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Abstract. Given two strings of size n over a constant alphabet, the classical algorithm for
computing the similarity between two sequences [D. Sankoff and J. B. Kruskal, eds., Time Warps,
String Edits, and Macromolecules; Addison–Wesley, Reading, MA, 1983; T. F. Smith and M. S.
Waterman, J. Molec. Biol., 147 (1981), pp. 195–197] uses a dynamic programming matrix and
compares the two strings in O(n2) time. We address the challenge of computing the similarity of
two strings in subquadratic time for metrics which use a scoring matrix of unrestricted weights.
Our algorithm applies to both local and global similarity computations. The speed-up is achieved
by dividing the dynamic programming matrix into variable sized blocks, as induced by Lempel–Ziv
parsing of both strings, and utilizing the inherent periodic nature of both strings. This leads to an
O(n2/ logn), algorithm for an input of constant alphabet size. For most texts, the time complexity
is actually O(hn2/ logn), where h ≤ 1 is the entropy of the text. We also present an algorithm
for comparing two run-length encoded strings of length m and n, compressed into m′ and n′ runs,
respectively, in O(m′n + n′m) complexity. This result extends to all distance or similarity scoring
schemes that use an additive gap penalty.
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1. Introduction. Rapid progress in large-scale DNA sequencing has opened a
new level of computational challenges in storing, organizing, and analyzing the wealth
of resulting biological information. One of the most interesting new fields created by
the availability of complete genomes is that of genome comparison. (The genome is all
of the DNA sequence passed from one generation to the next.) Comparing complete
genomes can give deep insights about the relationship between organisms, as well as
shedding light on the function of specific genes in each single genome. The challenge
of comparing complete genomes necessitates the creation of additional, more efficient
computational tools.

One of the most common problems in biological comparative analysis is that of
aligning two long bio-sequences in order to measure their similarity. The alignment is
classically based on the transformation of one sequence into the other via operations
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A SUBQUADRATIC SEQUENCE ALIGNMENT ALGORITHM 1655

of substitutions, insertions, and deletions (indels). The costs of these transformations
are given by a scoring matrix.

Definition 1.1 (see Gusfield [25]). The global alignment problem. Given a
pairwise scoring matrix δ over the alphabet Σ, the similarity of two strings A and B
is defined as the value maxV of the alignment of A and B that maximizes the total
alignment value.

• The score value maxV is called the optimal global alignment value of A and
B.

• A description of a maxV -scoring transformation of A into B is called a global
alignment trace.

In many applications, two strings may not be highly similar in their entirety but
may contain regions that are highly similar. The task is to find and extract a pair of
regions, one from each of the two given strings, that exhibit high similarity. This is
called the local alignment or local similarity and is defined formally below.

Definition 1.2 (see Gusfield [25]). The local alignment problem. Given two
strings A and B, find substrings α and β of A and B, respectively, whose similarity
(optimal global alignment value) is maximum over all pairs of substrings from A and
B.

• The score value maxL of the most similar pair of substrings α and β is called
the optimal local alignment value.

• The description of a maxL-scoring transformation of substring α into sub-
string β is called a local alignment trace.

Given two strings of size n, both global and local similarity problems can be solved
in O(n2) time by dynamic programming [25], [36], [50]. After the optimal similarity
scores have been computed, both global alignment and local alignment traces can be
reported in time linear with their size [10], [26], [28].

1.1. Results. In this paper data compression techniques are employed to speed
up the alignment of two strings. The compression mechanism enables the algorithm
to adapt to the data and to utilize its repetitions. The periodic nature of the sequence
is quantified via its entropy, denoted by the real number h, 0 < h ≤ 1. Entropy is a
measure of how “compressible” a sequence is (see [7], [13]), and is small when there
is a lot of order (i.e, the sequence is repetitive and therefore more compressible) and
large when there is a lot of disorder (see section 2.2).

Our results include the following algorithms.

1.1.1. Global alignment.
• We present an O(n2/ log n) algorithm for computing the optimal global align-
ment value of two strings, each of size n, over a constant alphabet (see section
3). The algorithm is even faster when the sequence is compressible. In fact,
for most texts, the complexity of our algorithm is actually O(hn2/ log n).

• After the optimal score is computed, a single alignment trace corresponding
to the optimal score can be recovered in time complexity that is linear with
the size of the trace (see section 4).

• For global alignment over “discrete” scoring matrices, we explain how the
space complexity can be reduced to O(h2n2/(log n)2) without impairing the
O(hn2/ log n) time complexity (see section 5).

1.1.2. Local alignment.
• We describe a subquadratic O(hn2/ log n) algorithm for the computation of
the optimal local alignment value of two strings over a constant alphabet (see
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1656 M. CROCHEMORE, G. M. LANDAU, AND M. ZIV-UKELSON

section 6.1).
• Given an index on A where substring α ends and an index on B where sub-
string β ends, an optimal local alignment trace can be reported in time linear
with its size (see section 6.2).

1.1.3. Comparing two run-length encoded strings.
• We give an algorithm for comparing two run-length encoded strings of length
m and n, compressed to m′ and n′ runs, respectively, using any distance or
similarity scoring scheme with additive gaps, in O(m′n + n′m) complexity
(see section 7).

The algorithms described in this paper are the first to approach fully LZ com-
pressed string alignment (both source and target strings are compressed). The meth-
ods given in this paper can also be used by applications where both input strings are
stored or transmitted in the form of an LZ78 or LZW compressed sequence, thus
providing an efficient solution to the problem of how to compare two strings without
having to decompress them first.

Remark. For the sake of simplicity we assume, throughout the description of the
global alignment and the local alignment solutions, that both input strings A and B
are of the same size n, and that both sequences share the same entropy h. For the
case of comparing string A of size m and entropy 0 < hA ≤ 1 with string B of size n
and entropy 0 < hB ≤ 1, the results of subsections 1.1.1 and 1.1.2 are as follows:

• O(mn(hA/ logm + hB/ log n)) time and space complexity for both global
alignment and local alignment replaces the O(hn2/ log n) result.

