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a b s t r a c t

Biosignals such as electrocardiograms (ECG), electroencephalograms (EEG), and electromyograms (EMG),
are important noninvasive measurements useful for making diagnostic decisions. Recently, considerable
research has been conducted in order to potentially automate signal classification for assisting in disease
diagnosis. However, the biosignal type (ECG, EEG, EMG or other) needs to be known prior to the
classification process. If the given biosignal is of an unknown type, none of the existing methodologies
can be utilized. In this paper, a blind biosignal classification model (B2SC Model) is proposed in order to
identify the source biosignal type automatically, and thus ultimately benefit the diagnostic decision. The
approach employs time series algorithms for constructing the model. It uses a dynamic time warping
(DTW) algorithm with clustering to discover the similarity between two biosignals, and consequently
classifies disease without prior knowledge of the source signal type. The empirical experiments
presented in this paper demonstrate the effectiveness of the method as well as the scalability of the
approach.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The term ‘biosignal’ refers to all kinds of signals that can be
measured and monitored from biological beings, including elec-
trocardiogram (ECG), electroencephalogram (EEG), electromyo-
gram (EMG), and electrooculography (EOG). The signals are the
recordings of the electrical activity of the heart, brain, muscles,
and eyes, respectively, which can be used in making diagnostic
decisions. Research into ECG classification has proliferated since
the discovery of the automatic recognition of electrocardiogram
waves by Stallman and Pipberger [1]. After this discovery, a rule-
based rough-set decision system was developed to generate an
inference engine for ECG classification from different standard
time-plane features [2]. Then, ECG classification was optimized by
applying a feature selection method with a new criterion function
index to improve performance [3]. ECG signal classification using
parallel genetic algorithms and neural networks [4], as well as
using block-based neural networks, was proposed [5]. Although
EEG classification is more difficult due to the high dimensional
feature space, a certain amount of research is underway in order to
benefit the biomedical community. For example, Subasi [6] devel-
oped a Mixture of Expert (ME) network structure to improve the
accuracy of epileptic seizure detection in EEG, and the overall

predictive performance was superior to any of the individual
experts. An automatic recognition method for Alzheimer's disease
(AD) with single-channel EEG recording using combined genetic
algorithms (GA) and artificial neural networks (ANN) was pro-
posed by Cho et al. [7]. Similar signals are obtained in EMG and
EOG classification, however, the complex nature of the signals
often means that their analysis and classification is difficult [8].
Lucas et al. employed a support vector machine (SVM) approach to
classify multi-channel surface EMG signals. The experimental
results showed that their method is suitable for real-time applica-
tions [9]. Then, the authors established an EMG signal classifica-
tion system to discriminate finger motions by using linear neural
networks [10]. It showed promising performance for classifying
motions based on biosignal patterns. Recently, Alkan and Günay
proposed a surface EMG signal classification system, which used
five discriminant functions and an SVM classifier [11]. Their
system is used to classify EMG signals in prosthetic arm control.
Furthermore, EOG is an efficient measurement technique to detect
eye movement for human activity recognition as shown by the use
of EOG signals for the realization of a Human Computer Interface
(HCI) device [12], which is able to recognize a patient's eye
movements and thus restore some communication abilities.
Güven and Kara [13] used Artificial Neural Networks to analyze
EOG signals, which can be used to diagnose subnormal vision.
Then Bulling et al. proposed a method for analyzing repetitive eye
movement patterns [14]. They used EOG signals to detect three
basic eye movement types (saccades, fixations, and blinks) and
proved that the recognition methodology could successfully iden-
tify five office activities.
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However, all of the aforementioned studies concentrated on a
single type of biosignal, where the source of the biosignal was
known (ECG, EEG, EMG, or EOG) to the classifier, and the
classification was conducted based on the nature of the specific
type of biosignal. However, to our knowledge, there is not any
literature about automatically identifying biosignals, which would
be useful when the type of biosignal is unknown. To bridge this
gap, this study proposes an automatic approach for identifying an
unknown biosignal and typing it as ECG, EEG etc., in addition to
conventional biosignal classification. The approach incorporates a
DTW (dynamic time warping) algorithm of time series classifica-
tion, which is capable of identifying a specific disease or symptom
regardless of the type of source biosignal. The organization of this
paper is as follows: in Section 2, the proposed approach and its
three major phases are presented in detail. After that, the empiri-
cal results are discussed in Section 3, followed by the conclusion
and future work sections.

