

bet Σ can be obtained by deleting zero or more (not neces-
sarily consecutive) characters from the sequence. Let X =
x1x2...xn and Y = y1y2...ym be two sequences with lengths n
and m, respectively, over a finite alphabet Σ, i.e., xi, yj ∈ Σ,
and the Longest Common Subsequence (LCS) problem is
to find out all the longest common subsequences of X and
Y . Similarly, the Multiple Longest Common Subsequence
(MLCS) problem is to find out all the longest common sub-
sequences of d (d ≥ 3) sequences with equal length n or

unequal length. Obviously, the LCS is a special case of
MLCS.

Note that, given d sequences over a finite alphabet Σ,
there exists more than one MLCSs in general. For ex-
ample, given three sequences, S1 = GTACTAGC, S2 =
ACTGTCAG and S3 = TCAGTGCA over Σ = {A,C,G, T},
there are 4MLCSs with length 4, namelyMLCS1 = GTCA,
MLCS2 = ATGC,MLCS3 = CTGC andMLCS4 = TCAG.

2.2 Preliminaries and Related Algorithms
Based on the methods adopted, existing LCS/MLCS al-

gorithms can be divided into two categories: classical dy-
namic programming and dominant-point-based algorithms.
Depending on whether they are parallelized, the algorithms
can also be divided into two types: serial and parallel ones.

1) Classical Dynamic Programming Algorithms: These al-
gorithms are based on dynamic programming [14, 15]. In
the simplest case, given two sequences X = x1x2...xn and
Y = y1y2...ym with lengths n and m, respectively, over a
finite alphabet Σ, where X[i] = xi, Y [j] = yj , xi, yj ∈ Σ,
1 ≤ i ≤ n and 1 ≤ j ≤ m, a dynamic programming algorith-
m iteratively constructs an (n+1) ∗ (m+1) score matrix L,
in which L[i, j] is the length of an LCS between two prefixes
X ′ = x1x2...xi and Y ′ = y1y2...yj of X and Y , calculated
as follows:

L[i, j] =











0 if i or j = 0

L[i− 1, j − 1] + 1 if X[i] = Y [j]

max(L[i− 1, j], L[i, j − 1]) if X[i] 6= Y [j].

(1)

Once the score matrix L is calculated, all the LCSs can
be obtained by tracing back from the end element L[n,m]
to the starting element L[0, 0]. Both the time and space
complexities of this algorithm are O(mn). In general, given
d sequences S1, S2, ..., Sd with arbitrary equal or unequal
lengths, n1, . . . , nd, the matrix L can be naturally extended
to d dimensions for theMLCS problem, in which the element
L[i1, i2, ..., id] can be calculated by Eq. 2 in a similar manner
to Eq. 1, the time and space complexities are therefore both
O(

∏d

i=1
ni).

L[i1, . . . , id] =











0 if ∃ij = 0, 1 ≤ j ≤ d

L[i1 − 1, . . . , id − 1] + 1 if S1[i1] = . . . = Sd[id]

max(L̄) otherwise.

(2)
where L̄ = {L[i1 − 1, i2, . . . , id], L[i1, i2 − 1, . . . , id], . . . ,

L[i1, i2, . . . , id−1, id − 1]}.
Fig. 1 illustrates the score matrix L of two sequences

S1 = ACTAGCTA and S2 = TCAGGTAT over the al-
phabet Σ = {A,C,G, T} and the process of extracting an
LCS=CAGTA from L.

To further reduce time and space complexities, various im-
proved dynamic programming LCS/MLCS algorithms [1, 3,
6] have been proposed. For example, Hirschberg [3] present-
ed a new LCS algorithm based on the divide-and-conquer
approach, which reduces the space complexity to O(m+n);
however, its time complexity remains to be O(mn). Masek
and Paterson [14] put forward an improved dynamic pro-
gramming LCS algorithm for two sequences with length n
using a fast computing method of edit distance, whose worst
time complexity is O(n2/ log n). Unfortunately, most of the
aforementioned algorithms only address the LCS problem
but not MLCS and have high time and space complexities.

2) Dominant-point-based Algorithms: In order to clearly
illustrate the dominant-point-based LCS/MLCS algorithms,
we first introduce the following definitions.



i 0 1 2 3 4 5 6 7 8

j S 1 A C T A G C T A

0 S 2 0 0 0 0 0 0 0 0 0

1 T 0 0 0 � 1 1 1 1 1

2 C 0 0 � 1 1 1 � 2 2

3 A 0 � 1 1 � 2 2 2 �

4 G 0 1 1 1 2 � 3 3 3

5 G 0 1 1 1 2 3 3 3 3

6 T 0 1 1 � 2 3 3 � 4

7 A 0 1 1 2 � 3 3 4 �

8 T 0 1 1 2 3 3 3 4 5

(a) The score matrix L of se-
quences S1 and S2.

i 0 1 2 3 4 5 6 7 8

j S 1 A C T A G C T A

0 S 2 0 0 0 0 0 0 0 0 0

1 T 0 0 0 �

2 C 0 0 � �

3 A 0 � � �

4 G 0 �

5 G 0

6 T 0 � �

7 A 0 � �

8 T 0

(b) An LCS = CAGTA
extracted from L.

Figure 1: The score matrix L of S1 = ACTAGCTA
and S2 = TCAGGTAT over a finite alphabet Σ =
{A,C,G, T} and LCS (CAGTA) extracted from L.
The regions of the same entry values are bounded
by thick contours; the corner points of the contours
are dominant points (circled) and the greyed points
are matched points.

Definition 1: For a sequences set T = {S1, S2, ..., Si, ..., Sd}
over a finite alphabet Σ, and |Si| = n.4 Let Si[pi](Si[pi] ∈
Σ) be the pi-th (pi ∈ {1, 2, ..., n}) character in Si. The point
p = (p1, p2, ..., pd) is called a matched point of T , if and only
if S1[p1] = S2[p2] = ... = Si[pi] = ... = Sd[pd] = σ(σ ∈ Σ).

Definition 2: For two matched points, p = (p1, p2, ..., pd)
and q = (q1, q2, ..., qd), of T , we say that p = q if and only
if pi = qi for i = 1, 2, ..., d. If ∀i, pi < qi, we say that p
strongly dominates q, denoted as p ≺ q, where p is referred
to as a dominating point (dominant for short) and q as a
dominated point or successor of p. Further, if there is no
matched point r = (r1, r2, ..., rd) for T such that p ≺ r ≺ q,
we say that q is an immediate successor of p and p is an
immediate predecessor of q.

