
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 28, NO. 3, MARCH 2017 653

Deep Direct Reinforcement Learning for Financial
Signal Representation and Trading

Yue Deng, Feng Bao, Youyong Kong, Zhiquan Ren, and Qionghai Dai, Senior Member, IEEE

Abstract— Can we train the computer to beat experienced
traders for financial assert trading? In this paper, we try to
address this challenge by introducing a recurrent deep neural
network (NN) for real-time financial signal representation and
trading. Our model is inspired by two biological-related learning
concepts of deep learning (DL) and reinforcement learning (RL).
In the framework, the DL part automatically senses the dynamic
market condition for informative feature learning. Then, the RL
module interacts with deep representations and makes trading
decisions to accumulate the ultimate rewards in an unknown
environment. The learning system is implemented in a complex
NN that exhibits both the deep and recurrent structures. Hence,
we propose a task-aware backpropagation through time method
to cope with the gradient vanishing issue in deep training. The
robustness of the neural system is verified on both the stock and
the commodity future markets under broad testing conditions.

Index Terms— Deep learning (DL), financial signal processing,
neural network (NN) for finance, reinforcement learning (RL).

NOMENCLATURE

AE Autoencoder.
BPTT Backpropagation through time.
DL Deep learning.
DNN Deep neural network.
DRL Direct reinforcement learning.
DDR Deep direct reinforcement.
FDDR Fuzzy deep direct reinforcement.
RDNN Recurrent DNN.
RL Reinforcement learning.
NN Neural network.
SR Sharpe ratio.
TP Total profits.

I. INTRODUCTION

TRAINING intelligent agents for automated financial
asserts trading is a time-honored topic that has been

Manuscript received April 30, 2015; revised October 21, 2015 and
January 22, 2016; accepted January 22, 2016. Date of publication February 15,
2016; date of current version February 15, 2017. This work was supported
by the Project of the National Natural Science Foundation of China under
Grant 61327902 and Grant 61120106003. The work of Y. Kong was sup-
ported by National Science Foundation of Jiangsu Province, China, under
Grant BK20150650.

Y. Deng is with the Automation Department, Tsinghua University,
Beijing 100084, China, and also with the School of Pharmacy, University
of California at San Francisco, San Francisco, CA 94158 USA (e-mail:
yuedeng.thu@gmail.com).

F. Bao, Z. Ren, and Q. Dai are with the Automation Department,
Tsinghua University, Beijing 100084, China (e-mail: fbao0110@gmail.com;
renzhiquan1989@gmail.com; qhdai@tsinghua.edu.cn).

Y. Kong is with the School of Computer Science and Engineering, Southeast
University, Nanjing 210000, China (e-mail: kongyouyong@gmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2016.2522401

widely discussed in the modern artificial intelligence [1].
Essentially, the process of trading is well depicted as an
online decision making problem involving two critical steps of
market condition summarization and optimal action execution.
Compared with conventional learning tasks, dynamic decision
making is more challenging due to the lack of the supervised
information from human experts. It, thus, requires the agent
to explore an unknown environment all by itself and to
simultaneously make correct decisions in an online manner.

Such self-learning pursuits have encouraged the long-term
developments of RL—a biological inspired framework—with
its theory deeply rooted in the neuroscientific field for behavior
control [2]–[4]. From the theoretical point of view, stochastic
optimal control problems were well formulated in a pioneering
work [2]. In practical applications, the successes of RL have
been extensively demonstrated in a number of tasks, including
robots navigation [5], atari game playing [6], and helicopter
control [7]. Under some tests, RL even outperforms human
experts in conducting optimal control policies [6], [8]. Hence,
it leads to an interesting question in the context of trading:
can we train an RL model to beat experienced human traders
on the financial markets? When compared with conventional
RL tasks, algorithmic trading is much more difficult due to
the following two challenges.

The first challenge stems from the difficulties in financial
environment summarization and representation. The financial
data contain a large amount of noise, jump, and movement
leading to the highly nonstationary time series. To miti-
gate data noise and uncertainty, handcraft financial features,
e.g., moving average or stochastic technical indicators [9], are
usually extracted to summarize the market conditions. The
search for ideal indicators for technical analysis [10] has been
extensively studied in quantitative finance. However, a widely
known drawback of technical analysis is its poor generalization
ability. For instance, the moving average feature is good
enough to describe the trend but may suffer significant losses
in the mean-reversion market [11]. Rather than exploiting
predefined handcraft features, can we learn more robust feature
representations directly from data?

The second challenge is due to the dynamic behavior of
trading action execution. Placing trading orders is a systematic
work that should take a number of practical factors into
consideration. Frequently changing the trading positions (long
or short) will contribute nothing to the profits but lead to great
losses due to the transaction cost (TC) and slippage. Accord-
ingly, in addition to the current market condition, the his-
toric actions and the corresponding positions are, meanwhile,
required to be explicitly modeled in the policy learning part.

2162-237X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

654 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 28, NO. 3, MARCH 2017

Without adding extra complexities, how can we incorporate
such memory phenomena into the trading system?

In addressing the aforementioned two questions, in this
paper, we introduce a novel RDNN structure for simultaneous
environment sensing and recurrent decision making for online
financial assert trading. The bulk of the RDNN is composed
of two parts of DNN for feature learning and recurrent neural
network (RNN) for RL. To further improve the robustness
for market summarization, the fuzzy learning concepts are
introduced to reduce the uncertainty of the input data. While
the DL has shown great promises in many signal processing
problems as image and speech recognitions, to the best of our
knowledge, this is the first paper to implement DL in designing
a real trading system for financial signal representation and
self-taught reinforcement trading.

The whole learning model leads to a highly complicated
NN that involves both the deep and recurrent structures.
To handle the recurrent structure, the BPTT method is
exploited to unfold the RNN as a series of time-dependent
stacks without feedback. When propagating the RL score back
to all the layers, the gradient vanishing issue is inevitably
involved in the training phase. This is because the unfolded
NN exhibits extremely deep structures on both the feature
learning and time expansion parts. Hence, we introduce a more
reasonable training method called the task-aware BPTT to
overcome this pitfall. In our approach, some virtual links from
the objective function are directly connected with the deep
layers during the backpropagation (BP) training. This strategy
provides the deep part a chance to see what is going on in the
final objective and, thus, improves the learning efficiency.

The DDR trading system is tested on the real financial
market for future contracts trading. In detail, we accumulate
the historic prices of both the stock-index future (IF) and
commodity futures. These real market data will be directly
used for performance verifications. The deep RL system will
be compared with other trading systems under diverse testing
conditions. The comparisons show that the DDR system and its
fuzzy extension are much robust to different market conditions
and could make reliable profits on various future markets.

The remaining parts of this paper are organized as follows.
Section II generally reviews some related works about the RL
and the DL. Section III introduces the detailed implementa-
tions of the RDNN trading model and its fuzzy extension.
The proposed task-aware BPTT algorithm will be presented in
Section IV for RDNN training. Section V is the experimental
part where we will verify the performances of the DDR and
compare it with other trading systems. Section VI concludes
this paper and indicates some future directions.

