
Efficient Selectivity and Backup Operators in

Monte-Carlo Tree Search

Rémi Coulom

To cite this version:

Rémi Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. Paolo
Ciancarini and H. Jaap van den Herik. 5th International Conference on Computer and Games,
May 2006, Turin, Italy. 2006.

HAL Id: inria-00116992

https://hal.inria.fr/inria-00116992

Submitted on 29 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00116992


Efficient Selectivity and Backup Operators in
Monte-Carlo Tree Search

Rémi Coulom

LIFL, SequeL, INRIA Futurs, Université Charles de Gaulle, Lille, France

Abstract. Monte-Carlo evaluation consists in estimating a position by
averaging the outcome of several random continuations, and can serve
as an evaluation function at the leaves of a min-max tree. This paper
presents a new framework to combine tree search with Monte-Carlo eval-
uation, that does not separate between a min-max phase and a Monte-
Carlo phase. Instead of backing-up the min-max value close to the root,
and the average value at some depth, a more general backup operator
is defined that progressively changes from averaging to min-max as the
number of simulations grows. This approach provides a fine-grained con-
trol of the tree growth, at the level of individual simulations, and allows
efficient selectivity methods. This algorithm was implemented in a 9× 9
Go-playing program, Crazy Stone, that won the 10th KGS computer-Go
tournament.

1 Introduction

When writing a program to play a two-person zero-sum game with perfect infor-
mation, the traditional approach consists in combining alpha-beta search with
a heuristic position evaluator [20]. The heuristic evaluator is based on domain-
specific knowledge, and provides values at the leaves of the search tree. This
technique has been very successful for games such as chess, draughts, checkers,
or Othello.

Although the traditional approach has worked well for many games, it has
failed for the game of Go. Experienced human Go players still easily outplay
the best programs. So, the game of Go remains an open challenge for artificial-
intelligence research [8].

Among the main difficulties in writing a Go-playing program is the creation
of an accurate static position evaluator [15, 8]. When played on a 9 × 9 grid,
the complexity of the game of Go, in terms of the number of legal positions, is
inferior to the complexity of the game of chess [2, 27], and the number of legal
moves per position is similar. Nevertheless, chess-programming techniques fail
to produce a player stronger than experienced humans. One reason is that tree
search cannot be easily stopped at quiet positions, as it is done in chess. Even
when no capture is available, most of the positions in the game of Go are very
dynamic.

An alternative to static evaluation that fits the dynamic nature of Go po-
sitions is Monte-Carlo evaluation. Monte-Carlo evaluation consists in averaging



2 R. Coulom

the outcome of several continuations. It is an usual technique in games with
randomness or partial observability [5, 23, 26, 14, 17], but can also be applied to
deterministic games, by choosing actions at random until a terminal state is
reached [1, 9, 10].

The accuracy of Monte-Carlo evaluation can be improved with tree search.
Juillé [18] proposed a selective Monte-Carlo algorithm for single-agent determin-
istic problems, and applied it successfully to grammar induction, sorting-network
optimization and a solitaire game. Bouzy [6] also applied a similar method to
9×9 Go. The algorithms of Juillé and Bouzy grow a tree by iterative deepening,
and prune it by keeping only the best-looking moves after each iteration. A prob-
lem with these selective methods is that they may prune a good move because
of evaluation inaccuracies. Other algorithms with better asymptotic properties
(given enough time and memory, they will find an optimal action) have been
proposed in the formalism of Markov decision processes [12, 19, 22].

This paper presents a new algorithm for combining Monte-Carlo evaluation
with tree search. Its basic structure is described in Section 2. Its selectivity and
backup operators are presented in the following sections. Then, game results
are discussed. The conclusion summarizes the contributions of this research, and
gives directions for future developments.

2 Algorithm Structure

The structure of our algorithm consists in iteratively running random simulations
from the root position. This produces a tree made of several random games. This
tree is stored in memory. At each node of the tree, the number of random games
that passed through this node is counted, as well as the sum of the values of
these games, and the sum of the squares of the values. In Crazy Stone, the value
of a simulation is the score of the game.