• O(hAhBmn/ logm log n) space complexity for global alignment over “dis-
crete” scoring matrices replaces the O(h2n2/(log n)2) result.

1.2. Previous results. The only previously known subquadratic global align-
ment string comparison algorithm, by Masek and Paterson [40], is based on the “Four
Russians” paradigm. The Four Russians algorithm divides the dynamic program-
ming table into uniform-sized (logn by logn) blocks and uses table lookup to obtain
an O(n2/ log n) time complexity string comparison algorithm, based on two assump-
tions. One assumption is that the sequence elements come from a constant alphabet.
The other, which they denote the “discreteness” condition, is that the weights (of
substitutions and indels) are all rational numbers.

Our algorithms present a new approach and are better than the above algorithm
in two respects. First, the algorithms presented here are faster for compressible se-
quences. For such sequences, the complexity of our algorithms is O(hn2/ log n), where
h ≤ 1 is the entropy of the sequence.

Second, our algorithms are general enough to support scoring schemes with real
number weights. For many scoring schemes, the rational number weights supported
by Masek and Paterson’s algorithm do not suffice. For example, the entries of PAM
similarity matrices [25], as well as BLOSUM evolutionary distance matrices [25], are
defined to be real numbers, computed as log-odds ratios, and therefore could be
irrational.

The paper by Masek and Paterson concludes with the following statement: “The
most important problem remaining is finding a better algorithm for the finite (in our
terms constant) alphabet case without the discreteness condition.” Here, more than
twenty years later, this important open question will finally be answered!

The advantages of our approach are based on the following facts. First, our
algorithm does not require any precomputation of lookup tables and therefore can
afford more flexible weight values. Also, instead of dividing the dynamic programming
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A SUBQUADRATIC SEQUENCE ALIGNMENT ALGORITHM 1657

matrix into uniform-sized blocks as did Masek and Paterson, we employ a variable-
sized block partition, as induced by Lempel–Ziv factorization of both source and
target. The common denominator between blocks, maximized by the compression
technique, is then recycled and used for computing the relevant information for each
block, in time which is linear with the length of its sides. In this sense, the approach
described in this paper can be viewed as another example of speeding up dynamic
programming by keeping and computing only a relevant subset of important values,
as demonstrated in [17], [18], [34], and [48]. A similar unbalanced strategy has been
successfully used for square detection in strings [12] to speed up the original algorithm
based on a divide-and-conquer approach [37].

2. Preliminaries.

2.1. The alignment graph. The dynamic programming solution to the string
comparison computation problem can be represented in terms of a weighted alignment
graph [25]; see Figure 2.1.

The weight of a given edge can be specified directly on the grid graph or, as is
frequently the case in biological applications, is given by a scoring matrix, denoted
δ, which specifies the substitution score for each pair of characters and the inser-
tion/deletion scores for each character from the alphabet.

The two widely used classes of scoring schemes are distance scoring, in which the
objective is to minimize the total alignment score, and similarity scoring, in which
the objective is to maximize the total alignment score. Within these classes, scoring
schemes are further characterized by the treatment of gap scores. A gap is the result
of the deletion of one or more consecutive characters in one of the sequences. Additive
gap scores assign a constant weight to each of the consecutive characters. For other
gap functions which have been found useful for biological sequences, see [25]. The
solutions in this paper assume a scoring scheme with additive gap scores.

Global alignment via dynamic programming. The classical dynamic programming
algorithm for the global comparison of two strings will set the value at each vertex
(i, j) of the alignment graph, row by row in a left to right order, to the score between
the first i characters of A and the first j characters of B, using the following recurrence:

V (i, j) = max[V (i, j − 1) + δ(ε, Bj),

V (i− 1, j) + δ(Ai, ε),

V (i− 1, j − 1) + δ(Ai, Bj)].

Computing and setting the values of all vertices in the alignment graph, using
the above recurrence, takes O(n2) time and space. After the values at each vertex of
the alignment graph have been computed and set, the optimal global alignment value
maxV is found at vertex (n, n) of the graph.

If each vertex in the alignment graph stores the operation (insertion, deletion,
substitution) selected when its value was set, then a global alignment trace, corre-
sponding to an optimal path in the alignment graph, can be recovered in time linear
with its size, starting from vertex (n, n), which contains the maximal score, and trac-
ing the edges back up to vertex (0, 0) in the graph.

Local alignment via dynamic programming. Smith and Waterman [50] (see also
[25]) showed that essentially the same O(|A||B|) dynamic programming solution can
be used for computing local similarity, provided that the score of the alignment of two
empty strings is defined as 0, and only pairs whose alignment scores are above 0 are
of interest. The Smith–Waterman algorithm for computing local similarity computes
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Fig. 2.1. The alignment graph for comparing strings A = “ctacgaga” and B =
“aacgacga.” The scoring scheme matrix δ is shown in the lower left corner of the figure.
The highest scoring global alignment paths originate in vertex (0,0), end in vertex (8,8), and
have a total weight of 3. The highest scoring local alignment path has a total weight of 5 and
corresponds to the alignment of substrings a = “acgaga” and b = “acgacga.” A subgraph G
corresponding to the block for comparing substrings a = “ag” and b = “acg” is shown in the
lower-right corner of the figure. Also specified are the values I for the entries of the input
border for G (in white-shaded rectangles), and the values O of the output border of G (in
grey-shaded rectangles), as set during a local alignment computation.

the following recurrence, which includes 0 as an additional option, and thus restricts
the scores to nonnegative values:

L(i, j) = max[0 , L(i, j − 1) + δ(ε, Bj),

L(i− 1, j) + δ(Ai, ε),

L(i− 1, j − 1) + δ(Ai, Bj)].