II. RELATED WORKS

RL [12] is a prevalent self-taught learning [13] para-
digm that has been developed to solve the Markov decision
problem [14]. According to different learning objectives, typ-
ical RL can be generally categorized into two types as critic-
based (learning value functions) and actor-based (learning
actions) methods. Critic-based algorithms directly estimate the
value functions that are perhaps the mostly used RL frame-
works in the filed. These value-function-based methods,

e.g., TD-learning or Q-learning [15] are always applied to
solve the optimization problems defined in a discrete space.
The optimizations of value functions can always be solved by
dynamic programming [16].

While the value-function-based methods (also known as
critic-based method) perform well for a number of problems,
it is not a good paradigm for the trading problem, as indicated
in [17] and [18]. This is because the trading environment is
too complex to be approximated in a discrete space. On the
other hand, in typical Q-learning, the definition of value
function always involves a term recoding the future discounted
returns [17]. The nature of trading requires to count the profits
in an online manner. Not any kind of future market information
is allowed in either the sensory part or policy making part
of a trading system. While value-function-based methods are
plausible for the offline scheduler problems [15], they are
not ideal for dynamic online trading [17], [19]. Accordingly,
rather than learning the value functions, a pioneering work [17]
suggests learning the actions directly that falls into the
actor-based framework.

The actor-based RL defines a spectrum of continuous
actions directly from a parameterized family of policies.
In typical value-function-based method, the optimization
always relies on some complicated dynamic programming
to derive optimal actions on each state. The optimization
of actor-based learning is much simpler that only requires
a differentiable objective function with latent parameters.
In addition, rather than describing diverse market conditions
with some discrete states (in Q-learning), the actor-based
method learns the policy directly from the continuous sensory
data (market features). In conclusion, the actor-based method
exhibits two advantages: 1) flexible objective for optimization
and 2) continuous descriptions of market condition. Therefore,
it is a better framework for trading than the Q-learning
approaches. In [17] and [19], the actor-based learning is
termed DRL and we will also use DRL here for consistency.

While the DRL defines a good trading model, it does
not shed light on the side of feature learning. It is known
that robust feature representation is vital to machine learning
performances. In the context of the stock data learning, various
feature representation strategies have been proposed from
multiple views [20]–[22]. Failure in the extraction of robust
features may adversely affect the performances of a trading
system on handling market data with high uncertainties. In the
field of direct reinforcement trading (DRT), Deng et al. [19]
attempt to introduce the sparse coding model as a feature
extractor for financial analysis. The sparse features achieve
much more reliable performances than the DRL to trade
stock-IFs.

While admitting the general effectiveness of sparse coding
for feature learning [23]–[25], [36], it is essentially a shal-
low data representation strategy whose performance is not
comparable with the state-of-the-art DL in a wide range
tests [26], [27]. DL is an emerging technique [28] that
allows robust feature learning from big data. The successes of
DL techniques have been witnessed in image categoriza-
tion [26] and speech recognition [29]. In these applications,
DL mainly serves to automatically discover informative

DENG et al.: DDR LEARNING FOR FINANCIAL SIGNAL REPRESENTATION AND TRADING 655

features from a large amount of training samples. However,
to the best of our knowledge, there is hardly any existing work
about DL for financial signal mining. This paper will try to
generalize the power of DL into a new field for financial signal
processing and learning. The DL model will be combined with
DRL to design a real-time trading system for financial assert
trading.

III. DIRECT DEEP REINFORCEMENT LEARNING

A. Direct Reinforcement Trading

We generally review Moody’s DRL framework [30] here,
and it will become clear that typical DRL is essentially a
one-layer RNN. We define p1, p2, . . . , pt , . . . as the price
sequences released from the exchange center. Then, the return
at time point t is easily determined by zt = pt − pt−1.
Based on the current market conditions, the real-time trading
decision (policy) δt ∈ {long, neutral, short} = {1, 0,−1} is
made on each time point t . With the symbols defined above,
the profit Rt made by the trading model is obtained by

Rt = δt−1zt − c|δt − δt−1|. (1)

In (1), the first term is the profit/loss made from the market
fluctuations and the second term is the TC when flipping
trading positions at time point t . This TC (c) is the mandatory
fee paid to the brokerage company only if δt ̸= δt−1. When
two consecutive trading decisions are the same, i.e., δt = δt−1,
no TC is applied there.

The function in (1) is the value function defined in the
typical DRL frameworks. When getting the value function in
each time point, the accumulated value throughout the whole
training period can be defined as

max
"

UT {R1 . . . RT |"} (2)

where UT {·} is the accumulated rewards in the period of
1, . . . , T . Intuitively, the most straightforward reward is the
TP made in the T period, i.e., UT = ∑T

t=1 Rt . Other com-
plicated reward functions, e.g., the risk adjusted returns, can
also be used here as the RL objective. For the ease of model
explanations, we prefer to use the TP as the objective function
in the next parts. Others will be discussed in Section V.

With the well-defined reward function, the primary problem
is how to solve it efficiently. In the conventional RL works,
the value functions defined in the discrete space are directly
iterated by dynamic programming. However, as indicated
in [17] and [19], learning the value function directly is not
plausible for the dynamic trading problem, because compli-
cated market conditions are hard to be explained within some
discrete states. Accordingly, a major contribution of [17] is
to introduce a reasonable strategy to learn the trading policy
directly. This framework is termed DRL. In detail, a nonlinear
function is adopted in DRL to approximate the trading action
(policy) at each time point by

δt = tanh[⟨w, ft ⟩ + b + uδt−1]. (3)

In the bracket of (3), ⟨·, ·⟩ is the inner product, ft defines
the feature vector of the current market condition at time t ,
and (w, b) are the coefficients for the feature regression.

Fig. 1. Comparisons of DRL and the proposed DRNN for joint feature
learning and DRT.

In DRL, the recent m return values are directly adopted as
the feature vector

ft = [zt−m+1, . . . , zt] ∈ Rm . (4)

In addition to the features, another term uδt−1 is also added
into the regression to take the latest trading decision into
consideration. This term is used to discourage the agent to
frequently change the trading positions and, hence, to avoid
heavy TCs. With the linear transformation in the brackets,
tanh(·) further maps the function into the range of (−1, 1)
to approximate the final trading decision. The optimization
of DRL aims to learn such a family of parameter set
" = {w, u, b} that can maximize the global reward function
in (2).

B. Deep Recurrent Neural Network for DDR

While we have introduced the DRL in a regression
manner, it is interesting to note that it is in fact an
one-layer neural network, as shown in Fig. 1(a). The bias
term is not explicitly drawn in the diagram for simplicity.
In practical implementations, the bias term can be merged
into the weight w by expanding one dimension of 1 at the
end of the feature vector. The feature vector ft (green nodes)
is the direct input of the system. The DRL neural network
exhibits the recurrent structure that has a link from the
output (δt) to the input layer. One promising property of the
RNN is to incorporate the long time memory into the learning
system. DRL keeps the past trading actions in the memory to
discourage changing trading positions frequently. The system
in Fig. 1(a) exploits an RNN to recursively generate trading
decisions (learning policy directly) by exploring an unknown
environment. However, an obvious pitfall of the DRL is the
lack of a feature learning part to robustly summarize the noisy
market conditions.