Our approach is similar to the algorithm of Chang, Fu and Marcus [12], and
provides some advantages over Bouzy’s method [6]. First, this algorithm is any-
time: each simulation brings additional information that is immediately backed
up to the root, which is convenient for time management (Bouzy’s algorithm only
provides information at each deepening iteration). Also, this framework allows
algorithms with proved convergence to the optimal move, because selectivity can
be controlled at the level of individual simulations, and does not require that
complete branches of the tree be cut off.

In practice, not all the nodes are stored. Storing the whole tree would waste
too much time and memory. Only nodes close to the root are memorized. This
is done by applying the following rules:

– Start with only one node at the root.
– Whenever a random game goes through a node that has been already visited

once, create a new node at the next move, if it does not already exist.

As the number of games grows, the probability distribution for selecting a
move at random is altered. In nodes that have been visited less than the number



Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search 3

of points of the goban (this threshold has been empirically determined as a good
compromise), moves are selected at random according to heuristics described in
Appendix A. Beyond this number of visits, the node is called an internal node,
and moves that have a higher value tend to be selected more often, as described
in Section 3. This way, the search tree is grown in a best-first manner.

3 Selectivity

In order not to lose time exploring useless parts of the search tree, it is important
to carefully allocate simulations at every node. Moves that look best should be
searched deeper, and bad moves should be searched less.

3.1 Background

A large variety of selectivity algorithms have been already proposed in the frame-
work of Monte-Carlo evaluation. Most of them rely on the central limit theorem,
that states that the mean of N independent realizations of a random variable
with mean µ and variance σ2 approaches a normal distribution with mean µ and
variance σ2/N . When trying to compare the expected values of many random
variables, this theorem allows to compute a probability that the expected value
of one variable is larger than the expected value of another variable.

Bouzy [9, 7] used this principle to propose progressive pruning. Progressive
pruning cuts off moves whose probability of being best according to the dis-
tribution of the central-limit theorem falls below some threshold. Moves that
are cut off are never searched again. This method provides a very significant
acceleration.

Progressive pruning can save a lot of simulations, but it is very dangerous in
the framework of tree search. When doing tree search, the central limit theorem
does not apply, because the outcomes of random simulations are not identically
distributed: as the search tree grows, move probabilities are altered. For instance,
the random simulations for a move may look bad at first, but if it turns out that
this move can be followed up by a killer move, its evaluation may increase when
it is searched deeper.

In order to avoid the dangers of completely pruning a move, it is possible to
design schemes for the allocation of simulations that reduce the probability of ex-
ploring a bad move, without ever letting this probability go to zero. Ideas for this
kind of algorithm can be found in two fields of research: n-armed bandit prob-
lems, and discrete stochastic optimization. n-armed bandit techniques (Sutton
and Barto’s book [25] provides an introduction) are the basis for the Monte-
Carlo tree search algorithm of Chang, Fu and Marcus [12]. Optimal schemes for
the allocation of simulations in discrete stochastic optimization [13, 16, 3], could
also be applied to Monte-Carlo tree search.

Although they provide interesting sources of inspiration, the theoretical frame-
works of n-armed bandit problems and discrete stochastic optimization do not



4 R. Coulom

fit Monte-Carlo tree search perfectly. First, and most importantly, n-armed ban-
dit algorithms and stochastic optimization assume stationary distributions of
evaluations, which is not the case when searching recursively. Also, in n-armed
bandit problems, the objective is to allocate simulations in order to minimize
the number of selections of non-optimal moves during simulations. This is not
the objective of Monte-Carlo search, since it does not matter if bad moves are
searched, as long a good move is finally selected. The field of discrete stochastic
optimization is more interesting in this respect, since its objective is to optimize
the final decision, either by maximizing the probability of selecting the best move
[13], or by maximizing the expected value of the final choice [16]. This should be
the objective at the root of the tree, but not in internal nodes, where the true
objective in Monte-Carlo search is to estimate the value of the node as accurately
as possible. For instance, with Chen’s formula [13], in case the choice is between
two moves, and simulations of these two moves have the same variance, then the
optimal allocation consists in exploring both moves equally, regardless of their
estimated values. This does indeed optimize the probability of selecting the best
move, but is not at all what we wish to do inside a search tree: the best move
should be searched more than the other, since it will influence the backed-up
value more.

