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Abstract: In this paper, we propose saliency driven image multi-scale nonlinear diffusion filtering. The resulting 

scale space in general preserves or even enhances semantically important structures such as edges, lines, or flow 

like structures in the foreground, and inhibits and smoothes clutter in the background. The image is classified 

using multi-scale information fusion based on the original image, the image at the final scale at which the 

diffusion process converges, and the image at a mid-scale. Our algorithm emphasizes the foreground features 

which are important for image classification. The background image regions, whether considered as contexts of 

the foreground or noise to the foreground, can be globally handled by fusing information from different scales. 

Experimental tests of the effectiveness of the multi-scale space for image classification are conducted on the 

following publicly available datasets: the PASCAL 2005 dataset, the Oxford 102 flowers dataset, and the Oxford 

17 flowers dataset, with high classification rates. 

Index terms: Saliency detection, Nonlinear diffusion, Multi-scale information fusion, Image classification 

1. Introduction 

Image classification [35] is a very active research topic which has stimulated researches in many important 

areas of computer vision, including feature extraction and feature fusion [1, 24], the generation of visual 

vocabulary [32], the quantization of visual patches to produce visual words [25, 28], pooling methods [32], and 

classifiers [22]. 

In image classification, it is an important but difficult task to deal with the background information. The 

background is often treated as noise; nevertheless, in some cases the background provides a context, which may 

increase the performance of image classification. Zhang et al. [33] experimentally analyzed the influence of the 
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background on image classification. They demonstrated that although the background may have correlations 

with the foreground objects, using both the background and foreground features for learning and recognition 

yields less accurate results than using the foreground features alone. Overall, the background information was 

not relevant to image classification. Heitz and Koller [10] showed that spatial context information may help to 

detect objects. Shotton et al. [21] proposed an algorithm for recognizing and segmenting objects in images, using 

appearance, shape, and context information. They assumed that the background is useful for classification and 

there are correlations between foreground and background in their test data. Galleguillos et al. [5] proposed an 

algorithm that uses spatial context information in image classification. The input image was first segmented into 

regions and each region was labeled by a classifier. Then, spatial contexts were used to correct some of the labels 

based on object co-occurrence. The results show that combining co-occurrence and spatial contexts improves the 

classification performance. From the previous work, we conclude that image classification is faced with the 

partial matching problem [8, 14]: some features obtained from images in the same class differ significantly from 

one image to another because of background clutter and occlusion of the foreground objects by other objects. 

The influence of background on image classification varies. Only semantically important contexts, such as object 

co-occurrence, or particular object spatial relations are helpful for image classification. Backgrounds which 

contain only clutter provide no information to support image classification. It is interesting to filter out 

background clutter and simultaneously use the background context to increase the performance of image 

classification. 

In order to deal effectively with the background information, we propose a saliency driven nonlinear 

diffusion filtering to generate a multi-scale space, in which the information at a scale is complementary to the 

information at other scales. The fusion of information from different scales may improve the image classification 

performance. A nonlinear diffusion [29, 41, 42, 43, 44], which has been widely used in image denoising, 

enhancement, etc, can preserve or even enhance the semantically important image structures, such as edges and 

lines. However, nonlinear diffusion treats the foreground and the background equally. Most annotated images 

contain subjects that are highly likely to be salient regions. Background regions and foreground regions can often 

be identified using the image saliency: for example, a photographer usually and naturally assigns more saliency 

to foreground regions. Saliency detection techniques [7, 9, 12, 16, 23, 27], which are currently popular, can be 

used to estimate the foreground and background regions according to the saliency distribution. Background 

clutter is for the most part filtered out, while foreground features are preserved. We combine a saliency map, 

which marks the saliency degrees of individual pixels, with the nonlinear diffusion filtering, by using the 
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saliency map to define the weights of image gradients. During the diffusion process, the image gradients in the 

salient regions are increased while those in non-salient regions are decreased. Accordingly, when the scale 

increases, the background information gradually fades out while the foreground information is preserved and 

important structures in the foreground are enhanced. Figure 1 shows an example of the saliency driven nonlinear 

diffusion filtering. It is clear that, based on the saliency map, the background regions corresponding to 

non-salient regions are smoothed, and the foreground car, corresponding to salient regions with important image 

structures, is preserved. After saliency driven nonlinear diffusion, an image is represented by the set of its 

multi-scale images. Information fusion is carried out in the nonlinear multi-scale space to improve the 

performance of image classification. 

 

 

 

 

 

 

(a)                          (b)                          (c) 

Figure 1. An example of saliency driven diffusion filtering: (a) The original image; (b) The image after diffusion; (c) The saliency 

map. 

 

The saliency driven multi-scale space of an image can be used to handle uncertain background information. 