Definition 3: A matched point p = (p1, p2, ..., pd) is
called the k-th dominant (the k-level dominant for short),
if the score matrix L[p1, p2, ..., pd] = k (see Eq. 2). The set
of all the k-th dominants is denoted as Dk, and the set of
all dominants of T is denoted as D.

Fig. 1 shows that a dominant must be a matched point,
but not vice versa, and the size of the dominant set D is
smaller than that of the matched points, which have been
proved by [2, 7, 16].

Comparing with dynamic programming LCS/MLCS al-
gorithms, the dominant-point-based LCS/MLCS algorithms
only need to calculate the dominants instead of all the ele-
ments in the score matrix L. The algorithms consist of two
procedures as follows.

(1) Constructing MLCS-DAG. First of all, introduce
two dummy points, source point (0, 0, ..., 0) and sink point
(∞,∞, ...,∞), where the sink point is defined as the imme-
diate successor of those points without an immediate succes-
sor. Afterwards, let k = 0, and D0 = {(0, 0, ..., 0)}. Next,
with a forward iteration procedure (0 → k), the (k + 1)-th
dominants Dk+1 are computed based on the k-th dominants
Dk, and this procedure is denoted as Dk → Dk+1, where
0 ≤ k ≤ |MLCS| − 1 (|MLCS | denotes the length of MLC-
Ss of T ). As a result, a directed acyclic graph consisting of
all the MLCSs of T (MLCS-DAG, for short) is constructed
level by level in the following two steps:

4
In fact, the algorithms apply to general case where the length of Si

may not be the same. The only reason we fix |Si| = n here is to
facilitate the following discussions.

Step 1: Based on Dk, all the immediate successors of
each dominant from Dk are calculated, denoted as Dk+1

init .
Step 2: There exist massive repeated dominants and

dominated points in Dk+1

init , both collectively called redun-
dant points for short. Since the redundant points do not con-
tribute to the MLCSs, the operation Minimal(Dk+1

init ) (Min-
imal() for short) of eliminating them should be conducted
in order to save time and space. In general, the operation
Minimal() is performed by comparing between the domi-
nants and redundant points in Dk+1

init one dimension after
another, resulting in the baseline Dk+1 over Dk+1

init .
(2) Computing MLCSs. All the MLCSs of T are then

found by tracing back through the constructed MLCS-DAG
from the last dominant set to D0 iteratively. An instance of
this kind of algorithms is shown in Example 1 and Fig. 2.

As the size of the dominants set D is far smaller than that
of the matrix L, i.e., |D| ≪ |L|, both theoretical analysis and
experimental results have shown that the dominant-point-
based LCS/MLCS algorithms are overwhelmingly faster than
classical dynamic programming algorithms [16].

Hunt et al. [7] first proposed a dominant-point-based LC-
S algorithm with time complexity O((r + n) log n), where
r is the number of all dominants of two sequences with
length n. Afterwards, a variety of dominant-point-based
LCS/MLCS algorithms have been presented [1, 6]. To fur-
ther improve the efficiency, some parallel dominant-point-
based LCS [12, 19] and MLCS algorithms [2, 10, 16] were
proposed. Korkin [10] first proposed a parallel MLCS al-
gorithm with time complexity O(|Σ||D|). Chen et al. [2]
presented an efficient parallel MLCS algorithm over the al-
phabet Σ = {A,C,G, T},FAST LCS, with series of pruning
rules. Wang et al. [16] developed an efficient parallel MLCS
algorithm Quick-DPPAR, claiming that the proposed algo-
rithm has reached a near-linear speedup with respect to its
serial version Quick-DP. It is worth mentioning that [11, 17]
made attempts to develop efficient parallel algorithms on
GPUs for the LCS problem and on cloud platform for the
MLCS problem, respectively. Regretfully, [17] is not suit-
able for the general MLCS problem, as a large amount of
synchronous cost [11] remains to be solved. For large-scale
MLCS problems in practice, Yang et al. [18] presented a
new progressive algorithm Pro-MLCS with its efficient par-
allelization, which can find an approximate solution quickly.

Parallel dominant-point-based MLCS algorithms are cur-
rently a better solution for the MLCS problem. However,
as we will show in next subsection, such algorithms are fac-
ing serious challenges with the explosive expansion in the
lengths and sizes of sequences from varieties of applications.

2.3 Limitations of the Leading MLCS Algo-
rithms

We first give an example to illustrate the limitations of the
leading dominant-point-based MLCS algorithms, and then
make a further study.

Example 1: Given sequences S1 = TGACGATC, S2 =
ATGCTCAG and S3 = CTAGTACG over the alphabet
Σ = {A,C,G, T}, construct their MLCS-DAGs and find out
all the MLCSs of S1, S2 and S3 by the general dominant-
point-based algorithms.

Based on the dominant-point-basedMLCS algorithm, the
constructed MLCS-DAG of S1, S2 and S3 is shown in Fig. 2.
The construction process is as follows. First of all, let k = 0,
D0 = {(0, 0, 0)} (0-level dominant). By Definition 2, all the
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Figure 2: The constructed MLCS-DAG of S1, S2 and
S3 over Σ = {A,C,G, T} by the dominant-point-based
algorithms, the blue (red) points denote repeated
(dominated) points, which would be deleted after
the operation Minimal(), and a dashed arrow indi-
cates an added edge after deleting a point. All the
MLCSs (marked by red arrows) can be obtained by
tracing back from the sink point (∞,∞,∞) to the
source point (0, 0, 0) on the MLCS-DAG.

immediate successors D1
init = {(3, 1, 3), (4, 4, 1), (2, 3,

4), (1, 2, 2)} corresponding to the characters {A, C, G, T}
from D0 are calculated. The operation Minimal() is then
performed so as to eliminate the redundant point (2, 3, 4) (a
dominated point of the point (1, 2, 2)), leading to the end of
procedure D0 → D1 (1-level dominants D1 = {(3, 1, 3), (4,
4, 1), (1, 2, 2)}). Repeating the same procedure as above
Dk → Dk+1, D2, D3, D4, and D5 of 2-level to 5-level dom-
inants can be obtained in turn, where D2 = {(4, 4, 7), (5,
3, 4), (7, 2, 5), (6, 7, 3), (7, 5, 2), (3, 7, 3), (2, 3, 4)}, D3

= {(5, 8, 8), (6, 7, 6), (8, 4, 7), (7, 5, 5), (5, 8, 4), (3, 7, 6),
(4, 4, 7)} and D4 = {(8, 6, 7), (5, 8, 8)}, respectively. Since
D5

init = ∅, let D5 = {(∞, ∞,∞)} and end the construc-
tion of MLCS-DAG. Finally, based on the MLCS-DAG, all
the MLCSs of S1, S2 and S3 corresponding to the character
sequences of points on the longest paths (marked by red ar-
rows) over the MLCS-DAG(MLCS1 = AGTC,MLCS2 =
TGTC,MLCS3 = TGAG and MLCS4 = TGCG with
length 4) can be obtained by tracing back from the sink
point (∞,∞,∞) to the source point (0, 0, 0).