To implement feature learning, in this paper, we intro-
duce the prevalent DL into DRL for simultaneously feature
learning and dynamic trading. DL is a very powerful feature
learning framework whose potentials have been extensively
demonstrated in a number of machine learning problems.
In detail, DL constructs a DNN to hierarchically transform
the information from layer to layer. Such deep representa-
tion encourages much informative feature representations for
a specific learning task. The deep transformation has also
been found in the neuroscience society when investigating
knowledge discovery mechanisms in the brain [31], [32].

656 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 28, NO. 3, MARCH 2017

These findings further establish the biological theory to
support the wide successes of DL.

By extending DL into DRL, the feature learning part
(blue panel) is added to the RNN in Fig. 1(a) forming a
deep recurrent neural network (DRNN) in Fig. 1(b). We define
the deep representation as Ft = gd(ft), which is obtained
by hierarchically transforming the input vector ft through the
DNN with a nonlinear mapping gd(·). Then, the trading action
in (3) is now subject to the following equation:

δt = tanh[⟨w, gd(ft)⟩ + b + uδt−1]. (5)

In our implementation, the deep transformation part is con-
figured with multiple well-connected hidden layers implying
that each node on the (l + 1)th layer is connected to all the
nodes in the lth layer. For ease of explanation, we define al

i
as the input of the i th node on the lth layer and ol

i is its
corresponding output

al
i =

〈
wl

i , o(l−1)
〉
+ bl

i , ol
i = 1

1 + e−al
i

(6)

where o(l−1) are the outputs of all the nodes on the
(l − 1)th layer. The parameter ⟨wl

i , bl
i ⟩, ∀i are the layerwise

latent variables to be learned in the DRNN. In our setting,
we set the number of hidden layers in the deep transformation
part to 4 and the node number per hidden layer is fixed to 128.

C. Fuzzy Extensions to Reduce Uncertainties

The deep configuration well addresses the feature learning
task in the RNN. However, another important issue, i.e., data
uncertainty in financial data, should also be carefully consid-
ered. Unlike other types of signals, such as images or speech,
financial sequences contain high amount of unpredictable
uncertainty due to the random gambling behind trading.
Besides, a number of other factors, e.g., global economic
atmosphere and some company rumors, may also affect
the direction of the financial signal in real time. Therefore,
reducing the uncertainties in the raw data is an important
approach to increase the robustness for financial signal mining.

In the artificial intelligence community, fuzzy learning is
an ideal paradigm to reduce the uncertainty in the original
data [33], [34]. Rather than adopting precise descriptions
of some phenomena, fuzzy systems prefer to assign fuzzy
linguist values to the input data. Such fuzzified representations
can be easily obtained by comparing the real-world data
with a number of fuzzy rough sets and then deriving the
corresponding fuzzy membership degrees. Consequently, the
learning system only works with these fuzzy representations
to make robust control decisions.

For the financial problem discussed here, the fuzzy rough
sets can be naturally defined according to the basic movements
of the stock price. In detail, the fuzzy sets are defined on
the increasing, decreasing, and the no trend groups. The
parameters in the fuzzy membership function can then be
predefined according to the context of the discussed problem.
Alternatively, they could be learned in a fully data-driven
manner. The financial problem is highly complicated and it
is hard to manually set up the fuzzy membership functions

Fig. 2. Overview of fuzzy DRNNs for robust feature learning and self-taught
trading.

according to the experiences. Therefore, we prefer to directly
learn the membership functions and this idea will be detailed
in Section IV.

In fuzzy neural networks, the fuzzy representation part is
conventionally connected to the input vector ft (green nodes)
with different membership functions [35]. To note, in our
setting, we follow a pioneering work [35] to assign k different
fuzzy degrees to each dimension of the input vector. In the
cartoon of Fig. 2, only two fuzzy nodes (k = 2) are connected
to each input variable due to the space limitation. In our prac-
tical implementation, k is fixed as 3 to describe the increas-
ing, decreasing, and no trend conditions. Mathematically, the
i th fuzzy membership function vi (·) : R → [0, 1] maps the
i th input as a fuzzy degree

o(l)
i = vi

(
a(l)

i

)
= e−

(
a(l)

i −mi

)2
/σ 2

i ∀i. (7)

The Gaussian membership function with mean m and vari-
ance σ 2 is utilized in our system following the suggestions
of [37] and [38]. After getting the fuzzy representations, they
are directly connected to the deep transformation layer to seek
for the deep transformations.

In conclusion, the fuzzy DRNN (FDRNN) is composed of
three major parts as fuzzy representation, deep transformation,
and DRT. When viewing the FDRNN as a unified system, these
three parts, respectively, play the roles of data preprocessing
(reduce uncertainty), feature learning (deep transformation),
and trading policy making (RL). The whole optimization
framework is given as follows:

max
{",gd (·),v(·)}

UT (R1..RT)

s.t. Rt = δt−1zt − c|δt − δt−1|
δt = tanh(⟨w, Ft ⟩ + b + uδt−1)

Ft = gd(v(ft)) (8)

where there are three groups of parameters to be learned,
i.e., the trading parameters " = (w, b, u), fuzzy represen-
tations v(·), and deep transformations gd(·). In the above
optimization, UT is the ultimate reward of the RL function,
δt is the policy approximated by the FRDNN, and Ft is
the high-level feature representation of the current market
condition produced by DL.

DENG et al.: DDR LEARNING FOR FINANCIAL SIGNAL REPRESENTATION AND TRADING 657

IV. DRNN LEARNING

While the optimization in (8) is conceptually elegant,
it unfortunately leads to a relative difficult optimization. This is
because the configured complicated DNN involves thousands
of latent parameters to be inferred. In this section, we propose
a practical learning strategy to train the DNN using two steps
of system initialization and fine tuning.

