
Faster Algorithm for Computing the Edit

Distance between SLP-Compressed Strings

Pawe�l Gawrychowski�

Institute of Computer Science, University of Wroc�law, Poland
Max-Planck-Institute für Informatik, Saarbrücken, Germany

gawry@cs.uni.wroc.pl

Abstract. Given two strings described by SLPs of total size n, we show

how to compute their edit distance in O(nN
√

log N
n

) time, where N is

the sum of the strings length. The result can be generalized to any ratio-
nal scoring function, hence we improve the existing O(nN log N) [10] and
O(nN log N

n
) [4] time solutions. This gets us even closer to the O(nN)

complexity conjectured by Lifshits [7]. The basic tool in our solution is
a linear time procedure for computing the max-product of a vector and
a unit-Monge matrix, which might be of independent interest.

1 Introduction

The edit distance is a basic measure of similarity between strings, commonly used
in real-life applications. The dynamic programming algorithm for computing
this distance is usually among the very first examples covered in an algorithms
and data structures course. Unfortunately, the quadratic running time of such
algorithm makes it useless when we have to deal with really large data. While it
is possible to achieve better running times in some specific cases [6], by exploiting
the RAM model [8], or by allowing approximate solutions [1], it seems that there
is still some room for improvement here. One promising direction is to consider
strings which are given in a compressed representation, with the hope that if
the data is really big, it might be, in some sense, somehow redundant. Hence if
we manage to bound the running time in terms of the size of this compressed
representation, we might hope to get a substantial speed-up in some situations.

A natural and very powerful method of representing compressed strings are
straight-line programs. Computing the edit distance between strings defined by
straight-line programs was already considered a number of times, with [10] giv-
ing O(nN logN) time solution, and [4] (improved version of [3]) decreasing the
complexity to O(nN log N

n). In this paper we give a faster algorithm based on
a similar idea. In order to achieve a better running time, we prove that max-
multiplication of vectors and unit-Monge matrices requires just linear time, hence
improving the O(n log logn) time solution due to Tiskin [9]. This tool might be
of independent interest, as it could find further uses in the approximate pattern
matching area.

� Supported by MNiSW grant number N N206 492638, 2010–2012.

L. Calderón-Benavides et al. (Eds.): SPIRE 2012, LNCS 7608, pp. 229–236, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

230 P. Gawrychowski

A B C B A A

B

A

C

B

B

A

Fig. 1. Interpreting LCS as a highest score
path in a grid graph

I0 I1 I2 I3 I4 I5 I6

I−1

I−2

I−3

I−4

I−5

I−6

O0 O1 O2 O3 O4 O5 O6

O7

O8

O9

O10

O11

O12

Fig. 2. Input and output vertices. Some
vertices are both input and output.

2 Preliminaries

We will consider strings over a fixed finite alphabet Σ. The strings will be
described using straight-line programs, which are context-free grammars in Chom-
sky normal form with exactly one production for each nonterminal, hence de-
scribing exactly one word. The size of such SLP is simply the number of rules.
The edit distance between two strings a, b ∈ Σ∗ is the smallest number of op-
erations required to transform a into b, assuming that in a single step we can
delete, insert or change a single character. A basic fact concerning the edit dis-
tance is that computing it reduces to finding the longest common subsequence.
Sometimes we are interested in the weighted edit distance, where all operations
have costs depending on the characters involved. In this paper we will consider
only the case when those costs are rational, which is usually called the rational
scoring function case.

We are interested in computing the edit distance between two strings a and b
of total length N defined by SLPs of total size n. We will show how to compute

their longest common subsequence in O(nN
√

log N
n) time. Using the blow-up

technique of Tiskin [9], this can be generalized to computing the edit distance
for any rational scoring function.

The very basic method of computing the longest common subsequence of
a and b uses dynamic programming to compute the LCS of all possible pairs
of prefixes in O(|a||b|) time, which is usually seen as calculating the highest
score path between the two opposite corner vertices in the corresponding grid
graph, see Figure 1. It turns out that if one is interested in computing the
paths between all pairs of boundary vertices, namely in calculating Ha,b(i, j)
being the best path between the i-th input and j-th output (input being the
left and top boundary, and output being the right and bottom boundary, see
Figure 2), the matrix Ha,b has a very special structure, namely it is unit-anti-
Monge. It means that if we number the input and output vertices as shown on

Computing the Edit Distance between SLP-Compressed Strings 231

x

X1 X2 X3 X4 X5 X6

xX ′
1

X ′
2

X ′
3

X ′
4

X ′
5

X ′
6

Fig. 3. Cutting the table into x× x blocks. We need the values on all boundaries.