As shown in Figure 1, at large scales, the background is filtered out and the foreground is preserved. At small 

scales, background and foreground regions are both preserved. If the background is a context of the foreground, 

the images from the same class may be more similar at small scales than at large scales. If the background is 

clutter, then images from the same class are more similar at large scales than at small scales. We use the 

weighted average of the distances at some representative scales to represent the dissimilarity between different 

images. The weighted average is preferred to the minimum of the distances at all the scales because the risk of 

incorrectly filtering is less. Using this multi-scale representation, background information can be effectively 

dealt with. 

This saliency driven nonlinear multi-scale image representation has several advantages: 

 In the nonlinear scale space, semantically important image structures are preserved or enhanced at 

large scales, and the locations of the important image structures are not shifted after diffusion at any 

scale. This differs from the Gaussian scale space in which parts of important image structures may be 

smoothed and detected edges are shifted from their true locations after Gaussian convolution. 

 The background image regions can be partly dealt with by fusing information from different scales, no 
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matter whether the background is a context for the foreground or is only noise as far as the foreground 

is concerned. 

 This saliency driven nonlinear multi-scale representation can be easily supplied as input to any existing 

image classification algorithms, e.g., bag-of-words. 

The rest of the paper is organized as follows. Section 2 proposes the saliency driven nonlinear diffusion 

filtering. Section 3 discusses the estimation of the diffusion parameters. Section 4 presents the saliency driven 

multi-scale information fusion. Section 5 shows the experimental results. Section 6 concludes the paper. 

2. Saliency Driven Nonlinear Diffusion 

We first give a brief review of linear and nonlinear diffusion filtering [29], and saliency detection 

techniques. Then, we propose our saliency driven nonlinear diffusion filtering. 

2.1. Linear and nonlinear diffusion filtering 

2.1.1. Linear diffusion and Gaussian scale space 

Let ( , , )u x y t  be the grey value at position ( , )x y  and scale t in the multi-scale space. The image 

diffusion filtering is defined by the diffusion equation [29]: 

( ) ( )tu div D u D u                                    (1) 

where   is the gradient operator: ( / , / )x y      , “div” is the divergence operator, and D is the diffusion 

tensor which is a positive definite symmetric matrix. If D is defined as a constant over the whole image domain, 

then (1) is the homogeneous diffusion equation which corresponds to the Gaussian scale space, otherwise it 

corresponds to a position-dependent filtering which is called inhomogeneous diffusion. 

For the homogeneous linear diffusion filtering, Equation (1) reduces to 

( , ,0) ( , )

tu u

u x y f x y

  



                                       (2) 

where ( , )f x y  is the original image and u u  . Let K  be a Gaussian with the standard deviation  : 

2 2

2 2

1
( , ) exp( )

2 2

x y
K x y

 


  .                                 (3) 

The solution of (2) is a convolution integral: 

1 2 1 2 1 22 2
( , , ) ( , )* ( , ) ( , ) ( , ) ( 0)

t t
u x y t K x y f x y K f x y d d t     

 

 
            (4) 

where “*” is the notation for the convolution integral. This solution is unique, and the corresponding scale space 
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is the so-called Gaussian scale space. The Gaussian smoothing not only reduces noise, but also blurs important 

image structures, such as edges. Thus, the features extracted from images at large scales are not suitable for 

image classification. 

2.1.2. Nonlinear diffusion 

If the D in (1) is a function ( )g u  of the gradient u  of the evolving image u itself, then Equation (1) 

defines a nonlinear diffusion filter [20, 29]. The function ( )g u  is usually defined as: 

2 2

1
( ) ( 0)

1
D g u

u



   

 
                             (5) 

where   is a predefined parameter. The nonlinear diffusion filtering is represented as: 

( ) ( ( ) )tu div D u div g u u      .                             (6) 

The regions in which u    are blurred, while the other regions are sharpened. The nonlinear diffusion 

preserves and enhances image structures defined by large gradient values. If image structures with large 

gradients are all in the foreground, nonlinear diffusion filters out the background. However, there may be large 

image gradients in the background. Thus, we propose a saliency driven nonlinear diffusion equation which blurs 

non-salient regions and preserves salient regions. 

2.2. Saliency detection 

Saliency detection methods can be grouped into supervised and unsupervised. In the following, we first 

introduce the supervised methods and then the unsupervised methods. Finally, the method used in this paper is 

introduced. 

Supervised methods [37, 38] detect saliency using a classifier which is trained using samples for which 

saliency is well labeled. Marchesotti et al. [17] trained a classifier for each target image using the images most 

similar to it in an annotated database to construct its saliency map. The underlying assumption is that images 

sharing a globally similar visual appearance are likely to share similar saliencies. This supervised saliency 

detection needs a very large well-labeled image database, which is not easy to obtain. 