A. System Initializations

Parameter initialization is a critical step to train a DNN.
We will introduce the initialization strategies for the
three learning parts. The fuzzy representation part
[Fig. 2 (purple panel)] is easily initialized. The only
parameters to be specified are the fuzzy centers (mi) and
widths (σ 2

i) of the fuzzy nodes, where i means the i th node
of the fuzzy membership layer. We directly apply k-means to
divide the training samples into k classes. The parameter k
is fixed as 3, because each input node is connected with
three membership functions. Then, in each cluster, the mean
and variance of each dimension on the input vector (ft)
are sequentially calculated to initialize the corresponding
mi and σ 2

i .
The AE is adopted to initialize the deep transformation part

in Fig. 2 (blue panel). In a nutshell, AE aims at optimally
reconstructing the input information on a virtual layer placed
after the hidden representations. For ease of explanation, three
layers are specified here, i.e., the (l)th input layer, the (l +1)th
hidden layer, and the (l+2)th reconstruction layer. These three
layers are all well connected. We define hθ (·) [respectively,
hγ (·)] as the feedforward transformation from the lth to
(l + 1)th layer [respectively, (l + 1)th to (l + 2)th layer]
with parameter set θ (respectively, γ). The AE optimization
minimizes the following loss:

∑

t

∥∥x(l)
t − hγ

(
hθ

(
x(l)

t
))∥∥2

2 + η∥w(l+1)∥2
2. (9)

To note, x(l)
t are the nodes’ statuses of the lth layer with

the tth training sample as input. In (9), a quadratic term
is added to avoid the overfitting phenomena. After solving
the AE optimization, parameter set θ = {w(l+1), b(l+1)} is
recorded in the network as the initialized parameter of the
(l + 1)th layer. The reconstruction layer and its corresponding
parameters γ are not used. This is because the reconstruction
layer is just a virtual layer, assisting parameter learning of the
hidden layer [28], [39]. The AE optimizations are implemented
on each hidden layer sequentially until all the parameters in
the deep transformation part have been set up.

In the DRL part, the parameters can be initialized using final
deep representation Ft as the input to the DRL model. This
process is equivalent to solving the shallow RNN in Fig. 1(a),
which has been discussed in [17]. It is noted that all the learn-
ing strategies presented in this section are all about parameter
initializations. In order to make the whole DL system perform
robustly in addressing difficult tasks, a fine tuning step is
required to precisely adjust the parameters of each layer. This
fine tuning step can be considered as task-dependent feature
learning.

Fig. 3. Task-aware BPTT for RDNN fine tuning.

B. Task-Aware BPTT

In the conventional way, the error BP method is applied
to the DNN fine tuning step. However, the FRDNN is bit
complicated that exhibits both recurrent and deep structures.
We denote θ as the general parameter in the FRDNN, and its
gradient is easily calculated by the chain rule

∂UT

∂θ
=

∑

t

dUt

d Rt

{
d Rt

dδt

dδt

dθ
+ d Rt

dδt−1

dδt−1

dθ

}

dδt

dθ
= ∂δt

∂θ
+ ∂δt

∂δt−1

dδt−1

dθ
. (10)

From (10), it is apparent when deriving the gradient dδt/dθ ,
one should recursively calculate the gradient for dδt−τ/dθ ,
∀τ = 1, . . . , T .1 Such recursive calculation inevitably imposes
great difficulties for gradient derivations. To simplify the
problem, we introduce the famous BPTT [40] method to cope
with the recurrent structure of the NN.

By analyzing the FRDNN structure in Fig. 2, the recurrent
link comes from the output side to the input side, i.e., δt−1 is
used as the input of the neuron to calculate δt . Fig. 3 shows
the first two-step unfolding of the FRDNN. We call each block
with different values of τ as a time stack, and Fig. 3 shows two
time stacks (with τ = 0 and τ = 1). After the BPTT unfolds,
the current system does not involve any recurrent structure and
the typical BP method is easily applied to it. When getting
parameters’ gradients at each separate time stack, they are
averaged together forming the final gradient of each parameter.

According to Fig. 3, the original DNN becomes even deeper
due to the implementations of time-based unfolding. To clarify
this point, we remind the readers to notice the time stacks
after expansion. It leads to a deep structure along different
time delays. Moreover, every time stack (with different values
of τ) contains its own deep feature learning part. When directly
applying the BPTT, the gradient vanish on deep layers is not
avoided in the fine-tuning step [41]. This problem becomes
even worse on the high-order time stacks and the front layers.

To solve the aforementioned problem, we propose a more
practical solution to bring the gradient information directly
from the learning task to each time stack and each layer of
the DL part. In the time unfolding part, the red dotted lines

1In (10), while the calculation only explicitly relies on dδt−1/dθ , the term
dδt−1/dθ further depends on dδt−2/dθ making the calculations recursively
evolved.

658 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 28, NO. 3, MARCH 2017

Algorithm 1 Training Process for the FRDNN
Input : Raw price ticks p1, . . . , pT received in an

online manner; ρ, c0 (learning rate).
Initialization: Initialize the parameters for the fuzzy

layers (by fuzzy clustering), deep layers
(auto-encoder) and reinforcement learning
part sequentially.

1 repeat
2 c = c + 1;
3 Update learning rate ρc = min(ρ,ρ c0

c) for this outer
iteration;

4 for t = 1 . . . T do
5 Generate Raw feature ft vector from price ticks;
6 BPTT: Unfold the RNN at time t into τ + 1 stacks;
7 Task-aware Propagation: Add the virtual links from

the output to each deep layer;
8 BP: Back-propagate the gradient through the

unfolded network as in Fig. 3;
9 Calculated ∇(Ut)" by averaging its gradient values

on all the time stacks.;
10 Parameter Updating: "t = "t−1 − ρc

∇(Ut)θ
||∇(Ut)θ || ;

11 end
12 until convergence;

are connected from the task UT to the output node of each
time stack. With this setting, the back-propagated gradient
information of each time stack comes from two respective
parts: 1) the previous time stack (lower order time delay) and
2) the reward function (learning task). Similarly, the gradient
of the output node in each time stack is brought back to the
DL layers by the green dotted line. Such a BPTT method with
virtual lines connecting with the objective function is termed
task-aware BPTT.

The detailed process to train the FRDNN has been summa-
rized in Algorithm 1. In the algorithm, we denote " as the
general symbol to represent parameters. It represents the whole
latent parameters’ family involved in the FRDNN. Before the
gradient decreasing implementation in line 10, the calculated
gradient vector is further normalized to avoid extremely large
value in the gradient vector.

V. EXPERIMENTAL VERIFICATIONS

A. Experimental Setup

We test the DDR trading model on the real-world financial
data. Both the stock index and commodity future contracts
are tested in this section. For the stock-index data, we select
the stock-IF contract, which is the first index-based future
contract traded in China. The IF data is calculated based on
the prices of the top 300 stocks from both Shanghai and
Shenzhen exchange centers. The IF future is the most liquid
one and occupies the heaviest trading volumes among all
the future contracts in China. On the commodity market, the
silver (AG) and sugar (SU) contracts are used, because both
of them exhibit very high liquidity, allowing trading actions
to be executed in almost real time. All these contracts allow

Fig. 4. Prices (based on minute resolutions) of the three tested future
contracts. Red parts: RDNN initializations. Blue parts: out-of-sample tests.

TABLE I

SUMMARY OF SOME PRACTICAL PROPERTIES
OF THE TRADED CONTRACTS

both short and long operations. The long (respectively, short)
position makes profits when the subsequent market price goes
higher (respectively, lower).

