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Abstract The problem of feature selection has been paramount in the last years,
since it can be as important as the classification step itself. The main goal of feature
selection is to find out the subset of features that optimize some fitness function,
often in terms of a classifier’s accuracy or even the computational burden for
extracting each feature. Therefore, the approaches to feature selection can be
modeled as optimization tasks. In this chapter, we evaluate a binary-constrained
version of the Flower Pollination Algorithm (FPA) for feature selection, in which
the search space is a boolean lattice where each possible solution, or a string of bits,
denotes whether a feature will be used to compose the final set. Numerical
experiments over some public and private datasets have been carried out and
comparison with Particle Swarm Optimization, Harmony Search and Firefly
Algorithm has demonstrated the suitability of the FPA for feature selection.
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1 Introduction

Machine learning techniques have been actively studied in recent years with an
increasing number of applications that make use of the so-called intelligence-based
decision processes. Roughly speaking, a standard workflow for tackling such
problems can be divided in four phases: (i) to preprocess the data (signal or image
filtering, for instance); (ii) to extract features; (ii) to train a machine learning
technique, and finally (iv) to evaluate its effectiveness over an unseen (test) data [3].

One of the most important steps concerns feature extraction is to find the most
important subset of features that leads to the best recognition rates. There are
situations we may obtain the same accuracy as before (with the original set of
features) even after feature selection, but we can save computational efforts by
avoiding extracting some features that are too costly.

Several studies have modeled the problem of feature selection as an optimization
task, since the idea is to find out the subset of features that maximizes the accuracy
of a given classifier, or minimizes its error over some validating set, for instance.
Such approaches can be useful to the application of evolutionary optimization
techniques to solve complex tasks. The readers can refer to some recent literature
such as the Binary Particle Swarm Optimization (BPSO) [5], Binary Firefly
Algorithm (BFA) [4], Binary Harmony Search (BHS) [14], Binary Gravitational
Search Algorithm (BGSA) [16], Binary Cuckoo Search (BCS) [17], Binary
Charged System Search (BCSS) [19], and Binary Bat Algorithm (BBA) [18].

Yang and Honavar [23] presented a multicriteria Genetic Algorithm (GA) to deal
with feature selection, in which the main idea was to optimize both the accuracy and
the feature extraction computational costs. Later on, Oh et al. [10] proposed a hybrid
GA to tackle the same problem with seemingly better final performance. In addition,
there are many papers that address feature selection using other methods such as the
ant colonization [2, 7, 21]. The main idea consists of reducing the number of possible
paths visited by ants in some works, as well as modified pheromone update rules.
Other approaches such as Artificial Bee Colony [9, 20] and Gravitational Search
Algorithm [1, 15] have been also employed to the same context.

Basically, the main idea of these methods is to convert the position of the agents
(bats, particles, harmonies, etc.) into binary-valued coordinates, which are represented
by a string of bits, each denoting the presence or absence of a feature. The problem of
feature selection can also be considered as a search task in a boolean lattice, in which
the number of dimensions stands for the number of features. As the original versions of
most evolutionary optimization techniques were proposed to handle continuous-
valued problems, the idea is to apply a discretization function (usually a constrained
sigmoid function) to map the agent locations to the boolean lattice.

Very recently, Yang [25, 26] proposed the Flower Pollination Algorithm (FPA),
which is inspired by the flower pollination process of flowering plants. This
approach has demonstrated interesting results for traditional (continuous-valued)
optimization problems, which motivated us to extend it to solve binary optimization
tasks. In this case, we now to tackle the problem of feature selection and propose
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approach the Binary Flower Pollination Algorithm (BFPA). In regard to the fitness
function, we have used a classifier’s effectiveness over a validating set: as we need
to train a classifier every time an agent (pollen) changes its position, we need a fast
classifier. For this purpose, we use the Optimum-Path Forest (OPF) [12, 13], which
has demonstrated very promising results in several applications, and this approach
is also parameter-independent. The proposed approach has been compared with
other methods such as BPSO, BFA and BHS to evaluate several datasets. The
results are also analyzed by using statistical tools.