2. Blind biosignal classification model

An emerging trend is that not only do professionals use medical
technologies and tools, but also patients and others [15]. The rapid
development of innovative information and communication tech-
nologies has led to home-based healthcare, which is feasible and
preferable, particularly for the elderly and patients with chronic
diseases who self-manage their health at home rather than in a
hospital. However, home-based users of medical technology are
usually non-professional and not well trained, so they may incor-
rectly attach ECG sensors to their bodies for example. Furthermore,
multiple biosignals may be acquired simultaneously and mixed or
combined into one, which may result in unknown or ambiguous
source biosignals with only their temporal waveforms or time-
frequency patterns known, but not their types [16]. Inspired by
these facts, a blind biosignal classification model (B2SC Model) is
proposed, which serves as a partial implementation of an integrated
multi-function biosignal measurement device for such home-based
healthcare paradigms. B2SC Model can automatically identify an
unknown (blind) mixed biosignal for further detailed analysis and
diagnosis, and its purpose is multifold: (1) enabling non-skilled
home-based users to operate a multi-function biosignal acquisition
device easily for monitoring and managing their health conditions;
(2) helping to improve the diagnostic capability of a disease or
symptom without knowing the exact type of source biosignal; and
(3) allowing the use of only one device and one sensor which could
adapt to multiple biosignals. B2SC Model is composed of three major
phases: biosignal template construction, template optimization and
management, and pattern matching. The details of each phase will
be described below.

2.1. Biosignal template construction

As previously discussed, the quality and quantity of a training
dataset in a classification problem severely affects the efficiency

and performance of a classification algorithm. The biosignal
template construction phase aims at constructing a library of
biosignal templates using all available raw data from biosignals,
and such templates will be ultimately used for guidance in
accurately classifying an unknown biosignal. The raw biosignals
usually have long signal lengths and the datasets often have large
file sizes, meaning that it is impossible for the raw data to be used
directly in training the classification model. Moreover, a single
type of biosignal may have diverse patterns. Fig. 1 shows an
example of this: all four patterns are ECG signals. The first pattern
indicates a normal ECG signal, and the other three reveal the
different stages of ischemic heart disease. Therefore, the construc-
tion of a variety of biosignal templates as training datasets is
critical for the subsequent task of classification.

The benchmark datasets, downloaded from the MIT-BIH
Arrhythmia Database [17], the CHB-MIT Scalp EEG Database [18]
and the EMG Datasets Repository [19] were used to produce the
ECG, EEG, and EMG templates, respectively. The MIT-BIH Arrhyth-
mia Database provides standard test materials for the evaluation
of arrhythmia detectors as well as for basic research in cardiac
dynamics. The CHB-MIT Scalp EEG Database collects the EEG
recordings from pediatric patients who suffered from intractable
epilepsy. Furthermore, the CAP (Cyclic Alternating Pattern) Sleep
Database records EMG and EOG signals as well as EEG signals. It is
intended to provide a useful number of carefully annotated
examples of CAP in a representative variety of pathophysiologic
contexts, which is vital for the study of CAP dynamics, and in
particular for the development and evaluation of CAP analysis. In
this paper, we use ECG as an example, to describe the entire
process of the B2SC Model. EEG or EMG datasets are used for
construction and training in exactly the same way as ECG signals.

The essential tasks of template construction include biosignal
segmentation and template formation. Segmentation partitions each
ECG signal into small pieces so that each piece contains only one cycle
of an ECG recording, representing one candidate template. As a result,
there are in total 240,000 one-cycle ECG signals generated from the
entire MIT-BIH Arrhythmia Database. All of these one-cycle ECG
signals are used as the source for generating the library of ECG
templates. Nonetheless, the number of candidate biosignal templates
determines the efficiency and performance of the subsequent classi-
fication tasks: too few templates for each category may lead to
underfitting, which misclassifies some important biosignal patterns;
but too many templates may cause redundancy and wastage of
resources. To this end, the existing ECG categories defined by Jenkins
and Gerred [20] are used as guidelines to determine the groups of
templates, which describe nine major common categories for ECG
signals. We have ignored the minor subcategories in this study.
Similarly, the general categories specified by Niedermeyer and da
Silva [21] and Khushaba et al. [19] are used to determine the classes
for EEG and EMG in this study. Therefore, in the template formation
stage, all candidate ECG templates are roughly divided into nine
groups. The widely used clustering methodology, k-nearest neighbors
(kNN) algorithm [22], was employed for classifying a template by the
major label amongst its k-nearest neighbors in the ECG database.