Unsupervised saliency detection [39, 40] usually starts with features of image structures known to be salient 

for the human visual system (HVS). These structure features include the intensity of salient regions, and the 

orientation, position and color of edges. Goferman et al. [7] summarized the following three principles for 

saliency detection by the HVS: 

 Local structures should be salient with respect to their surroundings [9, 12, 16, 23, 27]. 
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 Frequently occurring features should be suppressed [11, 16, 23]. 

 The salient pixels should be grouped together, rather than scattered across the image. 

The characteristic of Goferman’s method is that the regions that are close to the foci of attention are explored 

significantly more than far-away regions. As a result, some background regions near to the salient structures are 

included in the saliency map, but foreground regions are rarely incorrectly classified as background regions. The 

limitation of Goferman’s method is that it often produces high values of saliency at the edges of an object but 

lower saliency within the object. Cheng et al. [34] proposed a histogram-based contrast method to measure 

saliency. Their algorithm separates a large object from its surroundings, and enables the assignment of similar 

saliency values to homogenous object regions, and highlights entire objects. 

In our work, we take advantages of Goferman’s method and Cheng’s method by averaging the two saliency 

maps obtained using these two methods to form the saliency map that we use. The edges and the interiors of the 

foreground objects tend to have comparatively high saliency values. In this way, the saliency map tends to 

include as much foreground as possible. 

2.3. Saliency driven nonlinear diffusion 

We combine a saliency map as priori knowledge with nonlinear diffusion filtering. Let sI  be the saliency 

map. To introduce the saliency information into the diffusion process, we combine sI  into D in (6) and define 

D as a function g of u  and sI . Then, the diffusion equation becomes 

( , , ) ( , ) 0

( ( , ) ) 0t s

u x y t f x y if t

u div g u I u if t

 

    

 .                           (7) 

We define the diffusivity ( , )sg u I  as: 

1 exp 0
( , )

1 0

sm

s s

s

C
if I u

g u I I u

if I u



  
  
  

     
      

   
  

  

                    (8) 

where C  is a constant,   is the contrast parameter, and m controls the speed of the diffusivity [3, 30]. We 

explain the following points with respect to (8): 

 We propose to apply sI  directly to the norm of the gradient u , such that sI  works as a mask 

that indicates the region of interest. We normalize the values of the saliency map sI  within [0, 2]. 
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Then, when ( , ) 1sI x y  , the effect of the gradient at (x,y) is increased during the diffusion process, 

otherwise it is suppressed. 

 The flux ( , )( ) s sg u I I u  increases as sI u  increases if 
sI u    and decreases as  

sI u  increases if 
sI u   . 

 If u  is less than  , then the flux increases when u  increases, otherwise the flux decreases 

when u  increases. 

 The larger the value of the parameter m, the more quickly the flux changes in response to changes in 

sI  and u . 

 When sI u  is very large, the diffusion function value approximates 0. When sI u  is very 

small, it approximates 1. 

The optimization of the parameters C,  , and m is presented in Section 3. 

The above saliency driven nonlinear diffusion filtering can be used directly only for gray images. For color 

RGB images, there is a single application in which the gradients from the RGB channels are combined: the 

diffusion filtering is applied to the 
2
 norm of the gradients obtained from the three channels. This use of all 

the three channels smooths out errors from the RGB channels. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Different scales for an example image and its saliency map: the scale number corresponds to t in (7). 

 

Figure 2 shows an image at different scales and its saliency map. It is seen that our saliency driven 

nonlinear diffusion leads to image simplification in the non-salient region, i.e. most of the structures in this 

region are blurred and smoothed. In the salient region, the evolution of scales preserves or even enhances 

semantically important structures, such as edges and lines. Figure 3 compares the result of our saliency driven 
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nonlinear diffusion with the result of nonlinear diffusion omitting the saliency map at scale 10. It is clearly seen 

that the background regions are smoothed more effectively by using saliency information, while the foreground 

regions are preserved. The images produced by our saliency driven nonlinear diffusion are more suitable for 

image classification than those produced by normal nonlinear diffusion. Although these examples are taken from 

static background and still images, our work can be adapted to time-varying background from moving platforms, 

because our saliency driven nonlinear diffusion filtering can effectively deal with the background information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. An example of comparison between non-linear diffusion and saliency driven nonlinear diffusion: (a) The original image; 

(b) Saliency map; (c) Nonlinear diffusion at scale 10; (d) Saliency driven nonlinear diffusion at scale 10. 

 

3. Estimation of Diffusion Parameters 

The optimization of the parameters C,  , and m in (8) is important for our saliency driven nonlinear 

diffusion filtering. In the following, we first discuss the properties of these three parameters, and then give a 

method for determining their values. 

Figure 4 shows the diffusivity function values for different values of the parameters, where the horizontal 

coordinate is the value of sI u , and the vertical coordinate is the value of the diffusivity. Figure 5 shows the 

diffusion results for different values of   and m. Referring to Figures 4 and 5, we make the following points 

about the three parameters: 

1) In the nonlinear diffusion filtering, the parameter   plays an essential role as a threshold parameter. 