Fig. 2 clearly shows that there are numerous redundan-
t points in the MLCS-DAG, and that many points, e.g.,
(2, 3, 4), (4, 4, 7) and (5, 8, 8), have been recalculated and
compared with other points many times. Moreover, there
exist many points in the MLCS-DAG, which are useless to
the MLCSs of sequences S1, S2 and S3.

To further show the limitations of the dominant-point-
based MLCS algorithms, we conducted a statistical study
with various types of the redundant points of the MLCS-
DAG from sequences with various lengths and sizes of al-
phabet over the real-world and synthetic datasets utilized
in Section 5, from which we draw the following conclusions:

1) In each iteration, procedure Dk → Dk+1 generates a
great number of redundant points, leading to an excessive
computational time in the operation Minimal().

The statistical data show that in Dk+1

init , there exist t-
wo types of a significant number of redundant points (de-
noted as Nredu), i.e., repeated points (denoted as Nrepeat)
and dominated points/successors (denoted as Nsuc). Let

N = |Dk+1

init |, the average ratio of the redundant points Nredu

to N reaches 59%, and the ratio can be up to 79%. These
redundant points will result in an excessive computation-
al time in the operation Minimal(). Moreover, tremendous
comparisons in d dimensions among N points are inevitable
besides the massive amount of redundant points in the oper-
ation Minimal() of the process Dk → Dk+1. For d sequences
with length n (d ≥ 3), it is proved that the time for the
comparisons among N d-dimensional points dimension by
dimension in a brute-force manner is O(dN2) [5, 9]. Even if
the divide-and-conquer strategy is adopted, O(dN logd−2 n)
comparisons are still needed [16].

2) The constructed MLCS-DAG contains a large number
of useless points not contributing to anyMLCSs, called non-
critical points.

The statistical data shows that the ratio of |K| (the total
number of the key points that contribute to the MLCSs in
the MLCS-DAG) to |D| (the total number of the points
in MLCS-DAG) ranges from only 1 : 10 to 1 : 100, 000.
Moreover, the larger the d, n and |Σ|, the smaller the ratio
of |K|/|D| is. The massive non-critical points in the MLCS-
DAG introduce another serious space problem of storing the
MLCS-DAG in RAM and time problem when tracing back
to find its MLCSs on the MLCS-DAG.

Above all, since Minimal() is the key operation in the pro-
cess Dk → Dk+1 of the general dominant-point-basedMLCS
algorithms, and by the above argument, it is clear that the
time complexity of the dominant-point-based MLCS algo-
rithms are nonlinearly related to d and |D|. In addition,
the length of MLCS, |MLCS| is proportional to the aligned
sequences length n, and |Dk| tends to grow explosively in
the range 1 ≤ k ≤ |MLCS|/2. Therefore, both the above
analysis and our comprehensive experimental results (see
Section 5) show that the leading dominant-point-based

MLCS algorithms are not applicable to long and large-

scale sequences alignments.

3. A NOVEL PROBLEM-SOLVING MODEL

AND MINING MLCS STRATEGY

3.1 A Novel Problem-Solving Model: NCSG
As mentioned above, all the MLCSs of aligned sequences

set T are constructed by their relevant dominants. For the
dominants set D from T , since the immediate predecessor-
successor relationships between the dominants in D consti-
tute a partial order set �, we can represent the relationships
by a directed acyclic graph G = (D,�). Similar to the con-
struction of MLCS-DAG, two dummy d-dimensional points
(0, 0, ..., 0) (the source point) and (∞,∞, ...,∞) (the sink
point) are introduced into D, with all the other dominants
in D being the successors of (0, 0, ..., 0) and the predeces-
sors of (∞,∞, ...,∞). The construction of G is as follows.
1) From the dummy source point (0, 0, ..., 0), calculate all
of its immediate successors and connect them with direct-
ed edges from the source point to the immediate successors.
2) From these calculated immediate successors, compute al-
l their immediate successors. If the immediate successor
found is already in G, only add a directed edge to it; oth-
erwise, add it to G and connect it by a directed edge. If a
successor has no immediate successors, connect it with the
sink point by a directed edge. 3) Repeat above procedure
2) until all points in G have computed their immediate suc-
cessors. Notably, such G is in fact an MLCS-DAG but with
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Figure 3: The constructed NCSG of S1, S2 and S3

over the alphabet Σ = {A,C,G, T}, where the optimal

subgraph Sub-NCSG4 of the NCSG (marked red) is
constructed from the optimal dominant (1, 2, 2).

the following properties: no repeated dominants and com-
parison of dominants in the dimension by dimension manner
on constructing G. Due to that, finding an MLCS can now
be regarded as identifying the longest path over G from the
source point to the sink point, and vice versa. Since G has
no repeated dominants, and any path of G corresponds to a
common subsequence of T , we refer to it as Non-redundant
Common Subsequence Graph, abbreviated as NCSG in the
following. The constructed NCSG of the above sequences
S1, S2 and S3 is shown in Fig. 3.

3.2 A Strategy to Mine MLCSs: Forward/ Back-
ward Topological Sorting on NCSG

Given a constructed NCSG, we need to design an efficient
and effective strategy to extract all MLCSs from it. To this
end, let’s start by reviewing the following concepts from the
graph theory.

Definition 4: For a directed acyclic graph G = 〈V,�〉,
topological sorting is to find an overall order of the vertices
V in G from the partial order � [5, 9].

Definition 5: The topological sorting algorithm [9] is
to complete the topological sorting over the vertices V in G
from the partial order �. To this end, it iteratively performs
the following two steps until all the vertices V in G have
been traversed and processed: 1) output the vertices with
in-degree 0; 2) delete the edges connecting to the vertices.