The method for computing the optimal local alignment valuemaxL is to compute
all alignment graph vertex values L(i, j) in O(n2) time and space, and then find the
largest value at any vertex on the table, say at vertex (iend, jend).

Given the vertex (iend, jend), which carries the score maxL, the corresponding
substrings α and β giving the optimal local alignment of A and B are obtained in time
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A SUBQUADRATIC SEQUENCE ALIGNMENT ALGORITHM 1659

linear with their size, by using the stored operations (insertion, deletion, substitution)
to trace back the edges from vertex (iend, jend) until a vertex (istart, jstart) is reached
that has value zero. Then the optimal local alignment substrings for vertex (iend, jend)
are α = A[istart . . . iend] and β = B[jstart . . . jend] (see [25]).

2.2. A block partition of the alignment graph based on LZ78 factor-
ization. The traditional aim of text compression is the efficient use of resources such
as storage and bandwidth. Here, we will compress the sequences in order to speed
up the alignment process. Note that this approach, denoted “acceleration by text
compression,” has been recently applied to a related problem—that of exact string
matching [31], [39], [49].

It should also be mentioned that another related problem, that of exact string
matching in compressed text without decoding it, which is often referred to as “com-
pressed pattern matching,” has been studied extensively [4], [19], [45]. Along these
lines, string search in compressed text was developed for the compression paradigm
of LZ78 [54] and its subsequent variant LZW [52], as described in [32], [46]. A more
challenging problem is that of “fully compressed” pattern matching, when both the
pattern and text strings are compressed [22], [23].

For the LZ78-LZW paradigm, compressed matching has been extended and gen-
eralized to approximate pattern matching (finding all occurrences of a short sequence
within a long one, allowing up to k changes) in [30], [44].

The LZ compression methods are based on the idea of self–reference: while the
text file is scanned, substrings or phrases are identified and stored in a dictionary, and
whenever, later in the process, a phrase or concatenation of phrases is encountered
again, this is compactly encoded by suitable pointers [35], [53], [54].

Of the several existing versions of the method, we will use those called the LZ78
family [52], [54]. The main feature which distinguishes LZ78 factorization from pre-
vious LZ compression algorithms is the choice of codewords. Instead of allowing
pointers to reference any string that has appeared previously, the text seen so far
is parsed into phrases, where each phrase is the longest matching phrase seen previ-
ously plus one character. For example, the string “S = aacgacg” is divided into fours
phrases: a, ac, g, acg. Each phrase is encoded as an index to its prefix, plus the extra
character. The new phrase is then added to the list of phrases that may be referenced.

Since each phrase is distinct from others, the following upper bound applies to
the possible number of phrases obtained by LZ78 factorization.

Theorem 2.1 (see Lempel and Ziv [35]). Given a sequence S of size n over a
constant alphabet, the maximal number of distinct phrases in S is O( n

log n ).
Even though the upper bound above applies to any possible sequence over a

constant alphabet, it has been shown that in many cases we can do better than that.
Intuitively, the LZ78 algorithm compresses the sequence because it is able to

discover some repeated patterns. Therefore, in order to compute a tighter upper
bound on the number of phrases obtained by LZ78 factorization for “compressible”
sequences, the repetitive nature of the sequence needs to be quantified. One of the
fundamental ideas in information theory is that of entropy, denoted by the real num-
ber h, 0 < h ≤ 1, which measures the amount of disorder or randomness, or inversely,
the amount of order or redundancy in a sequence. Entropy is small when there is a lot
of order (i.e, the sequence is repetitive) and large when there is a lot of disorder. The
entropy of a sequence should ideally reflect the ratio between the size of the sequence
after it has been compressed and the length of the uncompressed sequence.

The number of distinct phrases obtained by LZ78 factorization has been shown
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1660 M. CROCHEMORE, G. M. LANDAU, AND M. ZIV-UKELSON

to be O(hn/ log n) for most texts [7], [13], [35], [51], [54]. Note that, for any text over
a constant alphabet, the upper bound above still applies by setting h to 1.

3. Computing the optimal global similarity value.

3.1. Definitions and basic observations. The alignment graph will be par-
titioned as follows. Strings A and B will be parsed using LZ78 factorization. This
induces a partition of the alignment graph, for comparing A with B, into variable-
sized blocks (see Figure 3.1). Each block will correspond to a comparison of an LZ
phrase of A with an LZ phrase of B.

Let xa denote a phrase in A obtained by extending a previous phrase x of A with
character a, and yb denote a phrase in B obtained by extending a previous phrase of
B with character b.

From now on we will focus on the computations necessary for a single block of
the alignment graph.

Consider the block G which corresponds to the comparison of xa and yb. We
define input border I as the left and top borders of G, and output border O as the
bottom and right borders of G. (The node entries on the input border are numbered
in a clockwise direction, and the node entries on the output border are numbered in
a counterclockwise direction.)

Rather than filling in the values of each vertex in G, as does the classical dynamic
programming algorithm, the only values computed for each block will be those on
its I/O borders (see Figures 2.1 and 6.1A). Intuitively, this is the reason behind the
efficiency gain.