The financial data are captured by our own trading system
in each trading day and the historic data is maintained in
a database. In our experiment, the minute-level close prices
are used, implying that there is a 1-min interval between the
price pt and pt+1. The historic data of the three contracts in
the minute resolutions are shown in Fig. 4. In this one-year
period, the IF contracts accumulate more ticks than commodity
data because the daily trading period of IF is much longer than
commodity contracts.

From Fig. 4, it is also interesting to note that these three con-
tracts exhibit quite different market patterns. IF data get very
large upward and downward movements in the tested period.
The AG contract, generally, shows a downward trend and the
SU has no obvious direction in the testing period. For practical
usage, some other issues related to trading should also be
considered. We have summarized some detailed information
about these contracts in Table I. The inherent values of these
three contracts are evaluated by China Yuan (CNY) per point
(CNY/pnt). For instance, in the IF data, the increase (decrease)
in one point may lead to a reward of 300 CNY for a long
(respectively, short) position and vice versa. The TCs charged
by the brokerage company is also provided. By considering
other risky factors, a much higher c is set in (1). It is five
times higher than the real TCs.

The raw price changes of the last 45 min and the momentum
change to the previous 3 h, 5 h, 1 day, 3 days, and 10 days
is directly used as the input of the trading system (ft ∈ R50).
In the fuzzy learning part, each of the 50 input nodes are
connected with three fuzzy membership functions to seek for
the first-level fuzzy representation in R150. Then, the fuzzy
layer is sequentially passed through four deep transformation
layers with 128, 128, 128, and 20 hidden nodes per layer. The
feature representation (Ft ∈ R20) of the final deep layer is
connected with the DRL part for trading policy making.

B. Details on Deep Training

In this section, we discuss some details related to deep
training. In practice, the system is trained by two sequential

DENG et al.: DDR LEARNING FOR FINANCIAL SIGNAL REPRESENTATION AND TRADING 659

steps of initialization and online updating. In the initializa-
tion step, the first 15 000 time points of each time series
in Fig. 4 (red parts) are employed for system warming up.
It is noted that these initialization data will not be used for
out-of-sample tests. After initialization, the parameters in the
RDNN are iteratively updated in an online manner with the
recently released data. The online updating strategy allows
the model to get aware of the latest market condition and
revise its parameters accordingly.

In practice, the first 15 000 time points are used to set up the
RDNN and the well-trained system is exploited to trade the
time points from 15 001 to 20 000. Then, the sliding window of
the training data is moved 5000 ticks forward covering a new
training set from 5000 to 20 000. As indicated in Section IV,
the training phase of the RDNN is composed of two main
steps of layerwise parameter initialization and fine tuning. It is
clarified here that the parameter initialization implementations
are only performed in the first round of training, i.e., on the
first 15 000 ticks. With the sliding window of the training
set moving ahead, the optimal parameters obtained from
the last training round are directly used as the initialized
values.

FDDR is a highly nonconvex system and only a local mini-
mum is expected after convergence. Besides, the overfitting
phenomenon is a known drawback faced by most DNNs.
To mitigate the disturbances of overfitting, we adopt two
convenient strategies that have been proved to be powerful in
practice. The first strategy is the widely used early stopping
method for DNN training. The system is only trained for
100 epochs with a gradient decreasing parameter be ηc = 0.97
in Algorithm 1. Second, we conduct model selection to select
a good model for the out-of-sample data. To achieve this
goal, 15 000 training points are divided into two sets as
RDNN training set (first 12 000) and validation set (last 3000).
On the first 12 000 time points, FDDR is trained for 5 times
and the best one is selected on the next 3000 blind points.
Such validation helps to exclude some highly overfitted NNs
from the training set.

Another challenge in training RDNN comes from the
gradient vanishing issue, and we have introduced the
task-aware BPTT method to cope with this problem. To prove
its effectiveness, we show the training performance with
the comparison with the typical BPTT method. The trading
model is trained on the first 12 000 points of the IF data
in Fig. 4(a). The objective function values (accumulated
rewards) of the two methods along with the training epochs
are shown in Fig. 5. From the comparisons, it is apparent
that the task-aware BPTT outperforms the BPTT method in
making more rewards (accumulated trading profits). More-
over, the task-aware BPTT requires less iterative steps for
convergence.

C. General Evaluations

In this section, we evaluate the DDR trading system on
practical data. The system is compared with other RL systems
for online trading. The first competitor is the DRL system [17].
Besides, the sparse coding-inspired optimal training (SCOT)

Fig. 5. Training epochs and the corresponding rewards by training the DRNN
by (a) task-aware BPTT and (b) normal BPTT. The training data are the first
12 000 data points in Fig. 4(a).

system [19] is also evaluated, which uses shallow feature
learning part of sparse coding.2 Finally, the results of DDR
and its FDDR are also reported.

In the previous discussions, the reward function defined
for RL is regarded as the TPs gained in the training period.
Compared with total TP, in modern portfolio theory, the risk-
adjusted profits are more widely used to evaluate a trading
system’s performance. In this paper, we will also consider an
alternative reward function into the RL part, i.e., SR, which
has been widely used in many trading related works [42], [43].
The SR is defined as the ratio of average return to stan-
dard deviation of the returns calculated in period 1, . . . , T ,
i.e., USR

T = (mean(Rt)/std(Rt)). To simplify the expression,
we follow the same idea in DRL [17] to use the moving
SR instead. In general, moving SR gets the first-order Taylor
expansion of typical SR and then updates the value in an
incremental manner. Please refer to [17, Sec. 2.4] for detailed
derivations. Different trading systems are trained with both
TP and SR as the RL objectives. The details of the profit
and loss (P&L) curves are shown in Fig. 6. The quantitative
evaluations are summarized in Table II, where the testing
performances are also reported in the forms of TP and SR. The
performance of buying and holding (B&H) is also reported in
Table II as the comparison baseline. From the experimental
results, three observations can be found as follows.

The first observation is that all the methods achieved much
more profits in the trending market. Since we have allowed
short operation in trading, the trader can also make money in
the downward market. This can be denmonstrated from the
IF data that Chinese market exhibits an increasing trend in
the first, followed by a sudden drop. FDDR makes profits in
either case. It is also observed that the P&L curve suffers
a drawback during the transition period from the increas-
ing trend to the decreasing trend. This is possible due to
the significant differences in the training and testing data.
In general, the RL model is particularly suitable to be applied
to the trending market condition.

Second, FDDR and DDR generally outperform the other
two competitors on all the markets. SCOT also gains bet-
ter performance than DRL in most conditions. This obser-
vation verifies that feature learning indeed contributes in
improving the trading performance. Besides, the DL methods

2The basis in the sparse coding dictionary is set to 128, which is the same
as the hidden node number of the RDNN.

660 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 28, NO. 3, MARCH 2017

Fig. 6. Testing future data (top) and the P&L curves of different trading systems with TPs (middle) and SR (bottom) as RL objectives, respectively.