Figure 2, and let Ha,b(i, j) = j− i < 0 if j < i, the matrix can be represented as
Ha,b(i, j) = j − i− PΣ(i, j), where P is a permutation matrix (meaning that it
contains at most one in each row and column, and zeroes everywhere else), and
PΣ(i, j) =

∑
i′≥i,j′≤j P (i′, j′). The reader is kindly requested to consult Section

3.2 of [9] for an example and a more detailed explanation. It turns out that the
max-product of such matrices can be computed very efficiently using a surprising
result of Tiskin [10], where the max-product of two matrices A and B is a matrix
C such that C(i, k) = maxj A(i, j)+B(j, k) (similarly, the min-product is C such
that C(i, k) = minj A(i, j) + B(j, k)).

Theorem 1 ([10], Theorem 3.3). Given two x × x permutation matrices P1

and P2, we can compute P3 such that PΣ
3 is the min-product of PΣ

1 and PΣ
2 in

O(x log x) time.

The above theorem can be directly used to compute the representation of Ha′a′′,b
given the representations of Ha′,b and Ha′′,b. If the lengths of a′, a′′, b are all
bounded by x, the running time of such computation is O(x log x).

Throughout the paper, we assume the usual unit-cost word RAM model with
word size Ω(logN).

3 The Algorithm

The high-level idea is the same as in the previous solutions [4,10]. We would like
to compute the whole N × N table used by the naive dynamic programming
solution. This is clearly infeasible, but we will show that one can cut it into
fragments of sizes roughly x × x so that all 2N

x values on their boundaries can

232 P. Gawrychowski

be computed efficiently, see Figure 3. More precisely, for each such fragment we
will precompute a function H(i, j) equal to the best scoring path between the
i-th input and j-th ouptut. This functions depends only on the corresponding
substrings of a and b, so whenever both substrings are the same, we can reuse
the representation of H . The partition will be chosen so that the number of
non-equivalent fragments will be roughly n2 and we will be able to compute
the representations of all corresponding matrices in O(n2x log x) time. Then
we will repeatedly max-multiply the vector representing all values on the left
and top boundary of the next fragment with its corresponding matrix to get
the values on its right and bottom boundary. We will show how to perform
each such multiplication in O(x) time, hence achieving the total complexity
O(n2x log x + (Nx)2x).

We start with showing how one can transform a SLP in order to cut the
original string into fragments of roughly the same size which can be derived from
single nonterminals. This is very similar to the x-partitions of [4], but allows us to
directly bound the number of nonterminals in the new SLP. It might be possible
to also derive such transformation from the construction of Charikar et al. [2],
who showed how one can make a SLP balanced, in a certain sense. We prefer to
give a simple direct proof, though. Note that in the statement below by SLP we
actually mean a collection of SLPs with shared rules, each describing a single
string.

Lemma 1. Given an SLP of size n describing a string of length N and a pa-
rameter x, we can construct in O(n + N

x) time a new SLP of size O(n) with all
nonterminals describing strings of length at most x and a representation of the
original string as a concatenation of O(Nx) new nonterminals.

Proof. Call a nonterminal (from the original program) small if it describes a
string of length at most x, and big otherwise. Each small nonterminal is directly
copied into the new program. Then we run the following rewriting process: start
with t = S, where S is the starting symbol. As long as t contains a big nonter-
minal A → BC, where B,C are also big, replace A with BC. As a result we get
t of length at most N

x describing the original string in which each nonterminal A
is either small or derives A → BC with exactly one of B,C small. We would like
to somehow rewrite those remaining big nonterminals. Doing it naively might
create an excessive increase in the length.

We define the right graph as follows: each big nonterminal is a vertex, and if

A → BC with B big and C small, we create an edge A
C→ B. Symmetrically,

we define the left graph, where for each A → BC with B small and C big we

create an edge A
B→ C. Note that both graphs are in fact trees. The core of a

nonterminal A is defined recursively as follows:

1. if A → BC with both B and C small, then the core of A is BC,
2. if A → BC with B small and C big, then the core of A is the core of C,
3. if A → BC with B big and C small, then the core of A is the core of B.

Computing the Edit Distance between SLP-Compressed Strings 233

A

BC

D
E

F

G H IJ

K

Fig. 4. A sample right graph and
its partition into chunks. A, D, F ,
E and I are the frontiers. Then, for
example, the path from J to the
root is path(C) path(J).