We found that the topological sorting over the vertices
V in G from the partial order � is only associated with the
cardinality of the in-degree of vertices, but not related to the
dimensions of vertices. We do not need to perform the com-
parison of the dominants dimension by dimension to sort
and layer them as in the construction of MLCS-DAG for
leading dominant-point-based MLCS algorithms. Inspired
by this observation, we present a novel efficient method to
sort and layer all the dominants of the NCSG, i.e., sorting
and layering all of the dominants of the NCSG from the
0-level dominant set D0 to the k-level dominant set Dk lev-
el by level with the topological sorting algorithm (called a
forward topological sorting algorithm, denoted as Algorith-
m ForwardTopSort), 1 ≤ k ≤ |MLCS| − 1. An example of
sorting and layering all the dominants on the NCSG of the
sequences S1, S2 and S3 is shown in Fig. 4.

Moreover, based on the sorted and layered NCSG shown
in Fig. 4, how do we find all MLCSs at once with a very
low cost of time and space without multiple backtracking
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Figure 4: Sorting and layering all the dominants on
NCSG of S1, S2 and S3 by ForwardTopSort, in which
all the longest paths are marked by red arrows.
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Figure 5: With BackwardTopSort to the sorted and
layered NCSG of S1, S2 and S3 shown in Fig. 4, the
optimized NCSG can be obtained, in which any path
corresponds to an MLCS of the sequences.

processes as in the leading dominant-point-based MLCS al-
gorithm? By investigating the sorted and layered NCSG, we
find that the sum of the numbers of the forward levels ( from
{(0, 0, ..., 0)} to {(∞,∞, ...,∞)}) and the backward levels
(from {(∞,∞, ...,∞)} to {(0, 0, ..., 0)}) of those dominants
(called key points) residing in the longest paths correspond-
ing to the MLCSs is exactly equal to |MLCS| + 1; however
non-critical points would not meet the property (see Fig 5)5.
Based on the observation, we replace the in-degree with the
out-degree and layer the NCSG by the topological sorting
algorithm from the point {(∞,∞, ...,∞)} to {(0, 0, ..., 0)}
(called a backward topological sorting algorithm, denoted as
Algorithm BackwardTopSort). Thanks to that, all the non-
critical points in the NCSG are now identified and can be
easily removed. Fig. 5 (called the optimized NCSG) demon-
strates the result with BackwardTopSort to Fig. 4. In par-
ticular, the NCSG shown in Fig. 5 contains only those key
points, that is, each path in the optimized NCSG corre-
sponds to an MLCS of S1, S2 and S3.

In summary, based on our novel problem-solving model
NCSG and the MLCSs mining strategy, Algorithms For-
wardTopSort and BackwardTopSort, we can overcome the
defects of the leading dominant-point-based MLCS more
efficiently and effectively, which is verified by our exten-
sive experiments. However, unfortunately, the theoretical
and experimental results also show that the proposed model
and the strategy are impractical to big sequences (e.g., the
genome sequences with length 103−1011) alignments, which
motivates us to explore more efficient method. In the next
section, we shall present a parallel solution towards this end.

4. A PARALLEL ALGORITHM RLP_MLCS

4.1 Strategies against the Challenges
For the convenience of discussion, we first introduce fol-

lowing key concepts, and give a part of our statistical study
in Table 1 over synthetic and real-world biological sequences
datasets (see Section 5).

5
It can be easily proved, we select not to show the detailed proof here

due to the limit of space.



Table 1: The total number of dominants of aligned
sequences with various lengths and alphabet sizes

|Σ| = 4 |Σ| = 20
|Si| N1 N2 N1/N2(%) |Si| N1 N2 N1/N2(%)

25 748 1131 66 50 46 101 45
50 24642 36028 68 100 4714 7150 65
100 2022260 2159886 93 180 262594 316244 83
140 18338817 19546754 93 260 2840112 3188919 89
180 86256948 91655681 94 340 16523403 17940691 92
220 210103979 221208508 94 420 68350594 72256797 94
260 300603814 313783560 95 500 164981091 172150132 95
300 446319986 463079501 96 580 373671085 388190591 96
320 554032873 566657853 97 620 554532996 566558951 97

Definition 6: Given a NCSG, a dominant is called the op-
timal dominant from the NCSG, if and only if the dominant
belongs to 1-level dominants (∈ D1) and has minimal coor-
dinates values compared with the other 1-level dominants.
if a subgraph Sub-NCSGi of the NCSG is constructed start-
ing from optimal dominant i, the Sub-NCSGi is called the
optimal subgraph of the NCSG.

For example, by Definition 6, dominant (1, 2, 2) (the fourth
dominant from 1-level dominants D1) shown in Fig. 3 is
an optimal dominant, from which the constructed subgraph
(marked red) of the NCSG is an optimal subgraph denoted
as Sub-NCSG4.

The most fundamental challenges to longer and large-scale
sequences alignments forMLCS algorithms are their unbear-
able huge time and insufficient space for calculating and s-
toring the massive dominants of the NCSG. The statistical
data shown in Table 1(N1 denotes the total number of the
dominants from the optimal subgraph of the NCSG, and N2

is the total number of the dominants from the NCSG) bring
out the following facts: 1) With the increase in the length
of sequences, the number of dominants from the NCSG gets
an exponential explosive growth; 2) Most of the dominants
come from the optimal subgraph Sub-NCSGi, e.g., Table 1
shows that the ratio of N1/N2 is as high as 97%. From the
above facts, we present the following strategies so as to tack-
le the challenges. Notably, in line with other parallel algo-
rithms towards big data, our model is based on the intuition
that the results of parallel algorithms should be compatible
in divide-and-conquer style and support combinative.