3.2 Crazy Stone’s algorithm

The basic principle of Crazy Stone’s selectivity algorithm is to allocate simula-
tions to each move according to its probability of being better than the current
best move. This scheme seems to be sound when the objective is to obtain an
accurate backed-up value, since the probability of being best corresponds to the
probability that this simulation would have an influence on the final backed up
value if the algorithm had enough time to converge.

Assuming each move has an estimated value of µi with a variance of σ2
i , and

moves are ordered so that µ0 > µ1 > . . . > µN , each move is selected with a
probability proportional to

ui = exp
(

− 2.4
µ0 − µi

√

2(σ2
0 + σ2

i )

)

+ εi

This formula is an approximation of what would be obtained assuming Gaussian
distributions (the 2.4 constant was chosen to match the normal distribution
function). This formula is very similar to the Boltzmann distributions that are
often used in n-armed bandits problems. εi is a constant that ensures that the
urgency of a move never goes to zero, and is defined by

εi =
0.1 + 2−i + ai

N
,

where ai is 1 when move i is an atari, and 0 otherwise. This formula for εi was
determined empirically by trial and error from the analysis of tactical mistakes
of Crazy Stone. It is important to increase the urgency of atari moves, because



Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search 5

they are likely to force an answer by the opponent, and may be underestimated
because their true value requires another follow-up move.

For each move i, µi is the opposite of the value µ of the successor node,
and σ2

i is its variance σ2. For internal nodes of the search tree, µ and σ2 are
computed with the backup method described in the next section. For external
nodes, that is nodes that have been visited less than the threshold defined in
Section 2, µ and σ2 are computed as µ = Σ/S, and

σ2 =
Σ2 − Sµ2 + 4P 2

S + 1
,

where P is the number of points of the board, Σ2 is the sum of squared values
of this node, Σ is the sum of values, and S is the number of simulations. The
formula for σ2 does as if a virtual game with a very high variance had been
played. This high prior variance is necessary to make sure that nodes that have
been rarely explored are considered very uncertain.

4 Backup Method

The most straightforward method to backup node values and uncertainties con-
sists in applying the formula of external nodes to internal nodes as well. As the
number of simulations grows, the frequency of the best move will dominate the
others, so the mean value of this node will converge to the maximum value of all
its moves, and the whole tree will become a negamax tree. This is the principle
of the algorithm of Chang, Fu and Marcus [12].

This approach is simple but very inefficient. If we consider N independent
random variables, then the expected maximum of these variables is not equal, in
general, to the sum of the expected values weighted by the probabilities of each
variable to be the best. This weighted sum underestimates the best move.

Backing up the maximum (maxi µi) is not a good method either. When the
number of moves is high, and the number of simulations is low, move estimates
are noisy. So, instead of being really the best move, it is likely that the move
with the best value is simply the most lucky move. Backing up the maximum
evaluation overestimates the best move, and generates a lot of instability in the
search.

Other candidates for a backup method would be algorithms that operate
on probability distributions [21, 4]. The weakness of these methods is that they
have to assume some degree of independence between probability distributions.
This assumption of independence is wrong in the case of Monte-Carlo evaluation
because, as explained in the previous paragraph, the move with the highest value
is more likely to be overestimated than other moves. Also, a refutation of a move
is likely to also refute other moves of a node.

Since formal methods seem difficult to apply, the backup operator of Crazy
Stone was determined empirically, by an algorithm similar to the temporal dif-
ference method [24]. In the beginning, the backup method for internal nodes
was the external-node method. 1,500 positions were sampled at random from



6 R. Coulom

self-play games. For each of these 1,500 positions, the tree search was run for
219 simulations. The estimated value of the position was recorded every 2n sim-
ulations, along with useful features to compute the backed-up value. Backup
formulas were tuned so that the estimated value after 2n simulations matches
the estimated value after 2n+1 simulations. This process was iterated a few times
during the development of Crazy Stone.