Structures with     are regarded as edges, where the diffusivity is close to zero, while structures with 

    are regarded as interiors of regions, where the diffusivity is close to one. The nonlinear diffusion 
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smoothes the interiors of regions but preserves their edges [26]. As shown in Figure 5, when   is too small, 

neither the foreground nor the background are smoothed; when   is too large, both the foreground and the 

background are smoothed; when   is appropriately chosen, the background is smoothed and the foreground is 

preserved. As shown in the top subfigure in Figure 4, it is difficult to directly set an empirical value to  . It is 

necessary to choose an appropriate value of    for each image, in order to maintain the performance of the 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The diffusivity function values for different values of the parameters: The top subfigure shows the changes in diffusivity 

values when   increases, and m and C are fixed; The middle subfigure shows the changes in diffusivity values when m increases, 

and   and C are fixed; The bottom subfigure shows the changes in diffusivity values when C increases, and   and m are fixed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The diffusion results with different values of the parameters: The first row shows the original image and the saliency mask; 

The second row shows, from the left to the right, the results when  =3, 10, or 50, m=100, and C=1; The third row shows the 

results when m=4, 8, or 20,  =10, and C =1. 

 

2) As shown in the third row of Figure 5, if m is small, semantically important structures are filtered out, no 
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matter whether   is suitable or not. As shown in the middle subfigure in Figure 4, when m is small, there is a 

broad transitional zone from 1 to 0 in the value of the diffusivity function. Those edges, whose magnitudes of 

gradients are in the transitional zone, are partially filtered out. Consequently, the transitional zone should be 

narrow, and m should be large. So, it is easy to assign an appropriate value to m. 

3) When   is chosen optimally and m is large enough, C has little effect, as shown in the bottom 

subfigure in Figure 4. As a result, C is treated as a constant. 

According to the above discussion, we can set fixed values to the parameters C and m for all the images 

according to the property of the diffusion function. We propose to determine the value of the parameter   for 

each image by using gradients in the image and its saliency mask. As a result, the value of   is updated for 

each image, and can be adapted to varying backgrounds. The method for determining    is as follows: After 

edge detection, a binary edge map is obtained for each image. Edges with 
sI     are filtered out, and 

edges with 
sI     are preserved. It is necessary to preserve edges in the salient regions as much as 

possible, and to ignore edges within the non-salient regions as much as possible. We define ( )sG   and 

( )nG   to describe the preserved edges in the salient regions and the non-salient regions respectively: 

,

1
( )

( )
s s

s s

I Es

G I
num E   

 
  

                               (9) 

,

1
( )

( )
s n

n s

I En

G I
num E   

 
  

                              (10) 

where sE  denotes the edges in the salient region, nE  denotes the edges in the non-salient region, and 

( )snum E  and ( )nnum E  denote the total numbers of edge pixels in sE  and nE , respectively. The optimal 

  value maximizes the difference of ( )sG   and ( )nG  : 

arg max( ( ) ( ))s nG G


    .                               (11) 

For color images, the edges in the three channels are combined together, i.e., at each pixel, the maximum value 

of the magnitudes of gradients in the three channels is used for determining λ. The RGB color space is utilized to 

determine the value of the parameter λ for color images, because it is required that the components of the color 

space should have comparable ranges for determining λ. Figure 6 compares the edges from the original image, 

saliency masked edges, and the edges preserved using the optimal λ. It is seen that the edges preserved using the 

optimal λ are mainly distributed in the foreground region. 
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                          (a)                       (b)                     (c) 

Figure 6. Edge comparison: (a) Edges from the original image; (b) Saliency masked edges; (c) Edges preserved using the optimal 

 . 

 

4. Multi-Scale Image Representation and Classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The framework of the multi-scale representation for image classification. 

 

We propose to classify images using the saliency driven multi-scale image representation. Images whose 

foregrounds are clearer than their backgrounds are more likely to be correctly classified at a large scale, and 

images whose backgrounds are clearer are more likely to be correctly classified at a small scale. So, information 

from different scales can be fused to acquire more accurate image classification results. Our image classification 

framework is shown in Figure 7. Each image is represented by its multi-scale images. Then, for each scale t, 

scale invariant feature transform (SIFT) features, which are widely used to represent image regions, are extracted, 

and the bag-of-words model is used to generate a word frequency histogram 
th . The dissimilarity between 

images 1 and 2 at scale t is represented by the 
2  distance 

1 2( , )t td h h  between histograms 
1

th  and 
2

th . The 

distances 
1 2{ ( , )}t t

t Td h h 
 between images 1 and 2 obtained at different scales are combined to yield the final 

distance 1 2( , )d h h  between images 1 and 2: 
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1 2

1 2

( , )

( , )

t t

t

t T

tt T

w d h h

d h h
w









                                (12) 

where tw  is a weight for scale t, and T is a chosen set of scales. Weighted averaging, which is a general way for 

information fusion, is used to fuse information from different scales. By selecting appropriate weights, the 

distances between samples in the same class can be reduced and the distances between samples in different 

classes can be enlarged. Then, more accurate classification results can be obtained. This weighted averaging has 

been widely used in many applications. For example, Wu [45] applied the weighted averaging to product 

recommendation and it was shown that the weighted averaging improves the prediction accuracy. 