Strategy 1: Successor Table, ST. One of the funda-
mental needs in constructing NCSG is to search all the
immediate successors for each dominant efficiently due to
the massive number of dominants in the NCSG. To achieve
that, according to the searching strategy from [2], the suc-
cessor tables {ST1, ST2, ..., STd} of the aligned sequences
set T = {S1, S2, ..., Sd} should be built first, i.e., given
a sequence Sl = x1, x2, ..., xn from T over a finite alpha-
bet Σ = {σ1, σ2, ..., σk}, its successor table STl is a two-
dimensional array, where STl[i, j] denotes the element of the
i-th row and the j-th column in STl, defined as below:

STl[i, j] =min{m|xm = σi,m ≥ max{1, j},

i ∈ [1, |Σ|], j ∈ [0, n]}
(3)

Obviously, STl[i, j] is in fact the minimal subscript posi-
tion m of the sequence Sl after position j according to σi

when xm = σi, see an example in Fig. 6.
It has been proved in [2] that all the immediate succes-

sors of a d-dimensional dominant p = (p1, p2, ..., pd) can
be obtained efficiently in O(d|Σ|) based on the successor ta-
bles. For example, for the dominant (2, 3, 4) of the sequences
S1, S2 and S3, we can couple the corresponding lines 1-4 of
the second, third and forth columns from the successor ta-
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Figure 6: The constructed successor tables ST1, ST2

and ST3 corresponding to the sequences S1, S2 and
S3, where the notation “−” indicates ∅.

bles ST1, ST2 and ST3 to obtain all its immediate successors
(3, 7, 6), (4, 4, 7), (5, 8, 8) and (7, 5, 5) corresponding to the
characters A, C, G, and T, respectively, while there is no
immediate successor for the dominant (6, 7, 3) due to the
coupling results ( , , 6), (8, , 7),
( , 8, 4) and (7, , 5), which indicates none of them is an im-
mediate successor according to Eq. 3.

Strategy 2: DM(Index, Point). During the construction
and processing of NCSG, we have to access the coordinates
based on the corresponding index, and vice versa, respective-
ly. Hence, we present a bidirectional hash table DM(Index,
Point), wherein the Point represents a d -dimensional coor-
dinates of a dominant and Index is a serial number corre-
sponding to the dominant. As a result, we can compressing-
ly store all the dominants of the NCSG with serial numbers
instead of their d -dimensional coordinates. The dominants
shown in Fig. 7 stored in DM are as follows:

DM={〈0, (0, 0, 0)〉, 〈1, (3, 1, 3)〉, 〈2, (4, 4, 1)〉, 〈3, (2, 3, 4)〉,
〈4,(1, 2, 2)〉, 〈5,(3, 7, 3)〉, 〈6,(4, 4, 7)〉, 〈7,(7, 5, 5)〉, 〈8,(5, 8, 4)〉,
〈9, (5, 8, 8)〉, 〈10, (3, 7, 6)〉, 〈11, (8, 6, 7)〉, 〈12, (∞,∞,∞)〉,
〈13, (5, 3, 4)〉, 〈14, (7, 2, 5)〉, 〈15, (6, 7, 6)〉, 〈16, (8, 4, 7)〉,
〈17, (6, 7, 3)〉, 〈18, (7, 5, 2)〉, }.

Strategy 3: The Optimal Calculation and Reuse of In-
termediate Results. Our extensive experiments and analy-
sis reveal the fact that the optimal subgraph Sub-NCSGi

of NCSG not only contains most of the dominants of the
NCSG (45%-97%, average 88%, see Table 1), but also con-
tributes to most of the MLCSs (75%-100%, average 85%).
For example, the optimal dominant (1, 2, 2) shown in Fig. 3
contributes to three MLCSs of the sequences S1, S2 and S3,
which is 3 out of 4 MLCSs, accounting for 75%. Moreover,
as a dominant may locate in different paths of the NCSG,
the number of levels of a dominant located in the longest
paths (corresponding to MLCSs’ paths) of NCSG must be
greater than that in the non-longest paths. For example, the
dominants (4, 4, 7) and (5, 8, 8) shown in Fig. 7 simultane-
ously locate in the non-longest path ((0, 0, 0) → (3, 1, 3) →
(4, 4, 7) → (5, 8, 8) → (∞,∞, ...,∞), denoted as path-1)
and in the longest path ((0, 0, 0) → (1, 2, 2) → (2, 3, 4) →
(4, 4, 7) → (5, 8, 8) → (∞,∞, ...,∞), denoted as path-2). It
is clear that the numbers of levels of the dominants (4, 4, 7)
and (5, 8, 8) resided in path-1 (being 2 and 3, respectively)
are smaller than the numbers of levels they reside in path-2,
namely 3 and 4, respectively. With the above observations,
in order to save time and space of constructing NCSG of
aligned sequences, we construct the NCSG in the following
manner: 1) let D0={0, 0, ..., 0} and perform the procedure
D0 → D1; 2) calculate the optimal dominant i from D1; 3)
construct the optimal subgraph Sub-NCSGi, the step called
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Figure 7: With Strategy 3, we can construct the
NCSG of S1, S2 and S3 quickly, the red arrows indi-
cate the longest paths of the NCSG, the dash lines
mean reuse of the intermediate results available (the
levels information from the optimized subgraph Sub-

NCSG4) and red nodes are key points of Sub-NCSG4.

optimal calculating ; 4) sort and layer the Sub-NCSGi by
Algorithm ForwardTopSort ; 5) identify and remove all of
the non-critical dominants on the Sub-NCSGi by Algorithm
BackwardTopSort resulting in an optimized Sub-NCSGi, i.e.,
all dominants are key points in the optimized Sub-NCSGi;
6) construct another subgraph of Sub-NCSGj using the lev-
els information of the dominants from the optimal subgraph
Sub-NCSGi, which have already been computed in previous
steps, thus this step is called reuse of intermediate results.
Since the NCSG of T is equal to the sum of the above sub-
graphs, with Strategy 3, we can construct the NCSG of T
quickly and effectively. For convenient of further discussion,
the above steps 1)-6) in Strategy 3 are denoted as Func-

tion OptCalReusing1 (), while the above steps 1)-4) and
6) in Strategy 3 (not including step 5)) are denoted as Func-
tion OptCalReusing2 (). An example of using Strategy 3
to construct the NCSG of the sequences S1, S2 and S3 is
shown in Fig. 7.

Example 2: With Strategy 3, construct the NCSG of
S1, S2 and S3 and find out all of theMLCSs of the sequences.

From Fig. 7, we can easily see that dominant 4 correspond-
ing to dominant (1, 2, 2) (see the contents of DM ) is an op-
timal dominant. Hence, with step 3) of Strategy 3, we can
construct the optimal subgraph Sub-NCSG4 from the opti-
mal dominant 4. And then with steps 4) and 5) of Strategy
3, we can get all the MLCSs of Sub-NCSG4. Next, with step
6) of Strategy 3, we can easily construct other non-optimal
subgraphs Sub-NCSG1, Sub-NCSG2 and Sub-NCSG3 from
the non-optimal dominants 1, 2 and 3 in turn and quickly
find a new MLCS (the path 1 → 13 → 7 → 11 → 12).
From above procedures and Fig. 7, we can easily see that
the amount of calculations of constructing non-optimal sub-
graphs (Sub-NCSG1, Sub-NCSG2 and Sub-NCSG3) from the
non-optimal dominants 1, 2 and 3 and searching for all of
their MLCSs is very small due to the reuse of intermedi-
ate results available, the levels information of key points of
optimized subgraph Sub-NCSG4.