The remainder of this chapter is organized as follows. Section 2 introduces the
theory background about FPA and OPF techniques. Sections 3 and 4 present the
methodology and the experimental results, respectively. Finally, Sect. 5 draws some
conclusions and future works.

2 Theoretical Background

In this section, we first briefly review some of the main concepts and techniques to be
used in this chapter, as well as the proposed Binary Flower Pollination Algorithm.

2.1 Flower Pollination Algorithm

The Flower Pollination Algorithm was proposed by Yang [25], inspired by the
pollination process of flowering plants. The FPA is governed by four basic rules:

1. Biotic cross-pollination can be considered as a process of global pollination, and
pollen-carrying pollinators move in a way that obeys Lévy flights.

2. For local pollination, abiotic pollination and self-pollination are used.

3. Pollinators such as insects can develop flower constancy, which is equivalent to
a reproduction probability that is proportional to the similarity of two flowers
involved.

4. The interaction or switching of local pollination and global pollination can be
controlled by a switch probability p € [0, 1], slightly biased towards local
pollination.

However, it is necessary that the aforementioned basic rules be converted into
appropriate updating equations. For example, in the global pollination step, flower
pollen gametes are carried by pollinators such as insects, and pollen can travel over
a long distance because insects can often fly and move over a much longer range
[25]. Therefore, Rules 1 and 3 can be represented mathematically as:

A = aL(2) (g, — ), (1)

1 2
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where
L= 20 550 (2)

where x! is the pollen i (solution vector) at iteration ¢, g, is the current best solution
found among all solutions at the current generation, and « is a scaling factor to
control the step size, L(4) is the Lévy flights step size corresponding to the strength
of the pollination. In addition, I"(1) stands for the gamma function, and s is the step
size. Since insects may move over a long distance with various distance steps, Lévy
flights can be used to mimic this characteristic efficiently.

For local pollination, both Rules 2 and 3 can be represented as:

x,('t+l) e x§ -+ g(x; — x2)7 (3)

where xj’ and x}, stand for the pollen from different flowers j and k of the same plant
species, respectively. This mimics flower constancy in a limited neighbourhood.
Mathematically, if x]’. and x} come from the same species or are selected from the
same population, it equivalently becomes a local random walk if ¢ is drawn from a
uniform distribution in [0,1]. In order to mimic the local and global flower polli-
nation, a switch probability (Rule 4) or proximity probability p is used.

2.1.1 Binary Flower Pollination Algorithm

In the standard FPA, the solutions are updated in the search space towards con-
tinuous-valued positions. However, in the proposed Binary Flower Pollination
Algorithm the search space is modelled as a d-dimensional boolean lattice, in which
the solutions are updated across the corners of a hypercube. In addition, as the
problem is to select or not a given feature, a binary solution vector is used, where 1
corresponds to that a feature will be selected to compose the new dataset with O
being otherwise. In order to build this binary vector, we have to use Eq. (5) just
after Eq. (3), which can restrict the new solutions to only binary values:

_ 1
1 N HON

(1) = {1 it S(x/(1)) > o, 5)

0 otherwise,

4)

where o ~ U(0, 1). Algorithm 1 presents the proposed BFPA for feature selection
using the recognition rate of the OPF classifier as the objective function. Note the
proposed approach can be used with any other supervised classification technique.

Lines 1-4 initialize each pollen’s position as being a binary string with random
values, as well as the fitness value f; of each individual i. The main loop in Lines
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6-27 is the core of the proposed algorithm, in which the inner loop in Lines 713 is
responsible for creating the new training Z| and evaluating sets Z}, and then OPF
is trained over Z| and it is used to classify Z). The recognition accuracy over Z} is
stored in acc and then compared with the fitness value f; (accuracy) of individual i:
if the latter is worse than acc, the old fitness value is kept; otherwise, the fitness
value is then updated. Lines 12-13 update the best local position of the current
pollen. Lines 14-18 update the global optimum, and the last loop (Lines 19-27)
moves each pollen to a new binary position restricted by Eq. (5) (Lines 25-27).