Fig. 1. Samples of different patterns from ECG signals: (a) normal ECG; (b) acute inferior myocardial infarction; (c) acute posterior myocardial infarction, and (d) acute
anterior myocardial infarction.
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2.2. Template optimization and management

This phase refines the library of ECG signal templates that were
generated in the above template construction step, into a set of
optimal ECG templates (OpTem) which represent the majority of
ECG signals in the database. To discover the optimal representa-
tives from each category of various ECG patterns, the k-medoids
algorithm [23] was employed. The k-medoids method is a tradi-
tional clustering algorithm, which finds one central object as a
representative for all other samples within the cluster. However,
the quality of this algorithm relies heavily on several factors. First,
the initial central object for each cluster is determined randomly,
which may result in the local maxima. Second, the choice about
how many clusters are used may affect the efficiency of the
algorithm. Furthermore, the distance measure method and stop-
ping criterion for large datasets may also influence the perfor-
mance. Because of these shortages, we have amended the
k-medoids method by using the following refinements:

– The number of ECG clusters (k value) depends on the number
of existing categories of ECG signals in the database, i.e. nine
common categories. No user input parameter is needed.

– The initial central ECG template for each cluster is extracted
from each ECG signal category in the library of signal templates.
This prevents local maxima from being produced.

– A stopping criterion is employed to restrict the search space in
terms of the number of candidates for ECG template. This
decreases the number of candidates to be visited without
sacrificing the quality of the resultant optimal templates,
meanwhile increasing the performance of the algorithm.
In fact, the template construction phase and this optimization
phase can be combined into one from an implementation point
of view. Fig. 2 illustrates the proposed template construction
and optimization phases, which attempt to produce a set of
optimal ECG templates.

2.3. Pattern matching

This phase is a kernel component of our B2SC Model. It is aimed at
identifying an unknown biosignal into ECG, EEG, or other type, by
comparing the similarity of an input biosignal with various datasets of
representative biosignal templates. Fig. 3 describes the detailed
procedure of the pattern matching algorithm. Given a source blind
biosignal S¼ fs1; s2;…; smg with m sample segments and a set of
optimal representative templates OpTem¼ fPecgðiÞ; PeegðjÞ; 1r
irk; 1r jrwg, where Pecg denotes the ECG template collection
with k optimal templates, and Peeg indicates an EEG template
collection with w optimal templates. A parameter λ is declared as a
threshold for discriminating amongst ECG, EEG and other biosignals.
This process is in fact regarded as a floating window that shifts from
the starting point of S to the end, and matches each slice of S with a
template P, where the window size equals |P|. The process enumerates

every cluster in the OpTem, and meanwhile the local minimum
similarity scores minecg and mineeg are further compared and eval-
uated. The global minimum similarity score mintp is eventually
obtained, for identifying a biosignal other than ECG/EEG.

The goal of the pattern matching phase is to optimize the
similarity function in Eq. (1). The function minimizes the distance
(similarity score) between the samples and the templates by
comparing each segment of a source blind biosignal S iteratively
with a template P in OpTem. The notation |.| refers to the length
(number of segments) of a sample, where PAfPecg; Peegg; Sb;e
depicts a segment that is an interval between bth and eth of
sample S, i.e., Sb;eAS, whereas Sb;e

�� ��¼ jPj.
SimðP; SÞ ¼ min

0rbr Sj j� Pj j;bþjPjr er jSj
DTWðP; Sb;eÞ ð1Þ

In Eq. (1), an auto-aligned dynamic time warping (DTW)
algorithm as defined in Eq. (2) is applied to evaluate the degree
of similarity between two comparable biosignals. DTW is an
algorithm for measuring similarity between two sequences, which
may vary in time or speed. It is a robust distance measure for time
series data, allowing two signals with similar patterns to align
even if they are not on the same time axis. DTW is widely used in a
variety of domains including speech recognition, word image
matching, handwriting recognition, heart rhythm change detec-
tion, ECG segmentation and classification [24–27]. Detailed infor-
mation about DTW can be found in Han and Kamber [28]. Eq. (2)
assumes that there are two ECG signals, ET ¼ et1;…; eti;…; etn and
EU ¼ eu1;…; euj;…; eum of length n and m, respectively. To com-
pare their similarity, an n-by-m matrix is constructed where the
(ith, jth) element of the matrix contains the distance d(eti, euj)
between two points eti and euj.