Strategy 4: Subsection Calculation and Serialization. As
discussed above, for longer aligned sequences (n ≥ 103), the
challenge is that their MLCS-DAG is too large to be stored
and calculated in RAM at all (see Table 1), resulting in lead-
ing dominant-point-based MLCS algorithms’ failure in this
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Figure 8: The sketch of searching for all the MLCSs
of S4 and S5 with Strategy 4. ((a) The left side of

dashed line is the first subsection Sub-NCSGs1 as well

as its construction process; (b) The left side of dashed

line is serialized Sub-NCSGs1 and the right side is the

second subsection Sub-NCSGs2 as well as its construction

process; (c) The concatenation of Sub-NCSGs1 and Sub-

NCSGs2 and all the MLCSs with red arrows.)

case. Therefore, we must devise a new subsection calculation
method to deal with the case. And yet, we cannot use gener-
al subsection method to obtain all the MLCSs of the longer
sequences in the case because the MLCSs of the sequences
are certainly not equal to the connection of the MLCSs of
their sub-sequences in most cases. For example, we split
the sequences S4 = TGACGATC and S5 = ATCGTCAG
into two subsections S41 = TGAC and S51 = ATCG with
S42 = GATC and S52 = TCAG in their subscripts 4, and
all of the MLCSs of the sequences S4 and S5 is not equal
to the connection of the MLCSs of the splitted subsection-
s S41 and S51 with S42 and S52 as some dominants from
the sequences S4 and S5 are lost in such splitting manner.
Hence, how to split these longer sequences to accurately ob-
tain their MLCSs is a non-trivial problem, which motivates
us to develop a new subsection calculation method to tackle
it. We found that as long as all of the dominants are not
lost from aligned sequences and the immediate predecessor-
successor relationships among dominants are preserved in
the splitting position, we can solve the non-trivial problem
efficiently and effectively with our proposed subsection cal-
culation and serialization methods, which are explained with
Example 3 and Fig. 8.

Example 3: With Strategy 4, find out all of the MLCSs
of the sequences S4 = TGACGATC and S5 = ATCGTCAG.

For the sake of generality, suppose we split the sequences
S4 and S5 into two subsections in their subscripts 6 on the
premise of no loss of dominants of the two sequences. To
this end, we first split the dominants those all their coor-
dinates are less than or equal to 6 in the NCSG of the



sequences to the first subsection, otherwise to the second
subsection. Therefore, call function OptCalReusing2 () (not
function OptCalReusing1 (), as no dominant is lost from the
first subsection), we can construct the first subsection sub-
graph of the NCSG, denoted as Sub-NCSGs1 (Fig. 8(a)), and
then serialize the constructed Sub-NCSGs1 (left part shown
in Fig. 8(b)) to the disk. Next, we continue constructing the
second subsection subgraph Sub-NCSGs2 by calling function
OptCalReusing1 () (right part shown in Fig. 8(b)). To find
all of the MLCSs of the sequences S4 and S5, we first back-
ward sort the Sub-NCSGs2 by Algorithm BackwardSortTop.
Secondly, we deserialize the Sub-NCSGs1 and perform Sub-
NCSGs1 = Sub-NCSGs1 ∪ Sub-NCSGs2 shown in Fig. 8(c),
and then continue backward sorting the Sub-NCSGs1 by Al-
gorithm BackwardSortTop, after which all of the MLCSs of
the sequences S4 and S5 are obtained (denoted as red arrows
shown in Fig. 8(c)).

Remark: As discussed in Strategy 4, for the longer se-
quences, their NCSG will be too large to be stored and cal-
culated in memory resulting in the leading dominant-point-
based MLCS algorithms’ failure. To tackle the challenges,
we propose Strategy 4 by splitting the NCSG of the se-
quences into subsections. Experimental results justify that
the memory overflow for large NCSG has been well avoided
by Strategy 4 as expected. More interestingly, the efficiency
is also improved due to the strategy. For instance, given
|Σ| = 20 with length 300 of 5 aligned sequences, the running
time of our algorithm is 3.449s, 1.969s, 1.807s and 0.846s, re-
spectively, if the number of the splitting subsections for the
aligned sequences is 2, 3, 4 and 5, respectively. Such an inter-
esting phenomenon results from the following facts. Firstly,
with algorithm ForwardSortTop for an arbitrary subsection,
many useless edges will be eliminated (see Fig. 4). e.g., with
algorithm ForwardSortTop, the edges (0, 0, 0) → (2, 3, 4),
(4, 4, 1) → (8, 6, 7) etc., shown in Fig. 3, have been delet-
ed), which saves much time in BackwardSortTop performed
afterwards. Secondly, as the number of subsections increas-
es, not only the number of deleted edges increases but also
the effect of concurrent execution amplifies, both of which
lead to a significant decrease in running time. Notably, al-
though the increase in the number of subsections may lead
to additional serialization and deserialization operations, the
running time of these operations is in fact negligible compar-
ing to that of ForwardSortTop and BackwardSortTop for the
massive dominants, which has been saved due to Strategy 4.

Strategy 5: The Multiple Concurrent Execution. Since
the optimal subgraph NCSGi of the aligned sequences al-
ways contributes to most of the MLCSs, ranging from 75%
to 100%, we can concurrently construct the non-optimal sub-
graph NCSGj of the non-optimal dominants with the reuse
of intermediate results of the optimal subgraph NCSGi avail-
able (called multiple concurrent execution) so as to further
improve the efficiency of the proposed algorithm.