Algorithm 1: BFPA - Binary Flower Pollination Algorithm.

input : Training set Z; and evaluating set Z,, o, number of flowers m, dimension d and
iterations 7.

output  : Global best position g.

auxiliaries: Fitness vector f with size m and variables acc, maxfit, global fit and maxindex.

1 for each floweri (Vi=1,...,m) do

2 for each dimension j (Vj =1,....d) do
3 L x/(0) < Random{0, 1};
4 B fi e —oo;
5 global fit < —oo;
6 for each iterationt (t=1,...,T) do
7 for each floweri (Vi=1,...,m) do
8 Create Z{ and Z) from Z; and Zy, respectively, such that both contains only
features such thatx{(z) #0,Vj=1,....d;
9 Train OPF over Zi , evaluate its over Zé and stores the accuracy in acc;
10 if (acc > f;) then
11 fi < acc;
12 for each dimension j (Vj=1,....d) do
13 L &=+
14 [maxfit,maxindex] — max(f);
15 if (maxfit > global fir) then
16 global fit — maxfit;
17 for each dimension j (Vj=1,...,d) do
18 L g, maum]ex( )
19 for each floweri (Vi=1,...,m) do
20 for each dimension j (Vj=1,...,d) do
21 rand «— Random{0, 1};
22 if rand < p then
23 x (1) —x] (t—1)+oc@Levy(7L) else
u Lx{(z) (1) +e( (= 1)~k - 1)):
25 if (o < ) then
. l+el !
26 x/ (1) —1; else
27 L x/(t) < 0;
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2.2 Optimum-Path Forest Classifier

The Optimum-Path Classifier [12, 13] models the samples as graph nodes, whose
arcs are defined by an adjacency relation and weighted by some distance function.
Further, a role competition process between some key nodes (prototypes) is carried
out in order to partition the graph into optimum-path trees (OPTs) according to
some path-cost function. Therefore, to design an Optimum-Path Forest-based
classifier, one needs to define: (i) an adjacency relation, (ii) a path-cost function and
(ii1) a methodology to estimate prototypes.

Suppose we have a fully labeled dataset Z = Z; U Z;, in which Z; and Z, stand
for training and test sets, respectively. Let S C Z; be a set of prototypes of all
classes (i.e., key samples that best represent the classes). Let (Z;,A) be a complete
graph whose nodes are the samples in Z; and any pair of samples defines an arc in
A =17, xZ. Let ng be a path in the graph that ends in sample s € Z;, and (7 -
(s,1)) the concatenation between 7, and the arc (s, £), € Z;. In this chapter, we
employ a path-cost function that returns the maximum arc-weight along a path in
order to avoid chains, and also to show the idea of connectivity between samples.
This path-cost function is denoted here as ¥, and it can be computed as follows:

0, if s€ S,
() = { 400, otherwise, (6)
V(- (s,t)) = max{¥(my),d(s, 1)},

in which d(s, f) means the distance between nodes s and ¢. Thus, the objective of the
Optimum-Path  Forest algorithm (supervised version) is to minimize
Y(m,), Vt € Z;.

An optimal set of prototypes S* can be found by exploiting the theoretical
relation between the minimum-spanning tree and optimum-path tree for ¥. By
computing a minimum-spanning tree in the complete graph (Z;,A), we obtain a
connected acyclic graph whose nodes are all samples of Z; and the arcs are
undirected and weighted by the distances d between adjacent samples. The span-
ning tree is optimum in the sense that the sum of its arc weights is the minimum as
compared to any other spanning tree in the complete graph. In the minimum-
spanning tree, every pair of samples is connected by a single path, which is opti-
mum according to ¥. Thus, the minimum-spanning tree contains one optimum-path
tree for any selected root node. The optimum prototypes are the closest elements of
the minimum-spanning tree with different labels in Z;.