DTWðET ; EUÞ ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
K

l ¼ 1
dðwlÞ

s
; and maxðm;nÞrKrmþn ð2Þ

where wl is the lth element of a warping path W, which is a
contiguous set of matrix elements that provide mapping between
ET and EU, hence;

dðwlÞ ¼ dðeti; eujÞ ¼ ðeti; eujÞ2 ð3Þ

The smaller the value of d is, the higher the similarity of two
biosignals. There are many warping paths that satisfy the condi-
tion, but we are only interested in the optimal path that minimizes
an accumulated distance along the warping path, as defined in
Eq. (2). An efficient technique for determining the shortest warp-
ing path is dynamic programming. As depicted in Eq. (4), it is able
to determine the cumulative distance DT recursively as the
distance d and the minimal accumulated distances of the adjacent
elements. This enables the search space of warping paths to be
greatly reduced, and the complexity for computing an optimal
warping path is decreased to O(nm).

DT ðeti; eujÞ ¼ dðeti; eujÞþ min fDT ðeti�1; euj�1Þ;
DT ðeti; euj�1Þ; DT ðeti�1; eujÞg ð4Þ

Fig. 2. Templates construction and optimization algorithm.
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3. Results

3.1. Experimental setting

To demonstrate the effectiveness of the proposed B2SC Model,
experiments were performed on datasets which included EMG
signals from the EMG Datasets Repository [19], in addition to ECG
and EEG signals. Note that EMG signals are analyzed in the same
manner as other signals in evaluating the effectiveness of the B2SC
Model. Throughout the experiments, all data were divided into two
disjunctive partitions: training set and test set, based on the 10-fold
cross validation method, and the ratio for training and test sets
was 80% vs. 20%. The training set was used to construct the
optimal biosignal templates, OpTem, and included ECG and EEG
signals, whereas the test set was used for validation. The threshold
λ was computed automatically by taking the maximum similarity
score among all pairs of the optimal templates. Classification
performance was evaluated in terms of recall, precision and
f-score.

3.2. Classification results

The results depicted in Table 1 reveal that the B2SC Model can
correctly identify ECG and EEG signals from other biosignals by
incorporating the optimal template generation method and prior
auto-alignment strategy into the DTW algorithm. Moreover, sev-
eral observations can be drawn from the experimental results as
follows: (a) the classification performance with respect to ECG
signals is the best among all biosignals, where both the recall rate
(0.951866) and the f-score value (0.937591) are the highest. Two
possible reasons lead to such a situation: first, there are sufficient
categories and a sufficient number of ECG signals that are selected
into the library, meaning that the template optimization phase is
able to produce practical clusters. Second, an ECG signal possesses
several significant characteristics that make it amenable for

achieving a high matching accuracy, such as the morphological
periodicity and the feature points (P, Q, R, S and T [29]); (b) the
performance for classifying EEG signals is slightly degraded,
especially the recall rate. This may be caused by the fact that
EEG signals tend to have more complex patterns, which compli-
cates the pattern matching process; (c) the further expansion of
B2SC Model is straightforward, so new categories of ECG and EEG
signals or new types of biosignals can be added without limita-
tions. This property of the B2SC Model means that the proposed
approach is superior to other biosignal classification methods,
which are only able to classify a single source biosignal.

4. Conclusion

We have presented a B2SC Model that can automatically identify
the type (ECG, EEG, EMG or others) of a blind biosignal, and thus
can classify a disease or symptomwithout knowing the type of the
source biosignal. Some refinements to the time series algorithm
have been proposed, such as template optimization and prior
auto-alignment. The performance and efficiency in classifying ECG,
EEG and other types of biosignals can also be improved by
generating a small set of optimal representative biosignal tem-
plates, which restrict the processing space for pattern matching
and classification. To our knowledge, this study is novel since there
is no similar research reported in the literature to date. In the
future, EMG, EOG and other general biosignals will be introduced
into the model and large-scale biosignal data will be considered.
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