In this paper, we empirically use three representative scales: 0{ , , }m MT T T T , where MT  is the 

maximum scale at which the diffusion process converges, 0 0T  , and mT  is a mid-scale which is set to 

int( / 3)MT . The three scales are combined using (12). The reasons for selecting these three scales are as 

follows: 

 When the scale is larger than MT , there is almost no change in the diffused image. At scale MT , 

foreground/background segmentation is completed. 

 The inclusion of the original image corresponding to scale 0T  in T can provide a correction if the 

foreground is incorrectly filtered out and using the image at scale MT  alone is not sufficient to obtain 

a correct classification result. 

 The mid-scale mT  is a compromise between smoothing the background and preserving the foreground. 

Although there are no clear cut criteria to pick the mid-scale mT , the experiments show that the use of 

mT  improves the classification. 

The weights 0w , 
mTw , and 

MTw  are determined empirically using the training samples. The values of the 

weights 0w , 
mTw , and 

MTw  reflect the situations of the correction segmentation of the foreground in the 

training samples. If the weight for one scale is set to 0, three-scale fusion degenerates to two-scale fusion. In 

particular, fusion of scale 0 and scale TM produces a combination of the original image and the foreground image, 

which is equivalent to using the original image with more weight given to the foreground. 

The final distance 1 2( , )d h h  between images 1 and 2, obtained by combing the distances at the three 
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scales, is transformed to a kernel which is used by an SVM for classification. We use the extended Gaussian 

kernels: 

   1 2 1 2

1
, exp ,

 
  

 
K h h d h h

A
                            (13) 

where A is a scaling parameter that can be determined by cross-validation. An SVM classifier is trained using the 

kernel matrix of the training images. 

The proposed saliency driven multi-scale fusion uses the background information in a new way. At a large 

scale, the background is filtered out and the foreground is preserved. At a small scale, both the background and 

the foreground regions are preserved. When the background is a context for the foreground, the images from the 

same category are more similar at a small scale than at a large scale. When the background is noise, the images 

are more similar at a large scale. Through this multi-scale representation, background information can be utilized. 

We define the distance between two images as a weighted average of the distances in the different used scales as 

shown in (12), instead of the minimum of their distances at all scales. The use of a weighted average reduces the 

classification error in cases in which the foreground is incorrectly filtered. 

Our saliency driven nonlinear multi-scale representation has several advantages: First, the nonlinear 

diffusion-based multi-scale space can preserve or enhance semantically important image structures at large 

scales. In particular, the saliency driven nonlinear diffusion can divide the foreground from the background at 

large scales, with only a little loss of the foreground information. Second, our method can deal with the 

background information no matter whether it is a context or noise, and then can be adapted to backgrounds 

which change over time. Third, our method can partly handle cases in which the saliency map is incorrect, by 

including the original image at scale 0 in the set of scaled images used for classification. Finally, this saliency 

driven multi-scale representation can be easily combined with any existing image classification algorithms (e.g. 

bag-of-words). 

The baseline of our work is nonlinear diffusion filtering [30]. We extend the baseline in the following ways: 

 The saliency detection technique is combined with nonlinear diffusion filtering. 

 Multi-scale fusion is used to combine the information from the saliency driven nonlinear diffusion 

filtering. 

 We apply the proposed filtering and fusion method to image classification. To our knowledge, there is 

no other work which applies nonlinear diffusion filtering to image classification. 

5. Experiments 
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We tested our image classification algorithm based on the proposed saliency driven nonlinear diffusion 

filtering and multi-scale fusion on four public datasets: the PASCAL VOC 2005 Test2 dataset [4], the 102 

Oxford Flowers dataset [18], the 17 Oxford Flowers dataset [19], and a people dataset. For all the datasets, the 

values of the parameters C and m in (8) were set to 1 and 100, respectively. 

5.1. PASCAL VOC 2005 

The PASCAL VOC 2005 dataset [4] for image classification has an easy test set (test1) and a difficult test 

set (test2). We focused on the difficult set because the performance on the easy set is saturated. The set test2 has 

four categories: motorbike, bicycle, car, and persons, and contains 1543 images. Figure 8 shows some example 

images from the set. The best score in the competition of test2 was achieved in [4] by using the bag-of-words 

model. 

 

 

 

 

 

 

Figure 8. Example images from the test2 set in the PASCAL VOC 2005 dataset: one image per category. 