Let "r denote the number of rows in G, "r = |xa|. Let "c denote the number of

a a c g a c g
c
t
a
c

3/4

a

c

g

a c

g

g

Trie for A Trie for B

0

13

5

0

3

2

g
a
g
a
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5/4

2

t

4

g

5/2

3/2

left
prefix (5/2) 
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prefix (3,2)

top
prefix (3,4)

Graph G
for Block (5,4)

 LZ78-Partitioned 
Alignment Graph

g
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ga c
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g
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a c

a

a c

1 2 3 40

1

2

3

4
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1

4

Fig. 3.1. The block partition of the alignment graph, and the tries corresponding to LZ78
parsing of strings A = “ctacgaga” and B = “aacgacga.” Note that for the block G in this
example, α = “ag,” β = “acg,” 
r = 2, 
c = 3, i = 5, and j = 4. (The new cell of G, which
does not appear in any of the prefix blocks, is the rightmost cell at the bottom row of G and
can be distinguished by its white color.) This figure continues Figure 2.1.
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columns in G, "c = |yb|. Let t = "r + "c. Clearly, |I| = |O| = t.
We define the following three prefix blocks of G:
1. The left prefix of G denotes the block comparing phrase xa of A and phrase
y of B.

2. The diagonal prefix of G denotes the block comparing phrase x of A and
phrase y of B.

3. The top prefix of G denotes the block comparing phrase x of A and phrase
yb of B.

Observation 1. When traversing the blocks of an LZ78 parsed alignment graph
in a left-to-right, top-to-bottom order, the blocks for the left prefix, diagonal prefix,
and top prefix of G are encountered prior to block G.

Note that the graph for the left prefix of G is identical to the subgraph of G
containing all columns but the last one. More specifically, both the structure and the
weights of edges of these two graphs are identical, but the weights to be assigned to
vertices during the similarity computation may vary according to the input border
values. Similarly, the graph for the top prefix block is identical in structure to a
subgraph of G containing all rows but the last one, and the graph for the diagonal
prefix block is similar in structure to the last subgraph of G which is obtained by
removing both the last column and the last row of G. The only new cell in G, which
does not appear in any of its prefix block graphs, is the cell for comparing a and b.
This new cell consists of one new vertex and three new edges.

3.2. I/O propagation across G. The work for each block consists of two
stages (a similar approach is shown in [8], [29], [34]):

1. Encoding : study the structure of G and represent it in an efficient way.
2. Propagation: given I and the encoding of G, constructed in the previous

stage, compute O for G.
The structure of G is encoded by computing weights of optimal paths connecting

each entry of its input border with each entry of its output border. The following
DIST matrix is used (see Figure 3.2).

Definition 3.1. DIST [i, j] stores the weight of the optimal path from entry i of
the input border of G to entry j of its output border.

DIST matrices have also been used in [5], [8], [29], [34], and [48].
Given input row I and the DIST for G, the weight of output row vertex Oj can

be computed as the maximum among the sums Ir + DIST [r, j] if there is indeed a
path connecting input border entry r with output border entry j.

Vertex Oj is the maximum of column j of the following OUTmatrix, which merges
the information from input row I and DIST. (See Figure 3.2.)

Definition 3.2. OUT [i, j] = Ii +DIST [i, j].
Aggarwal and Park [3] and Schmidt [48] observed that DIST matrices are Monge

arrays [43].
Definition 3.3. A matrix M [0 . . .m, 0 . . . n] is Monge if either condition 1 or 2

below holds for all a, b = 0 . . .m; c, d = 0 . . . n:
1. convex condition: M [a, c] +M [b, d] ≤ M [b, c] +M [a, d] for all a < b and
c < d;

2. concave condition: M [a, c] +M [b, d] ≥ M [b, c] +M [a, d] for all a < b and
c < d.

Since DIST is Monge, so is OUT, which is a DIST with constants added to its
rows.

An important property of Monge arrays is that of being totally monotone.
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1662 M. CROCHEMORE, G. M. LANDAU, AND M. ZIV-UKELSON

DIST matrix

I0 = 1 0 −1 −2 −3 � �
I1 = 2 −1 −1 −2 −1 −3 �
I2 = 3 −2 0 0 1 −1 −3

I3 = 2 � −2 −2 0 −2 −2

I4 = 1 � � −2 0 −1 −1

I5 = 3 � � � −2 −1 0

OUT matrix

1 0 −1 −2 −∞ −∞
1 1 0 1 −1 −∞
1 3 3 4 2 0

−12 0 0 2 0 0

−13 −13 −1 1 0 0

−14 −14 −14 1 2 3

O0 O1 O2 O3 O4 O5

1 3 3 4 2 3

column numbers

0 1 2 3 4 5

Fig. 3.2. The DIST matrix which corresponds to the subsequences “acg” and “ag”; the
OUT matrix obtained by adding the values of I to the rows of DIST; and the O containing
the row maxima of OUT. This figure continues Figures 2.1 and 3.1.

Definition 3.4. A matrix M [0 . . .m, 0 . . . n] is totally monotone if either condi-
tion 1 or 2 below holds for all a, b = 0 . . .m; c, d = 0 . . . n:

1. convex condition: M [a, c] ≥ M [b, c] =⇒ M [a, d] ≥ M [b, d] for all a < b and
c < d;

2. concave condition: M [a, c] ≤ M [b, c] =⇒ M [a, d] ≤ M [b, d] for all a < b and
c < d.

Note that the Monge property implies total monotonicity, but the converse is not
true. Therefore, both DIST and OUT are totally monotone by the concave condition.

Aggarwal et al. [2] gave a recursive algorithm, nicknamed SMAWK in the lit-
erature, which can compute in O(n) time all row and column maxima of an n × n
totally monotone matrix, by querying only O(n) elements of the array. Hence, one
can use SMAWK to compute the output row O by querying only O(n) elements of
OUT. Clearly, if both the full DIST and all entries of I are available, then computing
an element of OUT is O(1) work.

For various solutions to related problems that also utilize Monge and total mono-
tonicity properties, we refer the interested reader to [15], [16], [20], [21], [24], [33],
[34], and [41]. In order to efficiently utilize these properties here, we need to address
the following two problems:

1. How to efficiently compute DIST and represent it in a format which allows
direct access to its entries. This will be done in section 3.4.