The Optimum-Path Forest training phase consists, essentially, of starting the
competition process between prototypes in order to minimize the cost of each
training sample. At the final of such procedure, we obtain an optimum-path forest,
which is a collection of optimum-path trees rooted at each prototype. A sample
connected to an OPT means that it is more strongly connected to the root of that tree
than to any other root in the forest.
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Furthermore, in the classification phase, for any sample ¢ € Z,, we consider all
arcs connecting ¢ with samples s € Z,, as though ¢ were part of the training graph.
Considering all possible paths from S* to #, we find the optimum path P*(¢) from S*
and label ¢ with the class A(R(z)) of its most strongly connected prototype
R(¢) € S*. This path can be identified incrementally, by evaluating the optimum
cost C(r) as:

C(#) = min{max{C(s),d(s,1)}}, Vs € Z,. (7)

Let the node s* € Z; be the one that satisfies (Eq. 7) (i.e., the predecessor P() in
the optimum path P*(z)). Given that L(s*) = A(R(f)), the classification simply
assigns L(s*) as the class of 7.

3 Methodology

In this section, we present the methodology used to evaluate the performance of
BFPA. Details about the dataset used, experimental setup and the compared tech-
niques are also provided.

3.1 Datasets

Table 1 presents the datasets used in this work." Such datasets differ on the number
of samples, features and also classes. Therefore, the idea is to evaluate the proposed
approach in different contexts.

The last two datasets, i.e., NTL. and NTL,;, are related to non-technical losses
detection in comercial and industrial profiles, respectively. These are private
datasets obtained by a Brazilian electrical power company. Such sort of problem is
of great interest to electrical power companies, mainly in Brazil, in which the
amount of losses in energy thefts can reach up to 20 % in some regions. Therefore,
the characterization of illegal consumers, i.e., to find out the most important features
that allow us to identify them, is so important as to effective recognize them.

3.2 Nature-Inspired Metaheuristic Algorithms

In this work, we have also employed three others evolutionary optimization tech-
niques for comparison purposes. A brief detail about each of them is given below.

! The first four datasets can be found on http:/featureselection.asu.edu/datasets.php.
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Table 1 Description of the

benchmarking datasets Dataset # samples # features # classes
GLI-85 85 22,283 2
SMK-CAN-187 187 19,993 2
TOX-171 171 5,748 4
AR10P 130 2,400 10
NTL. 4,952 8 2
NTL; 3,182 8 2

Particle Swarm Optimization (PSO): PSO was inspired by the social behavior of
bird flocking or fish schooling [8]. The fundamental idea is that each particle
represents a potential solution which is updated according to its own experience and
from its neighbors’ knowledge. The motion of an individual particle for the optimal
solution is governed through its position and velocity interactions, and also by its
own previous best performance and the best performance of their neighbors.

Firefly Algorithm (FA): FA was also proposed by Yang [24], based on the
flashing behaviour and attractiveness of fireflies. The brightness of a firefly at a
given position is determined by the value of the objective function in that position.
Each firefly is attracted by a brighter firefly through the attraction factor that vary
with their distance.

Harmony Search (HS): HS was a meta-heuristic algorithm inspired by the
improvisation process of music players [6]. Musicians often improvise in searching
for a perfect state of harmony. The main idea is to use the same process adopted by
musicians to create new songs to obtain a near-optimal solution according to some
fitness function. Each possible solution is modelled as a harmony, and each musical
note corresponds to one decision variable.

In this present work, we have used all the binary optimization versions of each
aforementioned technique, i.e., Binary PSO (BPSO) [5], Binary Firefly (BFA) [4,
11], as well as Binary HS (BHS) [14].