4.1 Value Backup

Mean Max Robust Max Mix

Simulations
√

〈δ2〉 〈δ〉
√

〈δ2〉 〈δ〉
√

〈δ2〉 〈δ〉
√

〈δ2〉 〈δ〉
128 6.44 -3.32 41.70 37.00 39.60 35.30 5.29 -1.43
256 7.17 -4.78 25.00 22.00 23.60 20.90 4.72 -1.89
512 7.56 -5.84 14.90 12.70 13.90 11.90 4.08 -1.70

1,024 6.26 -4.86 9.48 7.91 8.82 7.41 3.06 0.13
2,048 4.38 -3.15 6.72 5.37 6.11 4.91 2.63 0.77
4,096 2.84 -1.55 4.48 3.33 3.94 2.91 2.05 0.69
8,192 2.23 -0.62 2.78 1.47 2.42 1.07 1.85 0.32
16,384 2.34 -0.57 2.45 0.01 2.40 -0.30 2.10 -0.19
32,768 2.15 -0.52 2.19 0.10 2.26 -0.12 1.93 -0.02
65,536 2.03 -0.50 1.83 0.23 1.88 0.01 1.70 0.01
131,072 2.07 -0.54 1.80 0.25 1.94 0.02 1.80 -0.02
262,144 1.85 -0.58 1.49 0.25 1.51 0.07 1.39 -0.02

Table 1. Backup experiments

Numerical values of the last iteration are provided in Table 1. This table
contains the error measures for different value-backup methods. 〈δ2〉 is the mean
squared error and 〈δ〉 is the mean error. The error δ is measured as the difference
between the value obtained by the value-backup operator on the data available
after S simulations, with the “true” value obtained after 2S simulations. The
“true” value is the value obtained by searching with the “Mix” operator, described
in Figure 1.

These data clearly demonstrate what was suggested intuitively in the begin-
ning of this section: the mean operator (Σ/S) under-estimates the node value,
whereas the max operator over-estimates it. Also, the mean operator is more
accurate when the number of simulations is low, and the max operator is more
accurate when the number of simulations is high.

The robust max operator consists in returning the value of the move that
has the maximum number of games. Most of the time, it will be the move with
the best value. In case it is not the move with the best value, it is wiser not
to back up the value of a move that has been searched less. A similar idea had



Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search 7

float MeanWeight = 2 ∗ WIDTH ∗ HEIGHT;
if (Simulations > 16 ∗ WIDTH ∗ HEIGHT)
MeanWeight ∗= float(Simulations) / (16 ∗ WIDTH ∗ HEIGHT);

float Value = MeanValue;
if (tGames[1] && tGames[0])
{
float tAveragedValue[2];
for (int i = 2; −−i >= 0;)
tAveragedValue[i] =
(tGames[i] ∗ tValue[i ] + MeanWeight ∗ Value) / (tGames[i] + MeanWeight);

if (tGames[0] < tGames[1])
{
if (tValue[1] > Value)
Value = tAveragedValue[1];
else if (tValue[0] < Value)
Value = tAveragedValue[0];

}
else
Value = tAveragedValue[0];

}
else
Value = tValue[0].
return Value;

Fig. 1. Value-backup algorithm. The size of the goban is given by “WIDTH” and
“HEIGHT”. “Simulations” is the number of random games that were run from this
node, and “MeanValue” the mean value of these simulations. Move number 0 is the
best move, move number 1 is the second best move or the move with the highest num-
ber of games, if it is different from the two best moves. tValue[i] are the the backed-up
values of the moves and tGames[i] their numbers of simulations.



8 R. Coulom

been used by Alrefaei and Andradottir [3] in their stochastic simulated annealing
algorithm.

Figure 1 describes the “Mix” operator, that was found to provide the best
value back up. It is a linear combination between the robust max operator and
the mean operator, with some refinements to handle situations where the mean
is superior to the max (this may actually happen, because of the non-stationarity
of evaluations).