2. SMAWK is intended for a full, rectangular matrix. However, neither DIST
nor its corresponding OUT is rectangular. Since paths in an alignment graph
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A SUBQUADRATIC SEQUENCE ALIGNMENT ALGORITHM 1663

can assume only a left-to-right, top-to-bottom direction, connections between
some input border vertices and some output border vertices are impossible.
Therefore, the matrices are missing both a lower-left triangle and upper-right
triangle (see Figure 3.2). This problem is addressed in section 3.3.

3.3. Addressing the rectangle problem. The undefined entries of OUT can
be complemented in constant time each, as follows:

(a) The missing upper-right triangle entries can be completed by setting the value
of any entry OUT [i, j] in this triangle to −∞.

(b) Let k denote the maximal absolute value of a score in δ. The missing lower-
left triangle entries can be completed by setting the value of any OUT [i, j]
in this triangle to −(n+ i+ 1) ∗ k.

Lemma 3.5. Complementing the undefined entries as described above preserves
the concave total monotonicity condition of OUT and does not introduce new row-
maxima.

Proof. (a) Upper right triangle. All similarity scores in the alignment graph are
finite. Therefore, no new column maxima are introduced. Suppose OUT [a, c] ≤
OUT [b, c], a < b, and OUT [a, c] have been set to −∞. Due to the shape of the
redefined upper-right triangle, once a −∞ value in row a is encountered, all future
values in row a are also −∞. The future values of row b could either be finite or −∞.
Therefore, OUT [a, d] ≤ OUT [b, d] for all d > c.

(b) Lower left triangle. The worst score appearing in the alignment graph is lower-
bounded by −nk. Since i is always greater than or equal to zero, the complemented
values in the lower-left triangle are upper-bounded by −(n+1)∗k, and no new column
maxima are introduced. Also, for any complemented entry OUT [b, c] in the lower-
left triangle, OUT [b, c] < OUT [a, c] for all a < b, and therefore the concave total
monotonicity condition holds.

3.4. Incremental update of the new DIST information for G. In this
section we show how to efficiently compute the new DIST information for G, using the
DIST representations previously computed for its prefix blocks plus the information
of its new cell.

When processing a new block G, we compute the scores of t new optimal paths,
leading from the input border to the new vertex ("r, "c) in the new cell of G in its
lowest, rightmost corner. These values correspond to column "c of the DIST matrix
for G and can be computed as follows.

Entry [i] in column "c of the DIST for G contains the weight of the optimal path
from entry i in the input border of G to vertex ("r, "c). This path must go through
one of the three vertices ("r − 1, "c), ("r − 1, "c − 1), or ("r, "c − 1). Therefore, the
weight of the optimal path from entry i in the input border of G to ("r, "c) is equal
to the maximum among the following three values:

1. Entry [i] of column "c−1 of the DIST for the left prefix of G, plus the weight
of the horizontal edge leading into ("r, "c);

2. Entry [i] of column "c − 1 of the DIST for the diagonal prefix of G, plus the
weight of the diagonal edge leading into ("r, "c);

3. Entry [i] of column "c of the DIST for the top prefix of G, plus the weight of
the vertical edge leading into ("r, "c).

3.4.1. Maintaining direct access to DIST columns. In order to compute
an entry of OUT in constant time during the execution of SMAWK, direct access to
DIST entries is necessary. This is not straightforward, since, as shown in the previous
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0   1   2   3   4  

DIST(5,4)

0   
1   
2   
3   
4   
5   

-3   
-1   
1   
0   
0   
-2   

-3   
-1   
-2   
-1   
-1   

-3   
-2   
-1   

0   

-2   
-2   
0   
-2   
-2   

-1   
-1   
0   
-2   

 0   
-1   
-2   

a

g

a c

g

g

Trie for A Trie for B

0

13

0

31

2

4

2

t

4

g

Block Table

5

c

Fig. 3.3. A table containing an entry for each block of the alignment graph. Entry (i, j)
of the table represents the block which corresponds to node i in the trie for A and node j
in the trie for B. The entry for each block in the table points to the start of its new DIST
column. Also shown is the vector which contains pointers to all columns of the DIST for
block (5, 4), as obtained from its ancestor prefix blocks. This figure continues Figures 2.1,
3.1, and 3.2.

section, for each block only one new DIST column has been computed and stored.
All other columns besides column "c of the DIST for G need to be obtained from G’s
prefix ancestor blocks.

Therefore, before the execution of SMAWK begins, a vector with pointers to all
t + 1 columns of the DIST for G is constructed (see Figure 3.3). This vector is no
longer needed after the computations for G have been completed, and its space can
be freed.

The pointers to all columns of the DIST for G are assembled as follows. Column
"c is set to the newly constructed vector for G. All columns of indices smaller than
"c are obtained via "c recursive calls to left prefix blocks of G. All columns of indices
greater than "c are obtained via "r recursive calls to top prefix blocks of G.

3.4.2. Querying a prefix block and obtaining its DIST column in con-
stant time. The LZ78 phrases form a trie (see Figure 3.1), and the string to be
compressed is encoded as a sequence of names of prefixes of the trie. Each node in
the trie contains the serial number of the phrase it represents. Since each block corre-
sponds to a comparison of a phrase from A with a phrase from B, each block will be
identified by a pair of numbers, composed of the serial numbers for its corresponding
phrases in the tries for A and B.

Another data structure to be constructed is a block table (see Figure 3.3), con-
taining an entry for each partitioned block of the alignment graph. The entry for
each block in the table points to the start of its new DIST column and can be directly
accessed via the block’s phrase number index pair.

The left prefix of G can be identified in constant time as a pair of phrase numbers,
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A SUBQUADRATIC SEQUENCE ALIGNMENT ALGORITHM 1665

the first identical to the serial number of xa, and the second corresponding to the serial
number of y, which is the direct ancestor of yb in the trie for B. Similarly, the top
prefix of G can be identified in constant time. Given the pair of identification numbers
for a block, a pointer to the corresponding DIST column can then be obtained directly
from the block table.