4.2 A Novel Parallel MLCS Algorithm
For large-scale and big sequences alignments, based on the

above strategies, we present a novel efficient parallel MLC-
S algorithm RLP MLCS, which is shown in Algorithm 1.
Notably, on one hand, all the primary procedures of our al-
gorithm, the construction of NCSG of aligned sequences, a
forward and a backward topological sorting to the NCSG,
are run in parallel. On the other hand, the parallel efficiency
of our algorithm with Strategies 4 and 5 is further enhanced

Algorithm 1 RLP MLCS({S1, S2, ..., Sd},Σ, StepLength)

1: Build Successor Tables {ST1, ST2, ..., STd} of sequences set T =
{S1, S2, ..., Sd} in parallel /∗ |Si| = n ∗/

2: if StepLength > n then:
3: Construct NCSG of the T with OptCalReusing1 () in parallel
4: Output all the MLCSs of the T
5: end if

6: return

7: Split the sequences into N subsections in StepLength
8: for i← 1 to N-1 do:
9: Construct the subgraph Sub-NCSGsi of the T with

OptCalReusing2 ()6and Strategy 5
10: Serialize Sub-NCSGsi to the disk
11: end for

12: Construct the subgraph Sub-NCSGsN of the T with OptCal-

Reusing2 () and Strategy 5
13: Backward sort Sub-NCSGsN with Algorithm BackwardSortTop

in parallel to obtain its optimized Sub-NCSGsN
14: for i← N − 1 to 1 do:
15: Deserialize Sub-NCSGsi
16: Sub-NCSGsi ← Sub-NCSGsi ∪ the optimized NCSGsi+1

17: Backward sort Sub-NCSGsi by Algorithm BackwardSortTop

in parallel to get its optimized Sub-NCSGsi
18: end for

19: Output all of the MLCSs of the T
20: return

and enlarged. To the best of our knowledge, we are the first
to present a parallel MLCS algorithm in this manner. For
lack of space, we give the framework of our algorithm.

4.3 Analysis of Time and Space Complexities
The time complexity of our algorithm in every stage is

given first, followed by the total time complexity.
For each sequence Sl of T over alphabet Σ with length

n, O(|Σ|n) time is required for constructing its successor
table STl by Eq. 3. Therefore, the time complexity of seri-
ally constructing d sequences is O(d|Σ|n). The main opera-
tions of serially constructing the NCSG consist of establish-
ing the predecessor-successor relationship among dominants
and computing the in-degree of each point of the NCSG.
Therefore, the time complexity of serially constructing the
NCSG should be O(|E|), where |E| is the number of edges in
the NCSG. Given the points set V of the NCSG, since both
forward and backward topological sorting need to traverse
every point in V , both the forward and backward topological
sorting take the time O(|V |).

As a result, the total serial time complexity of RLP MLCS
is O(d|Σ|n) + O(|E|) + 2O(|V |). Since theoretical analysis
and experimental results show that O(d|Σ|n) ≪ O(|E|) +
2O(|V |), thus, O(d|Σ|n + |E|+ |V |) ≈ O(|E| + |V |). More-
over, with O(|E|) being of the same order as that of O(|V |)
and |E| is at most several times of |V |, the time complex-
ity of RLP MLCS is 1

Np
O(|V |) + Tcom, where Tcom is the

communication overhead of the parallel execution algorithm
RLP MLCS and Np is the number of threads. From the
above discussion, we can see that the time complexity of
RLP MLCS is linear in |V |. It is important to note that
|V | should be replaced with |K|+ |Vsi| with subsection cal-
culation of our proposed algorithm, where |K| is the total
number of the key points on the NCSG, and |Vsi| is the to-
tal number of the dominants on a subsection subgraph Sub-

6
D1 in Step 2) are the dominants with the minimal coordinates in

each subsection, such as the left-most dominants on the right part of
dashed line shown in Fig. 8(a); in Step 4) after the forward sorting,
we need to update the number of levels for dominants by adding those
of their immediate predecessors.



NCSGsi of the aligned sequences (as the above discussion,
we can see that |K|+ |Vsi| ≪ |V |).

Similarly, the storage space of successor tables is O(d|Σ|n),
the storage space of the NCSG is O(d|V |+ |E|), and the s-
pace complexity of RLP MLCS is O(d|Σ|n + d|V |+ |E|) ≈
O(|V | + |E|) = O(|V |) (given d aligned sequences, d is a
constant). Similar to the analysis in time complexity, with
subsection calculation, the space complexity of RLP MLCS
should be O(|K|+ |Vsi|).

Notably, the state-of-the-art dominant-point-based MLC-
S algorithms, FAST MLCS [2] with effective pruning tech-
niques andQuick-DPPAR [16] with a fast divide-and-conquer
technique in the calculation of the dominants, were claimed
to be efficient. However, both the algorithms FAST MLCS
and Quick-DPPAR do not eliminate the inherent defects
of the general dominant-point-based MLCS algorithms (see
Section 3). The claimed linear time complexity O(|MLCS|)
without considering the time of computing dominants is not
reasonable for FAST MLCS, while the time complexity of
Quick-DPPAR, 1/Np(1+α(n))O(n|Σ|d+ |D||Σ|d(logd−2n+
logd−2|Σ|)), where limn→∞ α(n) = 0, is obviously non-linear,
as |D| is the number of the vertices of MLCS-DAG which
is much larger than |V | of NCSG. Thus the complexities of
time and space for our proposed algorithm are much lower
than those of FAST MLCS and Quick-DPPAR.

5. EXPERIMENTAL RESULTS
In experiments, all the algorithms (FAST LCS, Quick-

DPPAR and the proposed RLP MLCS) were run on Inspur
Corporation K1 800 high-performance key host (Intel X-
eon E7-8870, 4 chip, 4 cores/chip, 2 threads/core, 2.80 GHz
and 1TB RAM ) in the High Performance Computing Cen-
ter of Xidian University, written in Java with JDK 1.7 and
tested on the benchmark datasets provided by real biolog-
ical sequences datasets ncbi7 and dip8, as well as a set of
synthetic sequences randomly drawn from alphabets of the
DNA and amino acid, wherein ten groups of real biologi-
cal sequences and synthetic sequences are randomly select-
ed from the datasets, respectively, and each group consists
of 5 or d sequences. We tested the algorithms 10 times on
the above 20 groups of benchmark datasets. Notably, the
result MLCSs are consistent over all the algorithms as long
as the algorithms finish without exception9. Therefore, we
focus on the comparison in efficiency and report the average
running times over 10 runs in milliseconds (ms).

Firstly, we test the performance of our parallel algorithm
RLP MLCS and compare it with the state-of-the-art dominant-
point-based parallel FAST LCS [2] and Quick-DPPAR [16]
algorithms (these algorithms were reported to have been im-
plemented in corresponding literature and run on the same
hardware platform). Due to space limit, only parts of the
experimental results are shown in Table 2 and Table 3, re-
spectively, where ‘+’ stands for the memory overflow such
that the algorithm fails in the corresponding case.