3.3 Experimental Setup

Firstly, the dataset Z is randomly partitioned in N folds, i.e.,Z = Fy U F, U - - - U Fy.
For each fold F;, we train a given instance of the OPF classifier over it, for further
evaluation of another fold Fj, i # j. Therefore, the classification accuracy over F; is
then used as the fitness function to guide the optimization algorithms for selecting
the most representative set of features. Each agent of the population (pollen, particle,
firefly, harmony) in these meta-heuristic algorithms is associated with a string of bits
denoting the presence or absence of a feature. Thus, for each agent, we construct a
classifier from the training set F; only with the selected features, say F;, and assigns
the accuracy over F; as the fitness function. As long as the procedure converges, i.e.,
all generations of a population were computed, the agent with the highest fitness
value encodes a solution with the best compacted set of features.
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Feature selection

Training over fold F;
—— .
‘ Training over fold F;i }«\\\\

q,.-aik-\“‘%b'
Classification over fold F;

Classification over Z\F U Fj} ]

fessnsanes|

Final classification accuracy

Fig. 1 Proposed methodology to evaluate the compared techniques

After that, we build a classification model using the training set with the selected
features (F}), and we also evaluate the quality of the solution through a classifi-
cation process over the test set, which is built over the remaining folds in
Z\{F; U F;}. This procedure is conducted for each fold F; in the dataset to be part
of the training set, and thus we have N(N — 1) combinations in the final of the
process, which will be averaged for comparison purposes. Figure 1 illustrates the
methodology described above.

In regard to the recognition rate, we used an accuracy measure proposed by Papa
et al. [12]. If there are two classes, for example, with very different sizes and a
classifier always assigns the label of the largest class, its accuracy will fall drastically
due to the high error rate on the smallest class. The accuracy is measured by taking
into account that the classes may have different sizes in a testing set F. Let us define:

_ FP;
5| - |F;

; (8)

€1

and

FN;
—i=1,2,...C, 9)

€ip = 7
1
7

where C stands for the number of classes, F]’ | concerns with the number of samples
in F; that come from class 7, and FP; and FN; stand for the false positives and false
negatives for class i, respectively. That is, FP; is the number of samples from other
classes that were classified as being from the class i in Fj, and FN; is the number of
samples from the class i that were incorrectly classified as being from other classes

in F;. The error terms e;; and e; > are then used to define the total error from class i:

Ei=¢1+eps. (10)
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Finally, the accuracy Acc is then defined as follows:

C
€ E
Acc:l—zz;é. (11)

4 Experimental Results

In this section, we summarize and discuss the experimental results regarding the
proposed approach for feature selection. The results presented in this section stand
for the mean accuracy and standard deviation over 25 independent runs using the
methodology presented in Sect. 3.3. Since the evolutionary optimization algorithms
are non-deterministic, such approaches seem to be robust to avoid biased results.
The optimization algorithms (BFPA, BPSO, BHS and BFA) were implemented in
C language following the guidelines provided by their references. The experiments
were executed on a computer with a Pentium Intel Core i5® 3.20 Ghz processor,
4 GB of RAM and Linux Ubuntu Desktop LTS 10.04 as the operational system.

Table 2 presents the parameters used for each optimization technique employed
in this work. The ¢; and ¢, parameters of PSO control the pace during the particles’
movement, and the “Harmony Memory Considering Rate” (HMCR) of BHS stands
for the amount of information that will be used from the artist’s memory (songs that
have been already composed) in order to compose a new harmony. In regard to
BFA, o and f, are related to the step size of a firefly, and y stands for the light
absorption coefficient. In addition, we have used a population of 30 agents and 100
iterations for all techniques, with such values being an empirical set.

Figure 2 displays the mean accuracy results using the proposed methodology
(Sect. 3.3). It can be observed that the feature selection techniques can slightly
improve the results obtained using the original datasets, i.e., without feature
selection. The second point is that all techniques achieved quite similar results.
Therefore, the results showed BFPA is suitable for feature selection tasks. We have
also performed the statistical Wilcoxon Signed-Rank Test [22] to verify whether
there is a significant difference between BFPA and the other techniques used in this
work (considering the OPF recognition rate). Table 3 displays the p-values, being
the bold ones the situations in which BFPA and the respective technique have
obtained different performances, i.e., when the p-values are lower than a signifi-
cance level of a = 0.05.