Time and space analysis. Assuming sequence size n and sequence entropy h ≤ 1,
the LZ78 factorization algorithm parses the strings and constructs the tries for A and
B in O(n) time. The resulting number of phrases in both A and B is O(hn/ log n).
The number of resulting blocks in the alignment graph is equal to the number of
phrases in A times number of phrases in B, and is therefore O(h2n2/(log n)2). For
each block G, the following information is computed, in time and space complexity
linear with the size of its I/O borders:

1. Updating the encoding structure for G. The prefix blocks of G can be accessed
in constant time. The vectors of DIST column pointers for the prefix blocks
have already been freed. However, since each prefix block directly points to
its newly computed DIST column, all values needed for the computations are
still available. Since each entry of the new DIST column for G is set to the
maximum among up to three sums of pairs, the new DIST column for G can
be constructed in O(t) time and space.

2. Maintaining direct access to DIST columns. Since prefix blocks and their
DIST columns can be accessed in constant time, the vector with pointers to
columns of the DIST for G can be set in O(t) time.

3. Propagating I/O values across the block. Using the information computed
for G, and given the I for G obtained from the O vectors for the block above
G and the block to its left, the values of O for G are computed via SMAWK
matrix searching in O(t) time.

Total complexity. Since the work and space for each block is linear with the size
of its I/O borders, the total time and space complexity is linear with the total size of
the borders of the blocks. The block borders form O(hn/ log n) rows of size |B| each
and O(hn/ log n) columns of size |A| each in the alignment graph (see Figure 3.1).
Therefore, the total time and space complexity is O(hn2/ log n).

4. Global similarity optimal alignment trace recovery. The recovery of an
optimal global alignment trace between A and B starts at vertex (n, n). The series of
block crossing paths is then traced back until vertex (0, 0) is reached. For each block
crossed, the internal alignment trace is reported, starting from the output border sink
and back to the optimal origin source vertex in the corresponding input border. In
order to support the recovery of block-crossing paths in time linear with their size,
the computation and storage of the following additional information for a given block
G is required:

1. During the propagation stage, for each entry j in the output border of G, the
index of the input border entry i, which is the source of the highest scoring
path to output border entry j, is saved.

2. During encoding, an additional O(t)-sized vector of pointers, the ancestors
vector, is computed for G. For any output border entry O[j = 0 . . . t],
ancestors[j] points to the ancestor block of G for which this entry is the new
vertex in its new cell. (The value of ancestors["c] is set to G. All columns of
indices smaller than "c are obtained via "c recursive calls to left prefix blocks
of G. All columns of indices greater than "c are obtained via "r recursive calls
to top prefix blocks of G.)
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1666 M. CROCHEMORE, G. M. LANDAU, AND M. ZIV-UKELSON

3. During encoding, G’s new vertex ("r, "c) is annotated with an additional O(t)-
sized vector of pointers, denoted direction. These pointers are set during the
DIST column computation described in section 3.4, as follows. The value of
direction[i] is set according to the direction of the last edge in the optimal
path originating at entry i of G’s input border and ending at vertex ("r, "c).

Given that the optimal path enters through entry j of the output border of G, the
trace-back of the part of the path going through G proceeds in two stages. The first
stage is a destination and origin initialization stage. This stage includes the fetching
of the input row source entry i, which was stored as the origin for the highest scoring
path to G’s output border entry j (see 1 above). Entry i serves as the destination for
the alignment trace-back. In addition, the ancestor prefix block P of G, pointed to
by ancestors[j] is fetched (see 2 above). The edge recovery begins in block P .

During the second stage, the origin and destination information computed in the
first stage is used to trace back the part of the path contained in P , from entry j on
P ’s output border (the new vertex of P ) to entry i on its input border. This is done
by backtracking through a dynasty of prefix ancestor blocks internal to P , using the
direction vector computed for each of the traversed blocks (see 3 above). If direction[i]
of the traversed block specifies a horizontal edge, then the trace-back retreats to the
left prefix of P , and an “insertion” operation is reported in the alignment trace.
Correspondingly, “substitution” and “deletion” are reported when backtracking to
diagonal and top prefix blocks. The recovery continues through a series of prefix
blocks of P until the full optimal alignment trace is recovered.

Time and space analysis. The two additional vectors forG, direction and ancestors,
and the input border source entry i, can be computed and stored during the encoding
and propagation stages in O(t) time and space.

The work for the first stage in the trace-back can be done in constant time. In
the second stage, each edge in the recovered alignment path results in a traversal to a
single prefix block. Since prefix blocks and their corresponding direction vectors can
be accessed in constant time, a highest scoring global alignment between strings A
and B can be recovered in additional time linear in its size, using the O(hn2/ log n)
storage which was allocated during the encoding and propagation stages.

5. Reducing the space complexity. When computing the optimal global
alignment value with scoring matrices which follow the “discreteness” condition (see
section 1), the efficient alignment stage algorithm described in [34] can be extended
to support full propagation from the leftmost and upper boundaries to the bottom
and rightmost boundaries of G.

This extended propagation algorithm can then be used to compute the values of
the global alignment O for G, given the I for G and a minimal encoding of the DIST
for G. The advantage of this minimal encoding of DIST is that, rather than saving an
O(t) sized DIST column per block, we need to save only a constant number of values
per block. The encoding for the new DIST column of each block can be computed and
stored in constant time and space from the information stored for the left, diagonal,
and top prefix blocks of G, using the technique described in section 6 of [48]. This
reduces the space complexity to O(h2n2/(log n)2) while preserving the O(hn2/ log n)
time complexity.