 

For each scale in the set 0{ , , }m MT T T  described in Section 4, we followed the experimental setup in [4]: 

the Harris-Laplace detector and the SIFT descriptor were used and 1000 visual words were extracted using 

k-means from the training set. The weights 0w , 
mTw , and 

MTw  were set to 1, 2, and 1, respectively. 

The main point in which our method differs from [4] is that we used the 
2  distance in Equation (12) 

which fuses the 
2  histogram distances in the three scales, to estimate the distance between any two images. 

In [4], the 
2  histogram distance did not make use of images at different scales. Libsvm [2] was used and the 

parameter of SVM was determined using the two-fold cross-validation on the training set. 

Table 1 compares the classification results of different methods applied to test2 in the PASCAL 2005 set. 

Compared with all the other reported results, our method obtains the best performance not only for average rates 

over all the categories, but also for the bike and person categories. The performance of our method for the car 

category is very close to the best. Our method obtains much better results than [4] for three categories: bike, 

person, and car, but a worse result for the motorbike category. This is because there are many motorbike images 

which have very little background (for example the left image in Figure 8). Our method gains an advantage by 

using background information, but in this case the advantage does not apply. The images in the other three 
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categories have considerable background regions which our method can take advantage of. 

Table 1. Correct classification rates (at equal error rates) on the PASCAL challenge 2005 Test Set 2 

 Motor Bike Person Car Average 

Winner( 2 ) [4] 79.8% 72.8% 71.9% 72.0% 74.1% 

Winner(EMD) [33] 79.7% 68.1% 75.3% 74.1% 74.3% 

PDK [15] 76.9% 70.1% 72.5% 78.4% 74.5% 

Xie [31] 79.1% 75.4% 73.9% 78.2% 76.7% 

Proposed method 77.50% 75.56% 76.08% 78.24% 76.85% 

 

5.2. 102 Oxford Flowers 

The 102 Oxford Flowers dataset [18] contains 8189 images from 102 flower categories with 40-250 images 

per category. For each category, 10 images were used for training, 10 for validation, and the rest for testing, as 

the same as in [18]. At each scale, we used the same experimental setup as in [22, 31]. For each image, two 

sampling methods, the Harris-Laplace point sampling and dense sampling, were used to generate local patches 

where each patch corresponds to a point of interest. Then, each image patch was further represented by the SIFT 

and the four color-SIFT descriptors [24]: OpponentSIFT, rgSIFT, C-SIFT, and RGB-SIFT. These color-SIFT 

descriptors which have specific invariance properties were used to improve classification performance [24]. For 

each type of descriptor, the training images were clustered using k-means to generate a vocabulary of 4000 

words. Soft coding was used to generate feature vectors of images. Three different image division modes were 

used to represent each image: the whole image without subdivision (1x1), 4 image parts obtained by dividing the 

image into 4 quarters (2x2) and 3 image parts obtained by dividing the image into three horizontal bars (1x3). 

The 
2  distance was used to calculate histogram distances. The weights 0w , 

mTw , and 
MTw  were set to 1, 2, 

and 0, respectively. The distances at the three scales were combined using (12). An SVM classifier was trained 

using the training images. The parameters were estimated on the validation set and further used on the test set. 

Table 2. The recognition rates of different methods on the 102 Oxford flower dataset 

Methods Recognition rate (%) 

Nilsback and Zisserman [18] 72.8 

Chai et al. [36] 80.0 

Scale 0 alone was used 80.01 

Scale Tm alone was used 75.94 

Scale TM alone was used 77.03 

Multi-scale fusion 81.51 

 

As stated in [36], among all recent approaches evaluated on the 102 Oxford flowers dataset, the most 

accurate results were reported in [18, 36]. Table 2 summarizes the recognition accuracies of the methods in [18, 
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36] along with our multi-scale fusion method. It is seen that our multi-scale method yields more accurate results 

than the single scale methods in [18] and [36]. Table 3 compares the results of multi-scale fusion with the results 

for the individual scales 0T , mT , and MT . The recognition rate for multi-scale fusion is higher than for the 

single scales 0T , mT , and MT .Table 3. Comparison between the single scale methods and the multi-scale fusion method on 

the 102 Oxford flower dataset 

 
From scale 0 

to multi-scale  

From scale Tm 

to multi-scale 

From scale TM 

to multi-scale 

Number of categories whose 

accuracies increase by more than 5% 
12 40 21 

Number of categories whose 

accuracies increase 
44 63 45 

Number of categories whose 

accuracies decrease 
27 11 18 

Number of categories whose 

accuracies decrease by more than 5% 
5 2 5 

 

To show how the fusion of multi-scales works, we give example images that are classified differently by 

single scale methods and by the multi-scale fusion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original image         Scale Tm           Scale TM             Saliency 

Figure 9. Example images that were correctly classified at scales Tm and TM, and by multi-scale fusion, but incorrectly classified at 

scale 0. 