Then for any remaining big nonterminal A we would like to replace it with the
label of the path to the root in the left graph, its core, and the label of the
path from the root in the right graph. Because of the symmetry, it is enough to
show how to construct a short description of each path in the right graph. We
could simply define a new nonterminal path(A) for each vertex A by adding a
production path(A) → path(B)C, where B is the parent of A, but then those
new nonterminals could derive strings of length vastly exceeding x. We use a
procedure which greedily partitions the trees into connected fragments called
chunks. The procedure works as follows: if A is connected to its parent B with an
edge labeled by C, check if path(B)C derives a string of length at most x. If so, A
belongs to the same chunk as B, and we add a production path(A) → path(B)C.
Otherwise, create a new chunk, initially containing just A, which we call its
frontier, and add a production path(A) → C, see Figure 4. The number of new
nonterminals (and hence also productions) is clearly at most n. To describe the
label of the path from A to the root, we concatenate all nonterminals path(B)
where B is either A or a parent of a frontier on the path. As a result we get a
sequence of nonterminals Y1Y2 . . . Y� such that the length of the string described
by any pair of neighbors YiYi+1 exceeds x. Hence after the final rewriting step
the length of t will be at most O(Nx). ��

We apply the above lemma to the SLPs describing a and b to represent them
as a = X1 . . .X� and b = X ′

1 . . .X
′
�′ . By cutting the dynamic programming

table along the boundaries between any two Xi and Xi+1 or X ′
i and X ′

i+1, we

split it into O(N
2

x2) fragments of size at most x × x. Moreover, each fragment
corresponds to exactly one pair of nonterminals from a SLP of size O(n). We will
compute the values on the boundaries of the fragments in two steps. First we
build (all) matrices corresponding to pairs of nonterminals. Then we go through

234 P. Gawrychowski

i1 i2 i3 i4 i5

13 −3 −1 −4 −2

13 10 9 5 3251113 7 6 9 10 9 9 1 3 2 1 2

i6

−1

Fig. 5. Explicit (above) and implicit (below) description of the current t

the fragments one-by-one, and repeatedly multiply a vector describing values on
the left and top boundary of the current block with the corresponding matrix,
thus getting the values on the right and bottom boundary. We describe those
two steps separately.

We compute the matrix corresponding to each pair of nonterminals in a
bottom-up fashion. Assuming that we have the matrices corresponding to (A,D)
and (B,D), we can compute the matrix corresponding to (C,D), where C → AB,
with a single max-product of two matrices in O(x log x) time by Theorem 1.
Hence the whole computation takes O(n2x log x) time.

We compute the values on the boundaries fragment-by-fragment by construct-
ing a new vector containing the values stored in the inputs of the current frag-
ments, max-multiplying the vector by the corresponding H matrix, and thus
computing the values which should be stored in the outputs. To multiply the
vector and the matrix efficiently, we need the following lemma, which might be
of independent interest.

Lemma 2. Given a vector v of length x and an x× x matrix H(i, j) = j − i−
PΣ(i, j), the max-product of v and H can be computed in O(x) time, assuming
the matrix is given by the nonzeroes of P .

Proof. We want to compute u(j) = maxi v(i) + H(i, j) = maxi x(i) + j − i −
PΣ(i, j) for all j. Define u′(j) = u(j) − j and v′(i) = v(i) − i, then u′(j) =
maxi v

′(i) − PΣ(i, j). We will compute u′(j) for j = 1, 2, . . . , x one-by-one.
For the current value of j we store an implicit description of all t(i) = v′(i)−

PΣ(i, j). We start with t(i) = v′(i). After increasing j by one we must decrease
all t(1), t(2), . . . , t(k) by one, for some k ∈ [1, x], and compute maxi t(i). Observe
that if, at some point, t(i) ≤ t(i′) for some i < i′, we can safely forget about
i, as from this point on i′ will always be a better (or equally good) choice than
i. This motivates the following idea: we store a collection of candidate indices
i1 < i2 < . . . < i� such that t(i1) > t(i2) > . . . > t(i�), chosen so that no matter
what the future updates will be, the maximum value will be achieved on one of
them. The initial choice is very simple, we take i1 to be the rightmost maximum,
i2 the rightmost maximum on the remaining suffix, and so on. Such sequence
of indices can be easily computed with a single sweep from right to left. We
explicitly store t(i1) and, for each t > 1, δ(it) = t(it) − t(it−1), see Figure 5.