4.2 Uncertainty Backup

Uncertainty backup in Crazy Stone is also based on the data presented in the
previous section. These data were used to compute the mean squared differ-
ence between the backed-up value after S simulations and the backed-up value
after 2S simulation. To approximate the shape of this squared difference, the
backed-up variance was chosen to be σ2/min(500, S) instead of σ2/S. This is an
extremely primitive and inaccurate way to backup uncertainty. It seems possible
to find better methods.

5 Game Results

As indicated in the abstract, Crazy Stone won the 10th KGS computer-Go tour-
nament, ahead of 8 participants, including GNU Go, Neuro Go, Viking 5, and
Aya [28]. This is a spectacular result, but this was only a 6-round tournament,
and luck was probably one of the main factor in this victory.

In order to test the strength of Crazy Stone more accurately, 100-game
matches were run against GNU Go, and the latest version of Indigo (I thank
Bruno Bouzy for providing it to me), performing a search at depth 3, with a
width of 7. Games were run on an AMD Athlon 3400+ PC running Linux.
Results are summarized in Table 2.

Player Opponent Winning Rate Komi
CrazyStone (5 min / game) Indigo 2005 (8 min / game) 61% (±4.9) 6.5
Indigo 2005 (8 min / game) GNU Go 3.6 (level 10) 28% (±4.4) 6.5
CrazyStone (4 min / Game) GNU Go 3.6 (level 10) 25% (±4.3) 7.5
CrazyStone (8 min / Game) GNU Go 3.6 (level 10) 32% (±4.7) 7.5
CrazyStone (16 min / Game) GNU Go 3.6 (level 10) 36% (±4.8) 7.5

Table 2. Match results, with 95% confidence intervals

These results show that Crazy Stone clearly outperforms Indigo. This is a
good indication that the tree search algorithm presented in this paper is more
efficient than Bouzy’s algorithm. Nevertheless, it is difficult to draw definitive
conclusions from this match, since Indigo’s algorithm differ from Crazy Stone’s



Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search 9

in many points. First, it relies on a knowledge-based move pre-selector, that
Crazy Stone does not have. Also, random simulations are different. Crazy Stone’s
simulations probably have better handling of the urgency of captures. Indigo’s
simulations use patterns, while Crazy Stone is based on an uniform distribution.
All in all, this victory is still a rather convincing indication of the power of the
algorithm presented in this paper.

Results against GNU Go indicate that Crazy Stone is still weaker, especially
at equal time control (GNU Go used about 22 second per game, on average).
The progression of results with longer time control indicates that the strength
of Crazy Stone scales well with the amount of CPU time it is given.

Beyond the raw numbers, it is interesting to take a look at the games, and the
playing styles of the different players1. Most of the losses of Crazy Stone against
GNU Go are due to tactics that are too deep, such as ladders, long semeais,
and monkey jumps, that GNU Go has no difficulty to see. The wins of Crazy
Stone over GNU Go are based on a better global understanding of the position.
Because they are based on the same principles, the styles of Crazy Stone and
Indigo are very similar. It seems that the excessive pruning of Indigo cause it to
play tactical errors that Crazy Stone knows how to exploit.

6 Conclusion

In this paper was presented a new algorithm for Monte-Carlo tree search. It
is an improvement over previous algorithms, mainly thanks to a new efficient
backup method. It was implemented in a computer-Go program that performed
very well in tournaments, and won a 100-game match convincingly against a
state-of-the-art Monte-Carlo Go-playing program. Directions for future research
include

– improving the selectivity algorithm and uncertainty-backup operator. In par-
ticular, it might be a good idea to use stochastic optimization algorithms at
the root of the search tree.

– trying to overcome tactical weaknesses by incorporating game-specific knowl-
edge into random simulations.

– scaling the approach to larger boards. For 19x19, an approach based on a
global tree search does not seem reasonable. Generalizing the tree search
with high-level tactical objectives such as Cazenave and Helmstetter’s algo-
rithm [11] might be an interesting solution.