Table 2 Parameters used for each meta-heuristic optimization technique. Notice the inertia weight
w for PSO was linearly decreased from 0.9 to 0.4 during the convergence process

Technique Parameters

BPSO cr=cy=2

BFA y=0.8, By =1.0, « =0.01
BHS HMCR = 0.9

BFPA a=10,p=0.8
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Fig. 2 Average OPF accuracy over a GLI-85, b SMK-CAN-187, ¢ TOX-171, d AR10P, e NTL.
and f NTL; datasets

It can also be seen that there is a statistical difference between BFPA and BPSO,
and BFPA and BFA for AR10P dataset, and also a difference between BFPA and
BHS considering TOX-171 dataset. Figure 3 displays the convergence rates of all
techniques considering the datasets employed in this work. Such recognition rates
are the ones obtained over the validating set Fj, as depicted in Fig. 1.



926 D. Rodrigues et al.

Table 3 Wilcoxon

. . . Dataset BPSO BFA BHS

Signed-Rank Test evaluation:

p-values computed between GLI-85 0.3130 0.5629 0.1425

BFPA, BPSO, BFA and BHS SMK-CAN-187 0.1829 0.2012 0.4432
TOX-171 0.1742 0.1500 0.0112
AR10P 0.0023 0.0197 0.0573
NTL. 0.3281 0.4769 1.2290
NTL; 0.1957 0.3318 1.2290
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From Fig. 3, it is possible to observe that BPSO has been the technique with the
fastest convergence rate, followed by BFA and BFPA. However, the good BPSO
performance over the feature selection process does not seem to enhance a lot its
final accuracy over the test set, as displayed in Fig. 2. In addition, BHS has the
slowest convergence process, since it updates only one agent (harmony) per iter-
ation, which turns it fast considering the execution time, but it tends to be slower for
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Fig. 5 Mean number of selected features considering a GLI-85, b SMK-CAN-187, ¢ TOX-171,
d AR10P, e NTL, and f NTL; datasets. The numbers have been truncated for sake of presentation

convergence. Figure 4 displays the execution time for all considered optimization
techniques. Though it is possible to observe that BFPA has been one of the slowest
techniques, since it is the only one that employs Lévy flights to move pollens across
the search space, which can increase the computational burden slightly. It is also
observed that BFPA in general produces better results in terms of accuracy, as seen

in Fig. 2.
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In addition, Fig. 5 displays the mean number of selected features for each
dataset. It is possible to observe BHS has selected the fewest number of features,
followed by BPSO. However, as we have high dimensional datasets (in case of
GLI-85, SMK-CAN-187, TOX-171 and AR10P), the absolute number do not differ
a lot from all techniques. It seems that all techniques have obtained similar results
considering the recognition rate, except for the computational load and convergence
speed.

5 Conclusions

In this work, we have solve the problem of feature selection by considering feature
selection as an evolutionary-based optimization task, constrained on a boolean
lattice. The idea is to represent each possible solution as a string of bits, in which
each of them denotes whether or not a feature will be used to compose the final set.

We have evaluated a recent nature-inspired approach, namely the Flower Pol-
lination Algorithm, to tackle this task on six datasets. The proposed approach has
been compared with other methods such as Particle Swarm Optimization, Harmony
Search and Firefly Algorithm. The experimental results have been analyzed in terms
of the recognition rates, convergence speed, number of selected features and
computational loads. All techniques have obtained similar recognition rates, and it
seems that PSO has the fastest convergence process, while HS has lowest com-
putational cost. Therefore, we have showed that FPA is also suitable for feature
selection tasks, since its results are comparable to the ones obtained by some state-
of-the-art evolutionary techniques. Future research can focus on the parametric
studies of the FPA as well as its extension and hybridization with other techniques.
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