6. The local alignment algorithm.

6.1. Computing the optimal local similarity value. When computing the
optimal local similarity value, an optimal path could either be contained entirely in
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I

O

I

  S
C

E

   I

  O

i

jDIST[i,j ]

A

B C

Fig. 6.1. A. The I/O path weight vectors computed for each block in the global alignment
solution. DIST [i, j] will be set to the highest scoring path connecting vertex i in the input
border with vertex j in the output border. B,C. The vectors of optimal path weights considered
for the local alignment computation.

one block (type C) or be a block-crossing path (see Figure 6.1). A block-crossing
path consists of a (possibly empty) S-path, followed by any number of paths leading
from the input border of a block to its output border, and ending in an E-path with
a highest scoring last vertex. Since an optimal path could begin inside any block,
vector O needs to be updated to consider the additional paths originating inside G.
Also, since an optimal path could end inside any block, extra bookkeeping is needed
in order to keep track of the highest scoring paths ending in each block.

Therefore, in addition to the DIST described in section 3, we compute for each
block G the following data structures (see Figures 6.1B and 6.1C):

1. E is a vector of size t. E[i] contains the value of the highest scoring path
which starts at vertex i of the input border of G and ends inside G. E[i] is
computed as the maximum between E[i] for the left prefix of G, E[i] for the
top prefix of G, and DIST [i, "c].

2. S is a vector of size t. S[i] contains the value of the highest scoring path
which starts inside G and ends at vertex i of the output border of G.
The only new values computed for S are the local alignment scores for the
new vertex of G, S["c]. Given the scores S["c − 1] obtained from the diagonal
prefix, S["c − 1] obtained from the left prefix, and S["c] obtained from the
top prefix of G, as well as the weights of the three edges leading into vertex
("r, "c), S["c] can be computed in O(1) time complexity using the recursion
given in section 2.1.
The values of all other entries of S are then set as follows. The first "c values
of S are copied from the first "c values of the S computed for the left prefix
of G. The last "r values are copied from the last "r values of the S vector for
the top prefix of G.
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1668 M. CROCHEMORE, G. M. LANDAU, AND M. ZIV-UKELSON

3. C is the value of the highest scoring path contained in G, that is, the highest
scoring path which originates inside G and ends inside G. C is computed as
the maximum between the C value for the left prefix of G, the C value for
the top prefix of G, and the newly computed S["c] as described above.

The S vector computed for G is used to update the values of the output border
O, while E and C will be used to compute the weight of the highest scoring path
ending in G.

Vector O is first computed from the I and DIST for G as described in section
3.2. At this point, entry O[i] reflects the weight of the optimal path starting anywhere
outside G and ending at entry i of the output border. It needs to be updated with the
weights of the highest scoring paths starting inside G. This is achieved by resetting
O[i] to the maximum between O[i] and S[i].

The weight of the highest scoring path ending inG is computed asmax(Maxti=0{I[i]+
E[i]}, C).

After the computations for each block have been completed, the overall highest
local alignment score for comparing A and B can be computed as the maximum
among the values of the highest scoring path ending in each block.

Time and space analysis. Since, as shown in section 3.4.1, each prefix block of
G can be accessed in constant time, the values of the S and E vectors for G can be
computed and stored in O(t) time and space, and the C value for G can be computed
in constant time and space.

Given the S, E, and C vectors for G, the values of O and the weight of the highest
scoring path ending in G can be computed in O(t) time each as described above.

The weight of the highest scoring path in the alignment graph can then be com-
puted in an additional O(h2n2/(log n)2) time as the maximum value among the best
values computed for each block.

Since the work and space for each block is linear with the size of its I/O borders,
the total time and space complexity of computing the optimal local alignment value
is O(hn2/ log n).

6.2. Optimal alignment trace recovery for the local alignment solution.
Similarly to the alignment trace defined in section 4, given a maxL vertex (iend, jend)
which was obtained in the previous section, we show how to recover the optimal path
ending in this vertex by reporting a trace-back of the edges from vertex (iend, jend)
until a start-point vertex (istart, jstart) is reached that has value zero.

A block-crossing optimal path consists of a (possibly empty) S-path, followed by
any number of paths leading from the input border of a block to its output border
and ending in an E-path whose last vertex is (iend, jend).

The recovery starts at vertex (iend, jend) and continues back to the optimal path
origin in three stages, as follows:

1. Recovering the E-path part. During encoding, whenever the E[i] value of a
block is updated by its new vertex, a pointer to the updating block is saved
together with the new E[i] value.
During alignment recovery, given that vertex (iend, jend) ends an E[i] path in
G, the corresponding block can be fetched and the path from its new vertex
to entry i on its input border recovered, as described in section 4.

2. Recovering all paths leading from the input border of a block to its output
border. The part of the path contained in each one of these blocks can be
recovered as described in section 4.

3. Recovering the S-path part. During encoding, when computing the S-score of
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the new vertex of each block, the direction of the edge optimizing the score
S["c] of the new vertex of G, denoted sdirection, is saved with the score.
During the termination of the propagation stage, when setting the score values
for each entry in O, a field is set, indicating whether the newly set score value
for this entry corresponds to a path originating inside G (an S-path) or a path
crossing G. If the score corresponds to an S-path, the recovery of the S-path
part utilizes the technique described in section 4, with a slight modification.
Instead of the direction vector, the sdirection field is used for the edge trace-
back. The recovery halts when an ancestor block is reached whose S["c] value
is zero.

A special case occurs when vertex (iend, jend) is the end point of a C-path. A
C-path is, in essence, a halted S-path. During encoding, whenever the C value of a
block is updated by its new vertex, a pointer to the updating block is saved together
with the new C value. The recovery of the C path in G starts at the new vertex of
its corresponding block and continues similarly to the S-path recovery, as described
in 3 above.