Table 2 shows that the time performance of the proposed
parallel RLP MLCS algorithm is superior to that of the oth-
er two competitors, reaching up to 2−3 orders of magnitude
faster for long sequences. For example, the running time
of our algorithm RLP MLCS shown in Table 2 is in aver-

7
http://www.ncbi.nlm.nih.gov/nuccore/110645304?report=fasta

8
http://dip.doe-mbi.ucla.edu/dip/Download.cgi

9
As shown in Table 2 and 3, in many cases, FAST LCS, Quick-

DPPAR will run out of memory.

Table 2: The running times of FAST LCS (A1),
Quick-DPPAR (A2) and RLP MLCS (A3) for 5 se-
quences with various lengths on 32 threads and step
length 100.

|Σ| = 4 |Σ| = 20
|Si| A1(ms) A2(ms) A3(ms) |Si| A1(ms) A2(ms) A3(ms)

50 353 241 56 50 46 37 23
75 1640 1323 143 100 1047 682 98
100 11107 8018 328 140 6749 2137 239
140 121450 92936 1109 180 28875 17886 547
180 1335962 1205232 10480 220 97021 59604 1769
220 + + 23097 260 355323 296465 2839
300 + + 52560 300 984187 865325 3796
400 + + 85071 340 3739639 2567178 9987
500 + + 167848 400 + + 19844
1000 + + 629676 600 + + 73792
1500 + + 1038030 800 + + 107890
2000 + + 5218596 1000 + + 214610
2500 + + 9126758 2000 + + 571363
3000 + + 13703431 3000 + + 703337
3500 + + 18158274 4000 + + 931582
4000 + + 22083068 5000 + + 1008042
4500 + + 27080701 6000 + + 1138462

1 |Si|: length of sequences

Table 3: The running times of FAST LCS (A1),
Quick-DPPAR (A2) and RLP MLCS (A3) for d se-
quences with lengths 100 and 250, on 32 threads
with step lengths 100 and 250, respectively.

|Si| = 100 and |Σ| = 4 |Si| = 250 and |Σ| = 20
d A1(ms) A2(ms) A3(ms) d A1(ms) A2(ms) A3(ms)

3 237 196 87 3 2042 1526 237
4 1818 2631 198 4 28745 21241 953
5 32394 30211 338 5 879434 624429 2753
6 985023 653235 3620 6 9573349 7451484 19688
7 + + 10927 7 + + 69440
8 + + 31532 8 + + 187688
9 + + 54676 9 + + 420122
10 + + 103598 10 + + 861038
50 + + 189629 50 + + 17925
100 + + 62526 100 + + 5536
200 + + 17275 200 + + 2132
400 + + 13560 400 + + 1074
600 + + 11532 600 + + 537
800 + + 9645 800 + + 398
1000 + + 8092 1000 + + 286

1 |Si|: length of sequences
2 d: number of sequences

age 58 times / 47 times shorter than that of the algorithm
FAST LCS (ranging from 6 − 127 times / 4 − 115 times),
and 113 times / 84 times shorter than that of the algorithm
Quick-DPPAR (ranging from 2− 374 times / 2− 257 times)
in different |Σ| individually. Moreover, with the increasing
length of aligned sequences, the advantage of RLP MLCS in
time performance is even more obvious compared with algo-
rithms FAST LCS and Quick-DPPAR. Obviously, Table 2
shows that our algorithm RLP MLCS is not only vastly su-
perior to the algorithms FAST LCS and Quick-DPPAR, but
also is more practical to longer sequences alignments.

As discussed above, thanks to the well-designed strate-
gies adopted in RLP MLCS, we have eliminated redundant
dominants, got rid of dimension by dimension comparisons
of dominants, and saved much storage space compared with
the state-of-the-art competitors. Table 3 reveals that these
advantages of our algorithm RLP MLCS get more obvious
as the number of sequences alignments is increased, e.g.,
for the different |Σ|, when testing on 6 sequences with the
lengths of 100 (resp., 250) individually, the running time of
RLP MLCS has already been up to 272 (resp., 486) times
better than that of FAST MLCS and 180 (resp., 378) times
better than that of Quick-DPPAR. It is a remarkable fac-
t that FAST MLCS and Quick-DPPAR cannot work due
to memory overflow when the number of aligned sequences
is larger than 6. In comparison, our proposed algorith-
m RLP MLCS can also run correctly and efficiently even
though the number of aligned sequences reaches 1000. More-



over, with the increasing number of aligned sequences, the
number of dominants firstly increases and then usually de-
creases. Thus, the experimental results of our algorithm
RLP MLCS shown in Table 3 is reasonable, and the algo-
rithm is very suitable for large-scale sequences alignments.

In addition, we further evaluated the speedup of our algo-
rithm RLP MLCS by varying the number of threads. Due
to space limit, we briefly describe the high-level results. The
results show that our algorithm RLP MLCS achieves a n-
early linear speedup, and that the larger d , n, and |Σ|, the
better speedup is.

In a word, the time and space performances of RLP MLCS
are not only very superior to the state-of-the-art FAST LCS
and Quick-DPPAR, but also more practical to longer and
large-scale or even big sequences alignments.

6. CONCLUSION
In order to overcome the disadvantages of the leading

dominant-point-basedMLCS algorithms and tackle the chal-
lenges of longer and large-scale aligned sequences, we first
present a novel general problem-solving model NCSG and
series of new strategies, e.g., the parallel topological sorting,
optimal calculating, reuse of intermediate results, subsec-
tion calculation, etc. Based on that, we present a novel
real linear and parallel MLCS algorithm RLP MLCS. In
addition to the external communication overhead Tcom of
parallel execution with Np threads, theoretical study show
that the time and space complexities of the proposed algo-
rithm are only linear to and even smaller than the number
of the dominants from aligned sequences, i.e., 1

Np
O(|V |) +

Tcom and O(|V |), respectively. In particular, with subsec-
tion calculation of our algorithm, |V | should be replaced
by |K| + |Vsi|, where |K| is the total number of the key
points on the NCSG, |Vsi| is the total number of the dom-
inants on a subsection subgraph Sub-NCSGsi, and |K| +
|Vsi| ≪ |V |. Finally, our algorithm is evaluated by compre-
hensive experiments on datasets of both random synthetic
and real biological sequences. The results show that the
proposed problem-solving model NCSG and the strategies
are efficient and effective, and that the proposed algorithm
RLP MLCS not only greatly outperforms the leading state-
of-the-art dominant-point-based parallel MLCS algorithms
available, but also is practical for longer and large-scale se-
quences alignments.

As part of our future work, we will further improve the
efficiency of the proposed algorithm RLP MLCS and explore
applications in big sequence analysis.
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