 

Figure 9 shows two images that were correctly classified by scales mT , MT  and by multi-scale fusion, but 

incorrectly classified at scale 0. Both the two original images contain large areas of background. In their saliency 

maps, the foreground regions were correctly detected. Our saliency driven nonlinear diffusion preserved their 

foreground regions and largely smoothed the background regions. Therefore, at scales mT  and MT  in which 

the backgrounds were filtered out, the images were correctly classified. This produces a correct classification by 

multi-scale fusion. 
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Figure 10 shows two example images that were correctly classified at scale 0 and by multi-scale fusion, but 

incorrectly classified at scales mT  and MT . The saliency maps incorrectly identified the background and 

foreground regions. As a result, the saliency driven diffusion smoothed several flowers into a single connected 

region, and erased the appearances and shapes of the flowers. As a result, the information from scales mT  and 

MT  is unreliable for these images. However, because the original image is included in the fusion, correct final 

classification results are obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original image          Scale Tm              Scale TM             Saliency 

Figure 10. Example images that were correctly classified at scale 0 and by multi-scale fusion, but incorrectly classified at scales Tm 

and TM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original image       Scale Tm        Scale TM          Saliency 

Figure 11. Images that were correctly classified at scale 0, but incorrectly classified at scales Tm and TM, and by multi-scale fusion. 

 

Figure 11 shows two example images that were correctly classified at scale 0, but incorrectly classified at 

scales mT  and MT , and by multi-scale fusion. The background region was incorrectly classed as salient and the 

foreground region incorrectly classed as non-salient. Then, saliency driven diffusion smoothed the foreground 
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flowers, and erased their appearances and shapes. Although the classification result at scale 0 is correct, the large 

biases at scales mT  and MT  make classification based on multi-scale fusion incorrect. These examples 

demonstrate that, although the original image is included in the multi-scale fusion, our method still occasionally 

suffers from the incorrect detection of saliency while overall increasing the classification performance. 

5.3. 17 Oxford Flowers 

The 17 Oxford Flowers dataset [19] contains images from 17 flower categories with 80 images per category. 

Figure 12 shows some example images in the dataset. For each flower category, 40 images were used for 

training, 20 for validation, and 20 for testing. For comparison, we divided the dataset into the same training, 

validation and test sets used in [19]. In each scale, we used the same experimental setup as in [31]. The 

experiments include: 

 two types of sampling -- the Harris-Laplace sampling and the dense sampling 

 five types of descriptor -- the SIFT and four types of the color-SIFT descriptors 

 three types of image division -- 1x1, 2x2, and 1x3. 

In total, 30 (2x5x3) channels of features were used and combined by averaging the histogram distances of each 

channel. For each type of descriptor, a kernel codebook of 4000 code words was constructed using k-means. The 

experimental arrangements are the same at each of the three scales, to avoid bias. The weights 0w , 
mTw , and 

MTw  were set to 1, 2, and 1, respectively. Then, three scales were combined using (12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Example images from the Oxford Flowers dataset, one per category. 

 

Figure 13 shows some examples of filtered images obtained using our saliency driven nonlinear diffusion. It 

is seen that, saliency driven nonlinear diffusion preserves most of the foreground and filters out most of the 
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background. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Examples of filtered images in the Oxford 17 flowers dataset: The first row shows the original images; The second row 

shows the saliency masks; The third row shows the filtered images at scale TM. The columns correspond to distinct categories. 

 

Table 4. The recognition rates of different methods on the 17 Oxford flower dataset 

Methods Recognition rate (%) 

Nilsback and Zisserman [19] 71.76% ±1.76 

Varma and Ray [26] 82.55±0.34 

Nilsback and Zisserman [18] 88.33±0.3 

Xie [31] 89.02±0.60 

Khan [13] 89 

Gehler and Nowozin [6] 85.5±1.2 

Chai et al. [36] 90.40±2.3 

Scale 0 87.45±1.13 

Scale Tm 87.69±1.61 

Scale TM 88.21±1.19 

Multi-scale fusion 91.39±0.53 

 

Table 4 summarizes the published recognition accuracies for several methods from the literature, along with 

the accuracy of our multi-scale fusion method. The average accuracy of classification and the variance were 

reported. The results of our method are more accurate than other reported results. Multi-scale fusion obtains 

more accurate results than those obtained using the individual scales 0T , mT , or MT . This indicates that the 

three scales include complementary information, and their fusion can improve the classification results. 

5.4. The people dataset 

This dataset consists of 460 people images available at http://www.emt.tugraz.at/~pinz/data/ GRAZ_01/, 

100 images from video streams with time-varying backgrounds, and 600 non-people images. It includes 

pedestrians, diverse background conditions/clutter, and occlusions. Figure 14 shows some example images in the 

dataset, where (a) is an image with a single pedestrian, (b) is an image with two people with occlusion, (c) is an 
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image with a group of people with occlusion, (d) is an image with diverse background conditions, and (c) is an 

image with background clutter. 