Time and space analysis. In addition to the values described in section 4, an addi-
tional O(t) information (pointers to the E[i] updating blocks) is computed and stored
for E-paths, and an additional O(1) information per block is computed and stored
for C and S paths. During propagation termination, an additional O(t) information
is stored with the O vector.

During recovery, each edge in the recovered alignment path results in a traversal
to a single prefix block, for each of the three path parts. Both prefix blocks and
their corresponding direction vectors can be accessed in constant time. Therefore, in
addition to the basic O(hn2/ log n) time and space needed for computing the optimal
local alignment scoremaxL, an alignment trace ending at a givenmaxL-scoring vertex
can be reported in time linear with the size of the trace.

7. Applications to the problem of comparing two run-length encoded
strings. A string S is run-length encoded if it is described as an ordered sequence
of pairs (σ, i), often denoted “σi,” each consisting of an alphabet symbol σ and an
integer i. Each pair corresponds to a run in S, consisting of i consecutive occurrences
of σ. For example, the string aabbbbbccc can be encoded as a2b5c3. Such a run-length
encoded string can be significantly shorter than the expanded string representation
after efficiently encoding the integers (see [14], for example).

Run-length encoding serves as a popular image compression technique, since many
classes of images (e.g., binary images in facsimile transmission or for use in optical
character recognition) typically contain large patches of identically valued pixels.

Let m and n be the lengths of two run-length encoded strings X and Y , of
encoded lengths m′ and n′, respectively. Previous algorithms for the problem com-
pared two run-length encoded strings using the Levenshtein edit distance [36] and the
LCS similarity measure [26]. For the LCS metric, Bunke and Csirik [9] presented an
O(mn′ + nm′) time algorithm, while Apostolico, Landau, and Skiena [6] described
an O(m′n′ log(m′n′)) time algorithm. Mitchell [42] has obtained an O((d + m′ +
n′) log(d +m′ + n′)) time algorithm for a more general string matching problem in
run-length encoded strings, where d is the number of matches of compressed char-
acters. Both Arbell, Landau, and Mitchell [1] and Mäkinen, Navarro, and Ukkonen
[38] independently obtained an O(m′n+ n′m) time algorithm for computing the edit
distance between two run-length encoded strings for the Levenshtein distance metric.

Mäkinen, Navarro, and Ukkonen [38] posed as an open problem the challenge of
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extending these results to more general scoring schemes, since in those applications
which are related to image compression, the change from a pixel value to the next is
smooth. Here, we will show how to extend the results to apply them to any distance
or similarity scoring scheme with additive gap scores.

In this solution, the alignment graph is also partitioned into blocks. But rather
than using the LZ78 partition described in section 3.1, each block here consists of two
runs—one of X and one of Y . This results in the partition of the alignment graph
into m′n′ blocks. The algorithm suggested also propagates accumulated scores from
the left and upper boundaries of each block to its bottom and right boundaries.

Consider the block R for comparing the run αi of X with the run βj of Y .
An edge in R could be assigned one of three possible weight values: D(diagonal),
H(horizontal), or V (vertical).

Let ∆h and ∆w denote the difference in row index values and column index
values, respectively, between entry i on the input border of R and entry j on the
output border of R.

We show how to compute DIST [i, j] (which is the cost of the best scoring path
from entry i in the input border of the block to entry j in the output border of the
block) in constant time, given ∆h and ∆w for the input and output entries, and the
values D, H, and V .

• H + V ≤ D. Clearly, an optimal path from i to j can use all possible
diagonal edges and only then the minimal number of remaining H and V
edges necessary to reach j.
Therefore, DIST [i, j] obtains one of three values:
1. If ∆w = ∆h, then DIST [i, j] = D ×∆h.
2. If ∆w > ∆h, then DIST [i, j] = D ×∆h +H × (∆w −∆h).
3. If ∆w < ∆h, then DIST [i, j] = D ×∆w + V × (∆h −∆w).

• H + V > D. In this case, an optimal path never uses any diagonal edge.
The path includes only the minimal number of H edges, and the minimal
number of V edges necessary to reach j from i. In this case, DIST [i, j] =
H ×∆w + V ×∆h.

Therefore, DIST [i, j] can be easily computed in constant time when using the
general scoring scheme described in section 2.1.

Time and space analysis. The O vector for each block is computed using SMAWK.
Vector I for block R can easily be obtained from the O vectors for the block above R
and the block to its left, in time linear with the sides of R. The “rectangle” problem
can be solved as in section 3.2. Therefore, any value OUT [i, j] = I[i] + DIST [i, j]
can be computed in constant time.

Since the work for each block is linear with the size of its I/O borders, the total
time complexity is linear with the total size of the borders of the blocks, which is
O(m′n+ n′m).

Note that alternative methods for achieving linear-time propagation across run-
length compressed blocks can be obtained by adapting any of the queue algorithms
described in [16], [20], [27], and [34].

Since all relevant DIST entry values are computed “on the fly” and do not need
to be stored, Hirschberg’s method [26] can be applied to achieve an algorithm with a
space complexity that is linear with the size of the uncompressed strings.

Open problems. The subquadratic sequence comparison algorithms presented
in this paper are perhaps close to optimal in time complexity. However, an impor-
tant concern is the space complexity of the algorithms. If only the similarity score
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value is required, the classical, quadratic time sequence alignment algorithm can eas-
ily be implemented to run in linear space by keeping only two rows of the dynamic
programming table alive at each step. If the recovery of either global or local op-
timal alignment traces is required, quadratic-time and linear-space algorithms can
be obtained by applying Hirschberg’s refinement to the classical sequence alignment
algorithms [10], [26], [28]. We post as an open problem the challenge of further reduc-
ing the space requirement of the algorithms described in this paper without impairing
their subquadratic time complexity.

Acknowledgment. We are grateful to Dan Gusfield for a helpful discussion.
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