TABLE II

PERFORMANCES OF DIFFERENT RL SYSTEMS ON DIFFERENT MARKETS

(FDDR and DDR) make more profits with higher SR on
all the tests than the shallow learning approach (SCOT).
Among the two DL methods, adding an extra layer for fuzzy
representation seems to be a good way to further improve the
results. This claim can be easily verified from Table II and
Fig. 6 in which FDDR wins the DDR on all the tests except
the one in Fig. 6(g). As claimed in the last paragraph, the
DRL is a trend following system that may suffer losses on
the market with small volatility. However, it is observed from
the results that even on the nontrending period, e.g., on the
SU data or in the early period of the IF data, FDDR is also
effective to make the positive accumulation from the swing
market patterns. Such finding successfully verifies another
important property of fuzzy learning in reducing market
uncertainties.

Third, exploiting SR as the RL objective always leads to
more reliable performances. Such reliability can be observed
from both the SR quantity in Table II and the shapes of the

P&L curves in Fig. 6. It is observed from Table II that the
highest profits on the IF data were made by optimizing the TP
as the objective in DDR. However, the SR on that testing
condition is worse than the other. In portfolio management,
rather than struggling for the highest profits with high risk, it
is more intellectual to make good profits within acceptable risk
level. Therefore, in practical usage, it is still recommended to
use the SR as the reward function for RL.

In conclusion, the RL framework is perhaps a trend-based
trading strategy and could make reliable profits on the markets
with large price movement (no matter in which direction).
The DL-based trading systems generally outperform other
DRL models either with or without shallow feature learning.
By incorporating the fuzzy learning concept into the system,
the FDDR can even generate good results in the nontrending
period. When training a deep trading model, it is suggested to
use the SR as the RL objective which balances the profit and
the risk well.

DENG et al.: DDR LEARNING FOR FINANCIAL SIGNAL REPRESENTATION AND TRADING 661

TABLE III

COMPARISONS WITH OTHER PREDICTION-BASED DNNs

D. Comparisons With Prediction-Based DNNs

We further compare the DDR framework with other
prediction-based NNs [1]. The goal of the prediction-based NN
is to predict whether the closed price of the next bar (minute
resolution) is going higher, lower, or suffering no change. The
three major competitors are convolutional DNN (CDNN) [26],
RNN [1], and long short-term memory (LSTM) [44] RNNs.
To make fair comparisons, the same training and testing
strategies in FDDR are applied to them.

We sought to the python-based DL package Keras3 to
implement the three comparison methods. Keras provides
the benchmark implementations of convolution, recurrent,
and LSTM layers for public usages. The CDNN is com-
posed of five layers: 1) an input layer (50 dimension input);
2) a convolutional layer with 64 convolutional kernels (each
kernel is of length 12); 3) a max pooling layer; 4) a fully
connected dense layer; and 5) a soft-max layer with three
outputs. The RNN contains an input layer, a dense layer
(128 hidden neurons), a recurrent layer, and a soft-max layer
for classification. The LSTM-RNN shares the same configura-
tion as RNN except for replacing the recurrent layer with the
LSTM module.

In practical implementation, for the prediction-based learn-
ing systems, only the trading signal with high confidence was
trusted. This kind of signal was identified if the predicted
probability for one direction (output of the soft-max function)
was higher than 0.6. We have reported profitable rate (PR),
trading times (TTs), and the TPs with different trading costs
in Table III. The PR is calculated by dividing the number
of profitable trades with the total trading number (TT). The
results were obtained on the IF market.

It is observed from the table that all the learning systems’
PRs are only slightly better than 50%. Such low PR implies the
difficulty of accurately predicting the price movement in the
highly dynamic and complicated financial market. However,
the low PR does not equivalently mean no trading opportunity.
For instance, consider a scenario where a wining trade could
make two points while a losing trade averagely lost one point.
In such a market, even a 40% PR could substantially lead to
positive net profits. Such a phenomenon has been observed
from our experiment that all the methods accumulate quite
reliable profits from the IF data when there is zero trading
cost. The recurrent machines (RDNN and LSTM) make much
higher prediction accuracy than others under this condition.

However, when taking the practical trading costs into
considerations, the pitfalls of prediction-based DNN

3http://www.keras.io

Fig. 7. Testing S&P data and the P&L curves of different trading systems.

become apparent. By examining the total TTs (TT column)
in Table III, the prediction systems potentially change trading
positions quite more often than our FDDR. When the trading
costs increase to two points, only the FDDR could make
positive profits while other systems suffer a big loss due to
the heavy TCs. This is because prediction-based systems only
consider the market condition to make decisions. In FDDR,
we have considered both current market condition and the
trading actions to avoid heavy trading costs. This is the
benefit of learning the market condition and the trading
decision in a joint framework.

It is observed from the data that the training data and
the testing data may not share the same pattern. Financial
signal does not like other stationary or structured sequential
signals, such as music, that exhibit periodic and repeated pat-
terns. Therefore, in this case, we abandoned the conventional
RNN configurations that recursively remembers the historical
feature information. Instead, the proposed FDDR only takes
the current market condition and the past trading history
into consideration. Memorizing the trading behavior helps the
system to maintain a relative low position-changing frequency
to avoid heavy TCs [17].

E. Verifications on the Global Market

The performances of FDDR were also verified on the global
market to trade the S&P 500 index. The day-resolution historic
data of S&P from January 1990 to September 2015 were
obtained from Yahoo Finance covering more than 6500 days
in all. In this market, we directly used the previous 20 days’
price changes as the raw feature. The latest 2000 trading
days (about eight years) were used to train FDDR and the
parameters were updated every 100 trading days. In this case,
we fix the trading cost to 0.1% of the index value. The perfor-
mances of different RL methods on the S&P daily data from
November 1997 to September 2015 are provided in Fig. 7.
From the results, it is observed that the proposed FDDR could
also work on the daily S&P index. When compared with the
green curve (DRL), the purple curve (FDDR) makes much
more profits. The DL framework makes about 1000 points
more than the shallow DRL.

It is also interesting to note that the U.S. stock market
is heavily influenced by the global economics. Therefore,
we also considered an alternative way to generate features for
FDDR learning. The index changes of other major countries

662 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 28, NO. 3, MARCH 2017

TABLE IV

ROBUSTNESS VERIFICATIONS WITH DIFFERENT DNN SETTINGS

were also provided to FDDR. The relative indices include
the FTSE100 index (U.K.), Hangseng Index (Hong Kong),
Nikkei 225 (Japan), and Shanghai Stock Index (China). Since
the trading days of different countries may not be exactly the
same, we adopted the trading days of S&P as the reference
to align the data. On other markets, the missing trading days’
price changes were filled with zero. The latest 20 days’ price
changes of the five markets were stacked as a long input vector
(R100) for FDDR.

The P&L of the FDDR using multimarket features
(multi-FDDR) was provided as the red curve in Fig. 7.
It is interesting to note that the FDDR generally outperforms
Multi-FDDR before the 2800th point (January 2010).
However, after that, the Multi-FDDR performs much better.
It may be due to the fact that more algorithmic trading com-
panies have participated into the market after the year of 2010.
Therefore, the raw price changes may not be that informative
as before. In such a case, simultaneously monitoring multiple
markets for decision making is perhaps a smart choice.