Acknowledgements

I thank Bruno Bouzy and Guillaume Chaslot, for introducing me to Monte-Carlo
Go. A lot of the inspiration for the research presented in this paper came from
our discussions. I also thank the readers of this paper for their feedback that
helped to improve this paper.
1 Games of the matches are available at http://remi.coulom.free.fr/CG2006/



10 R. Coulom

References

1. Bruce Abramson. Expected-outcome: A general model of static evaluation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(2):182–193, Febru-
ary 1990.

2. L. Victor Allis. Searching for Solutions in Games and Artificial Intelligence. PhD
thesis, Universiteit Maastricht, 1994.

3. Mahmoud H. Alrefaei and Sigrún Andradóttir. A simulated annealing algorithm
with constant temperature for discrete stochastic optimization. Management Sci-
ence, 45(5):748–764, May 1999.

4. Eric B. Baum and Warren D. Smith. A bayesian approach to relevance in game
playing. Artificial Intelligence, 97(1–2):195–242, 1997.

5. Darse Billings, Denis Papp, Lourdes Peña, Jonathan Schaeffer, and Duane Szafron.
Using selective-sampling simulations in poker. In Proceedings of the AAAI Spring
Symposium on Search Techniques for Problem Solving under Uncertainty and In-
complete Information, 1999.

6. Bruno Bouzy. Associating shallow and selective global tree search with Monte
Carlo for 9 × 9 Go. In H. J. van den Herik, Y. Björnsson, and N. S. Netanyahu,
editors, Fourth International Conference on Computers and Games, Ramat-Gan,
Israel, 2004.

7. Bruno Bouzy. Move pruning techniques for Monte-Carlo Go. In Advances in
Computer Games 11, Taipei, Taiwan, 2005.

8. Bruno Bouzy and Tristan Cazenave. Computer Go: an AI-oriented survey. Artifi-
cial Intelligence, 132:39–103, 2001.

9. Bruno Bouzy and Bernard Helmstetter. Monte Carlo Go developments. In H. J.
van den Herik, H. Iida, and E. A. Heinz, editors, Proceedings of the 10th Advances
in Computer Games Conference, Graz, 2003.

10. Bernd Brügmann. Monte Carlo Go, 1993. Unpublished technical report.
11. Tristan Cazenave and Bernard Helmstetter. Combining tactical search and Monte-

Carlo in the game of go. In Proceedings of the IEEE Symposium on Computational
Intelligence and Games, 2005.

12. Hyeong Soo Chang, Michael C. Fu, Jiaqiao Hu, and Steven I. Marcus. An adaptive
sampling algorithm for solving Markov decision processes. Operations Research,
53(1):126–139, Jan.–Feb. 2005.

13. Chun-Hung Chen, Jianwu Lin, Enver Yücesan, and Stephen E. Chick. Simulation
budget allocation for further enhancing the efficiency of ordinal optimization. Jour-
nal of Discrete Event Dynamic Systems: Theory and Applications, 10(3):251–270,
July 2000.

14. Michael Chung, Michael Buro, and Jonathan Schaeffer. Monte-Carlo planning in
RTS games. In Proceedings of the IEEE Symposium on Computational Intelligence
and Games, 2005.

15. Markus Enzenberger. Evaluation in Go by a neural network using soft segmenta-
tion. In Proceedings of the 10th Advances in Computer Games Conference, Graz,
2003.

16. Andreas Futschik and Georg Ch. Pflug. Optimal allocation of simulation experi-
ments in discrete stochastic optimization and approximative algorithms. European
Journal of Operational Research, 101:245–260, 1997.

17. Matthew L. Ginsberg. GIB: Steps toward an expert-level bridge-playing program.
In Proceedings of the Sixteenth International Joint Conference on Artificial Intel-
ligence, pages 584–593, Sweden, 1999.



Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search 11

18. Hugues Juillé. Methods for Statistical Inference: Extending the Evolutionary Com-
putation Paradigm. PhD thesis, Brandeis University, Department of Computer
Science, May 1999.

19. Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm
for near-optimal planning in large Markov decision processes. In Proceedings of the
Sixteenth Internation Joint Conference on Artificial Intelligence, pages 1324–1331.
Morgan Kaufmann, 1999.