 

 

 

 

 

(a)                (b)                (c)                (d)                (e) 

Figure 14. Example images from the people dataset: (a) Single pedestrian; (b) Two people with occlusion; (c) A group of people 

with occlusions; (d) Diverse background conditions; (e) Background clutter. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Examples of the results for the still images with static backgrounds in the people dataset: The first row shows the 

original images; The second row shows the saliency masks; The third row shows the filtered images at the scale TM. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. The results of saliency detection and nonlinear diffusion for the images from three videos with dynamic background 

variations: The first row shows the original images; The second row shows the saliency masks; The third row shows the filtered 

images at the scale TM. 

 
Half of the images in the dataset were used for training and the other half of the images were used for 

testing. For each scale of each image, the Harris-Laplace sampling and the dense sampling are used respectively, 

and the SIFT features were extracted. Clustering the training samples yields 2000 code words. For the dense 
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sampling strategy, the weights 0w , 
mTw , and 

MTw  were set to 1, 1, and 4, respectively. For the Harris-Laplace 

sampling strategy, the weights were set to 1, 2, and 4, respectively. Figures 15 and 16 show some examples of 

the results of saliency detection and nonlinear diffusion for still images and images from videos, respectively. It 

is seen that, overall the detected salient regions correspond to the foreground and in the final filtered image much 

of the background is filtered out. Table 5 shows the results of image classification on this dataset. It is seen that 

large scales yield more accurate results than using the original images, and the fusion of multi-scales yields more 

accurate results than using a single scale alone. Our saliency driven nonlinear diffusion and multi-scale fusion 

significantly improve the results. 

Table 5. The recognition rates of different scales and fusions for multi-scales on the people dataset 

Methods 

Recognition rate (%) 

Dense 

sampling 

Harrislaplace 

sampling 

Scale 0 89.03 83.72 

Scale Tm 89.12 85.89 

Scale TM 92.71 86.68 

Multi-scale fusion 94.03 87.42 

 

5.5. Processing time 

The processing time was measured on an Intel Core i7 3770(3.4GHz/L3) computer. The runtime of 

nonlinear diffusion filtering for each image in all the datasets is less than 2 seconds. The training time for each 

dataset used is less than 300 seconds. The test time for each image is less than 0.01 seconds. 

5.6. Discussion 

Our fusion method with three scales 0{ , , }m MT T T T  achieves the best classification accuracies among 

all those reported for the PASCAL 2005 dataset, the Oxford 102 flowers dataset, the Oxford 17 flowers dataset, 

and the people dataset. 

The experiments on the Oxford 17 flowers dataset show that the classification accuracies obtained by our 

method for filtered images alone are higher than those for the initial unfiltered images. On the Oxford 102 

flowers dataset, the accuracies for filtered images are slightly lower than the accuracies for the initial images. 

This effect is caused by saliency detection errors which depend on the saliency detection algorithm. The error 

metrics for saliency detection include precision, recall and the F1 measure. The datasets do not include ground 

truth saliencies, so we have estimated the errors in saliency detection by our own observations. When the 

detected saliency masks are correct, semantically important foregrounds are effectively preserved, while 

cluttered backgrounds are smoothed into quite plain regions. If the saliency masks are not correct, then 
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semantically important foregrounds are partially or totally smoothed, and cluttered backgrounds are partially or 

totally preserved. The results of saliency detection on the Oxford 17 flowers dataset, which is comparatively 

simple, are more accurate than the results of saliency detection on the Oxford 102 flowers dataset. Then, filtering 

by itself improves classification accuracy for the Oxford 17 flowers dataset, and reduces classification accuracy 

for the Oxford 102 flowers dataset. But, the fusion of the results for the original images and the results for 

filtered images yields more accurate results than using the original images or the filtered images alone. So, 

multi-scale fusion improves the final classification accuracy. 

6. Conclusion 

In this paper, we have proposed saliency driven multi-scale nonlinear diffusion filtering, by modifying the 

mathematical equations for nonlinear diffusion filtering, and determining the diffusion parameters using the 

saliency detection results. We have further applied this new method to image classification. The saliency driven 

nonlinear multi-scale space preserves and even enhances important image local structures, such as lines and 

edges, at large scales. Multi-scale information has been fused using a weighted function of the distances between 

images at different scales. The saliency driven multi-scale representation can include information about the 

background in order to improve image classification. Experiments have been conducted on widely used datasets, 

namely the PASCAL 2005 dataset, the Oxford 102 flowers dataset, and the Oxford 17 flowers dataset. The 

results have demonstrated that saliency driven multi-scale information fusion improves the accuracy of image 

classification. 
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