F. Robustness Verifications

In this section, we verify the robustness of the
FDDR system. The major contribution of this paper is to
introduce the DL concept into the DRL framework for feature
learning. It is worth conducting some detailed discussions
on the feature learning parts and further investigating their
effects on the final results. The NN structures studied here
include different number of BPTT stacks (τ), different hidden
layers (l), and different nodes number per layer (N).

This part of the experiment will be discussed on the practical
IF data from January 2014 to January 2015. The number of
deep layers is varied from l = 3 to l = 5, and the number
of nodes per layer is tested on three levels of N = 64,
N = 128, and N = 256, respectively. We also test the order
of BPTT expansion with τ = 2 and τ = 4. At each testing
level, the out-of-sample performances and the corresponding
training complexities are both reported in Table IV. For the
testing performance, we only report the TPs, and the training
cost is evaluated in minutes. The computations are imple-
mented on an eight-core 3.2-GHZ computational platform with
16-G RAM.

From the results, it is observed that the computational
complexity increases when N becomes large. This is because
the nodes of neighboring layers are fully connected. The
number of unknown parameters will be largely increased once

more nodes are used in one layer. However, this seems to
help less in improving the performances by adding N from
128 to 256. Rather than increasing N , an alternative approach
is to increase the layer number l as shown in the horizontal
direction of Table IV. By analyzing the results with different
layer numbers, it is concluded that the depth of the DNN is
vital to the feature learning part. This means that the depth of
the layers contributes a lot in improving the final performance.
The TP has also been significantly improved when the depth
increases from 3 to 5. Meanwhile, the computational costs
are also increased with more layers. Among all the DNN
structures, the best performance is achieved using 5 layers
with 256 nodes per layer. The corresponding computational
costs are also the heaviest in all the tests.

When analyzing different time expansion orders (τ),
we have not found strong evidence to claim that higher BPTT
order is good for performance. When using τ = 4, the TP with
each DNN setting is quite similar by using τ = 2. However,
by extending the length of the BPTT order, the computational
complexities have been increased. This phenomenon is perhaps
due to the fact that the long-term memory is not as important
as the short-term memory. Therefore, the BPTT with lower
order is preferred in this case.

According to the previous comparisons, we have selected
τ = 2, N = 128 and l = 3 as the default RDNN setting. While
further increasing the layer numbers could potentially improve
the performance, the training complexity is also increased.
Although the trading problem discussed here is not in a high
frequency setting, the training efficiency still needs to be
explicitly considered. We, therefore, recommend a relatively
simple NN structure to guarantee good performances.

VI. CONCLUSION

This paper introduces the contemporary DL into a typical
DRL framework for financial signal processing and online
trading. The contributions of the system are twofold. First, it is
a technical-indicator-free trading system that greatly releases
humans to select the features from a large amount of candi-
dates. This advantage is due to the automatic feature learning
mechanism of DL. In addition, by considering the nature of
the financial signal, we have extended the fuzzy learning into
the DL model to reduce the uncertainty in the original time
series. The results on both the stock-index and commodity
future contracts demonstrate the effectiveness of the learning
system in simultaneous market condition summarization and

DENG et al.: DDR LEARNING FOR FINANCIAL SIGNAL REPRESENTATION AND TRADING 663

optimal action learning. To the best of our knowledge, this
is the first attempt to use the DL with the real-time financial
trading.

While the power of the DDR system has been verified in
this paper, there are some promising future directions. First,
all the methods proposed in this paper only handle one share
of the asset. In some large hedge funds, the trading systems
are always required to be capable in managing a number
of assets simultaneously. In the future, the DL framework
will be extended to extract features from multiple asserts
and to learn the portfolio management strategies. Second, the
financial market is not stationary that may change in real time.
The knowledge learned from the past training data may not
sufficiently reflect the information of the subsequent testing
period. The method to intelligently select the right training
period is still an open problem in the field.

REFERENCES

[1] E. W. Saad, D. V. Prokhorov, and D. C. Wunsch, II, “Comparative
study of stock trend prediction using time delay, recurrent and prob-
abilistic neural networks,” IEEE Trans. Neural Netw., vol. 9, no. 6,
pp. 1456–1470, Nov. 1998.

[2] D. Prokhorov, G. Puskorius, and L. Feldkamp, “Dynamical neural net-
works for control,” in A Field Guide to Dynamical Recurrent Networks.
New York, NY, USA: IEEE Press, 2001.

[3] D. Zhao and Y. Zhu, “MEC—A near-optimal online reinforcement
learning algorithm for continuous deterministic systems,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 26, no. 2, pp. 346–356, Feb. 2015.

[4] W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate of
prediction and reward,” Science, vol. 275, no. 5306, pp. 1593–1599,
1997.

[5] H. R. Beom and K. S. Cho, “A sensor-based navigation for a mobile
robot using fuzzy logic and reinforcement learning,” IEEE Trans. Syst.,
Man, Cybern., vol. 25, no. 3, pp. 464–477, Mar. 1995.

[6] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[7] H. J. Kim, M. I. Jordan, S. Sastry, and A. Y. Ng, “Autonomous helicopter
flight via reinforcement learning,” in Proc. Adv. Neural Inf. Process.
Syst., 2003, pp. 799–806.

[8] Y.-D. Song, Q. Song, and W.-C. Cai, “Fault-tolerant adaptive control of
high-speed trains under traction/braking failures: A virtual parameter-
based approach,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 2,
pp. 737–748, Apr. 2014.

[9] C. J. Neely, D. E. Rapach, J. Tu, and G. Zhou, “Forecasting the equity
risk premium: The role of technical indicators,” Manage. Sci., vol. 60,
no. 7, pp. 1772–1791, 2014.

[10] J. J. Murphy, Technical Analysis of the Financial Markets: A Compre-
hensive Guide to Trading Methods and Applications. New York, NY,
USA: New York Institute of Finance, 1999.

[11] J. M. Poterba and L. H. Summers, “Mean reversion in stock prices:
Evidence and implications,” J. Financial Econ., vol. 22, no. 1,
pp. 27–59, 1988.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[13] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
Cambridge, MA, USA: MIT Press, 1998.

[14] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Hoboken, NJ, USA: Wiley, 2014.

[15] G. Tesauro, “TD-Gammon, a self-teaching backgammon program,
achieves master-level play,” Neural Comput., vol. 6, no. 2, pp. 215–219,
1994.

[16] D. P. Bertsekas, Dynamic Programming and Optimal Control. Belmont,
MA, USA: Athena Scientific, 1995.

[17] J. Moody and M. Saffell, “Learning to trade via direct reinforcement,”
IEEE Trans. Neural. Netw., vol. 12, no. 4, pp. 875–889, Jul. 2001.