To decrease t(1), t(2), . . . , t(k) we first locate the rightmost it ≤ k (if there is
none, we terminate). Then we decrease t(i1) by one and increase δ(it+1) by one
(if t = �, we just decrease t(i1) and terminate). If as a result δ(it+1) becomes
zero, we consider two cases:

Computing the Edit Distance between SLP-Compressed Strings 235

i1 i2 i3 i4 i5

12 −3 0 −4 −2

i1 i3 i4 i5

12 −3 −4 −2

i6

−1

i6

−1

Fig. 6. Update with t = 2

1. t = 1, then we set t(i2) = t(i1)+δ(i2) and remove i1 from the list of candidate
indices,

2. t > 1, then we set δ(it+1) = δ(it) and remove it from the list of candidate
indices.

See Figure 6 for an example of the second case.
The correctness of this procedure is immediate. Note that maxi t(i) = t(i1),

hence after each update we can compute the maximum in constant time. What is
left is to show how quickly we can locate the rightmost it ≤ k. We could simply
store all candidate indices in a balanced search tree, and get O(log x) update
time. We can do better, though. Observe that what we really need is to store a
partition of the whole [1, x] into disjoint segments so that we can perform the
following two operations efficiently:

1. locating the segment which a given k belongs to,
2. merging two adjacent segments.

A straightforward application of the standard union-find data structure allows
us to achieve (amortized) O(α(2x, x)) complexity for both locating and merging.
We can do even better, though. Notice that the segments are always contiguous,
and we are actually dealing with an instance of the interval union-find problem.
It is known that in this specific case, we can get (amortized) constant time per
operation by splitting the whole universe into fragments of size Θ(log x), storing
a description of each such fragment in a single machine word (which assumes
the RAM model), and building the usual union-find structure for the universe
consisting of whole fragments [5]. Each description is constructed by simply
marking the places a new segment starts at by setting the corresponding bit to
1. Then we can locate the fragment a given element belongs to and merge two
segments in constant time using either bitwise operations, or by precomputing
a few tables of size o(x). In the latter case, the table contain, for each possible
description, answer to any query, and the new description after each possible
update. As each operation takes just constant time, we get the claimed total
complexity. ��
There are O(N

2

x2) blocks and for each of them we need O(x) time. Hence the

total complexity is O(n2x log x + N2

x). Let f = N
n and set x = f√

log f
. Then the

total time becomes O(n2f
√

log f + N2

f

√
log f) = O(nN

√
log N

n).

236 P. Gawrychowski

Theorem 2. Edit distance between two strings of length N described by SLPs

of total size n can be computed in O(nN
√

log N
n) time.

Acknowledgments. The author would like to express his gratitude to Ela
Babij, who explained the proof of Theorem 1 to him. He would also like to
thank Alex Tiskin, who was kind enough to look at the proof of Lemma 2.

References

1. Andoni, A., Krauthgamer, R., Onak, K.: Polylogarithmic approximation for edit
distance and the asymmetric query complexity. In: FOCS, pp. 377–386. IEEE Com-
puter Society (2010)

2. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Transactions on Information
Theory 51(7), 2554–2576 (2005)

3. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A unified algorithm for ac-
celerating edit-distance computation via text-compression. In: Albers, S., Marion,
J.-Y. (eds.) STACS. LIPIcs, vol. 3, pp. 529–540. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany (2009)

4. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: Unified compression-based
acceleration of edit-distance computation. CoRR, abs/1004.1194 (2010)

5. Itai, A.: Linear time restricted union/find (2006)
6. Landau, G.M., Vishkin, U.: Fast parallel and serial approximate string matching.

J. Algorithms 10(2), 157–169 (1989)
7. Lifshits, Y.: Processing Compressed Texts: A Tractability Border. In: Ma, B.,

Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg
(2007)

8. Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances. J.
Comput. Syst. Sci. 20(1), 18–31 (1980)

9. Tiskin, A.: Semi-local string comparison: algorithmic techniques and applications.
CoRR, abs/0707.3619 (2007)

10. Tiskin, A.: Fast distance multiplication of unit-Monge matrices. In: Proceedings of
the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, pp. 1287–1296. Society for Industrial and Applied Mathematics, Philadelphia
(2010)

	Faster Algorithm for Computing the Edit Distance between SLP-Compressed Strings

	Introduction
	Preliminaries
	The Algorithm
	References