20. Donald E. Knuth and Ronald W. Moore. An analysis of alpha-beta pruning.
Artificial Intelligence, 6:293–326, 1975.

21. Andrew J. Palay. Searching with Probabilities. Pitman, 1984.
22. Laurent Péret and Frédérick Garcia. On-line search for solving large Markov de-

cision processes. In Proceedings of the 16th European Conference on Artificial
Intelligence, Valence, Spain, August 2004.

23. Brian Sheppard. Efficient control of selective simulations. ICGA Journal, 27(2):67–
79, June 2004.

24. Richard S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3:9–44, 1988.

25. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

26. Gerald Tesauro. Programming backgammon using self-teaching neural nets. Arti-
ficial Intelligence, 134:181–199, 2002.

27. John Tromp and Gunnar Farnebäck. Combinatorics of Go. In P. Ciancarini and
H. J. van den Herik, editors, Proceedings of the Fifth International Conference on
Computer and Games, Turin, Italy, 2006.

28. Nick Wedd. Computer Go tournaments on KGS. http://www.weddslist.com/
kgs/, 2005.

A Random Simulations in Crazy Stone

The most basic method to perform random simulations in computer-Go consists
in selecting legal moves uniformly at random, with the exception of eye-filling
moves that are forbidden. The choice of a more clever probability distribution
can improve the quality of the Monte-Carlo estimation. This section describes
domain-specific heuristics used in Crazy Stone.

A.1 Urgencies

At each point of the goban, an urgency is computed for each player. The urgency
of the black player on a particular point is computed as follows:

– If playing at this point is illegal, or this point is completely surrounded
by black stones that are not in atari, then the urgency is set to zero, and
processing of this urgency is stopped. This rule will prevent some needed
connection moves, but distinguishing false eyes from true eyes was found to
be too difficult to be done fast enough during simulations.

– Otherwise, the urgency is set to 1.



12 R. Coulom

– If this point is the only liberty of a black string2 of size S, then 1, 000×S is
added to the urgency, unless it is possible to determine that this point is a
hopeless extension. A point is considered a hopeless extension when
• there is at most one contiguous empty intersection, and
• there is no contiguous white string in atari, and
• there is no contiguous black string not in atari.

– If this point is the only liberty of a white string of size S, and it is not
considered a hopeless extension for white, then 10, 000 × S is added to the
urgency. Also, if the white string in question is contiguous to a black string
in atari, then 100, 000 × S is added to the urgency (regardless of whether
this point is considered a hopeless extension for white).

The numerical values for urgencies are arbitrary. No effort was made to try other
values and measure their effects. They could probably be improved.

A.2 Useless Moves

Once urgencies have been computed, a move is selected at random with a proba-
bility proportional to its urgency. This move may be undone and another selected
instead in the following situations:

– If the move is surrounded by stones of the same color except for one empty
contiguous point, and these stones are part of the same string, and the empty
contiguous point is also contiguous to this string, then play in the contiguous
point instead. Playing in the contiguous point is better since it creates an
eye. With this heuristic, a player will always play in the middle of a 3-point
eye (I thank Peter McKenzie for suggesting this idea to me).

– If a move is surrounded by stones of the opponent except for one empty
contiguous point, and this move does not change the atari status of any
opponent string, then play in the empty contiguous point instead.

– If a move creates a string in atari of more than one stone then
• if this move had an urgency that is more than or equal to 1,000, then

this move is undone, its urgency is reset to 1, and a new move is selected
at random (it may be the same move);

• if this string had a contiguous string in atari before the move, then cap-
ture the contiguous string in atari instead (doing this is very important,
since capturing the contiguous string may not have a high urgency);

• otherwise, if the string had two liberties before the move, play in the
other liberty instead.

A.3 Performance

On an AMD Athlon 3400+, compiled with 64-bit gcc 4.0.3, Crazy Stone simu-
lates about 17,000 random games per second from the empty 9× 9 goban.

2 a string is a maximal set of orthogonally-connected stones of the same color