[18] M. A. H. Dempster and V. Leemans, “An automated FX trading system
using adaptive reinforcement learning,” Expert Syst. Appl., vol. 30, no. 3,
pp. 543–552, 2006.

[19] Y. Deng, Y. Kong, F. Bao, and Q. Dai, “Sparse coding-inspired optimal
trading system for HFT industry,” IEEE Trans. Ind. Informat., vol. 11,
no. 2, pp. 467–475, Apr. 2015.

[20] K.-I. Kamijo and T. Tanigawa, “Stock price pattern recognition:
A recurrent neural network approach,” in Proc. Int. Joint Conf. Neural
Netw., San Diego, CA, USA, 1990, pp. I-215–I-221.

[21] Y. Deng, Q. Dai, R. Liu, Z. Zhang, and S. Hu, “Low-rank structure
learning via nonconvex heuristic recovery,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 24, no. 3, pp. 383–396, Mar. 2013.

[22] K. K. Ang and C. Quek, “Stock trading using RSPOP: A novel rough
set-based neuro-fuzzy approach,” IEEE Trans. Neural. Netw., vol. 17,
no. 5, pp. 1301–1315, Sep. 2006.

[23] Y. Deng, Y. Liu, Q. Dai, Z. Zhang, and Y. Wang, “Noisy depth maps
fusion for multiview stereo via matrix completion,” IEEE J. Sel. Topics
Signal Process., vol. 6, no. 5, pp. 566–582, Sep. 2012.

[24] Y. Deng, Q. Dai, and Z. Zhang, “Graph Laplace for occluded face
completion and recognition,” IEEE Trans. Image Process., vol. 20, no. 8,
pp. 2329–2338, Aug. 2011.

[25] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid match-
ing using sparse coding for image classification,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Miami Beach, FL, USA, Jun. 2009,
pp. 1794–1801.

[26] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations,” in Proc. 26th Annu. Int. Conf. Mach. Learn., Montreal,
QC, Canada, Jun. 2009, pp. 609–616.

[27] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recogni-
tion,” IEEE Trans. Audio, Speech, Language Process., vol. 20, no. 1,
pp. 30–42, Jan. 2012.

[28] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, 2009.

[29] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., Vancouver, BC, Canada, May 2013,
pp. 6645–6649.

[30] J. Moody, L. Wu, Y. Liao, and M. Saffell, “Performance func-
tions and reinforcement learning for trading systems and portfolios,”
J. Forecasting, vol. 17, nos. 5–6, pp. 441–470, 1998.

[31] J. D. Bransford, A. L. Brown, and R. R. Cocking, How People
Learn: Brain, Mind, Experience, and School. Washington, DC, USA:
National Academy Press, 1999.

[32] T. Ohyama, W. L. Nores, J. F. Medina, F. A. Riusech, and M. D. Mauk,
“Learning-induced plasticity in deep cerebellar nucleus,” J. Neurosci.,
vol. 26, no. 49, pp. 12656–12663, 2006.

[33] G. J. Klir and T. A. Folger, Fuzzy Sets, Uncertainty, and Information.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1988.

[34] N. R. Pal and J. C. Bezdek, “Measuring fuzzy uncertainty,” IEEE Trans.
Fuzzy Syst., vol. 2, no. 2, pp. 107–118, May 1994.

[35] C.-T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic con-
trol and decision system,” IEEE Trans. Comput., vol. 40, no. 12,
pp. 1320–1336, Dec. 1991.

[36] Y. Deng, Y. Li, Y. Qian, X. Ji, and Q. Dai, “Visual words assignment
via information-theoretic manifold embedding,” IEEE Trans. Cybern.,
vol. 44, no. 10, pp. 1924–1937, Oct. 2014.

[37] C.-T. Lin, C.-M. Yeh, S.-F. Liang, J.-F. Chung, and N. Kumar, “Support-
vector-based fuzzy neural network for pattern classification,” IEEE
Trans. Fuzzy Syst., vol. 14, no. 1, pp. 31–41, Feb. 2006.

[38] F.-J. Lin, C.-H. Lin, and P.-H. Shen, “Self-constructing fuzzy neural
network speed controller for permanent-magnet synchronous motor
drive,” IEEE Trans. Fuzzy Syst., vol. 9, no. 5, pp. 751–759,
Oct. 2001.

[39] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, no. 12, pp. 3371–3408, Dec. 2010.

[40] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[41] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5,
no. 2, pp. 157–166, Mar. 1994.

[42] O. Ledoit and M. Wolf, “Robust performance hypothesis testing with
the Sharpe ratio,” J. Empirical Finance, vol. 15, no. 5, pp. 850–859,
2008.

[43] W. F. Sharpe, “The Sharpe ratio,” J. Portfolio Manage., vol. 21, no. 1,
pp. 49–58, 1994.

[44] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural Comput., vol. 12, no. 10,
pp. 2451–2471, 2000.

664 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 28, NO. 3, MARCH 2017

Yue Deng received the B.E. (Hons.) degree in auto-
matic control from Southeast University, Nanjing,
China, in 2008, and the Ph.D. (Hons.) degree in con-
trol science and engineering from the Department
of Automation, Tsinghua University, Beijing, China,
in 2013.

He was a Visiting Scholar with the School of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA, from 2010 to 2011. He is
currently a Post-Doctoral Fellow with the School of
Pharmacy, University of California at San Francisco,

San Francisco, CA, USA. His current research interests include machine
learning, signal processing, and computational biology.

Feng Bao received the B.E. degree in electronics
and information engineering from Xidian University,
Xi’an, China, in 2014. He is currently pursuing the
M.S. degree with the Department of Automation,
Tsinghua University, Beijing, China.

His current research interests include machine
learning and signal processing.

Youyong Kong received the B.S. and M.S. degrees
in computer science and engineering from Southeast
University, Nanjing, China, in 2008 and 2011,
respectively, and the Ph.D. degree in imaging and
diagnostic radiology from the Chinese University of
Hong Kong, Hong Kong, in 2014.

He is currently an Assistant Professor with the
College of Computer Science and Engineering,
Southeast University. His current research inter-
ests include machine learning, and medical image
processing and analysis.

Zhiquan Ren received the B.S. and M.S. degrees
from the School of Electrical Information and
Electrical and Engineering, Shanghai Jiao Tong
University, Shanghai, China, in 2011 and 2013,
respectively. He is currently pursuing the
Ph.D. degree with Tsinghua University, Beijing,
China.

His current research interests include machine
learning, computational photography, and
applications of neural network.

Qionghai Dai (SM’05) received the B.S. degree in
mathematics from Shanxi Normal University, Xi’an,
China, in 1987, and the M.E. and Ph.D. degrees in
computer science and automation from Northeastern
University, Shenyang, China, in 1994 and 1996,
respectively.

He has been a Faculty Member with Tsinghua Uni-
versity, Beijing, China, since 1997. He is currently
a Cheung Kong Professor with Tsinghua University,
where he is also the Director of the Broadband
Networks and Digital Media Laboratory. His current

research interests include signal processing and computer vision.

