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Abstract. In this paper, we analysed the performance of deep con-
volutional neural networks on noisy images of fish species. Thorough
experiments using four variants of noisy and challenging dataset was car-
ried out. Different deep convolutional models were evaluated. Firstly, we
trained models on noisy dataset of fishing boat images. Our second app-
roach trained the models on a new dataset generated by annotating fish
instances only from the initial set of images. Lastly, we trained the models
by synthesizing more data through the application of affine transforms
and random noise. Results indicate that deep convolutional network per-
formance deteriorate in the absence of well annotated training set. This
opens direction for future research in automatic image annotation.

1 Introduction

Fish detection and recognition is important for conservation agencies, marine
live scientist, fishing industry and Governments to maintain fish supply and
balance in the ecosystem. Increase in continental reef monitoring and deep sea
surveillance has created the need for more imagery analysis. Images are generated
by mounted cameras that capture continues data for marine biologist. The rate at
which data is generated by underwater cameras, fishing boat cameras, automatic
underwater vehicles (AUV) and conveyor belt cameras challenge human manual
approach to count and sort dish species. Therefore, image based techniques are
now more popular in this domain [1,2,20].

Because of its economic importance, a lot of approaches have been proposed
in detection and classification of fishes. Researchers employ specialised software
and hardware to monitor the marine eco-system. This has helped them in study-
ing fish species behaviour [20], classifying fishes into different species [3,12], count
individual species and also track their movements [8]. To support growing needs
of the research community, competitions such as Kaggle! and Seaclef/LifeClef?
provides richly annotated datasets for researchers aiming at pushing the research
boundaries.

However, challenges still exist in identifying fish species from these images
and videos. In this domain, images obtained here are largely noisy and are
affected by illumination. Furthermore, camouflage and presence of multiple
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© Springer International Publishing AG 2017

G. Boracchi et al. (Eds.): EANN 2017, CCIS 744, pp. 216-226, 2017.
DOI: 10.1007/978-3-319-65172-9_19


https://www.kaggle.com
http://www.imageclef.org/lifeclef/2016/sea

Fish Classification in Context of Noisy Images 217

objects in a frame affect segmentation and subsequent localization of object
of interest. Hence, successful techniques rely heavily on preprocessing to achieve
good results [1,2,8,10].

In this paper, we investigate the performance of state of the art convolutional
neural network in context of noisy images. Our hypothesis is that deep learning
based methods performances will deteriorate when lacking clean and well labelled
set of images. To demonstrate this, we build an experimental framework to
test using a challenging and complex set of images provided by kaggle®. The
rest of the paper is organised as follows: Sect.2 review related literatures in
fish classification and related techniques. Section 3 outline methods employed
with datasets and models used in this work. Section 4 discusses the results and
evaluations in details. Section 5 contains the final remark.

2 Related Literatures

Fish classification is gradually becoming an interesting area in computer vision.
Papp et al. research was motivated by the Seaclef of LifeClef competition to
detect and track coral reefs from under water videos and recognize individual
whales from images [15]. In recognizing individual whales, they applied segmen-
tation after which SIFT-features (Scale Invariant Transform) and descriptors are
generated. SIFT keys offer great resistance to deformation [11]. Image descrip-
tion was based on bag of words representation generated from Gaussian mixture
model with a similarity measure calculated using RBF (Radial Basis Function).
In 2010, Spampinato et al. applied texture, boundary and shape features in
detecting and tracking fish species [20]. This is to assist marine biologist in siev-
ing through massive videos from eco-grid feeds of reefs. Scientist are interested
in studying fish behaviours in relation to aquatic movements. In their experi-
ment, features were derived from grey level histograms using Gabor filters and
grey level co-occurrence matrix (GLCM). Classification was carried out using
discriminant analysis. To track clusters, group trajectories were build by clus-
tering individual trajectories using I-kmeans. Li applied R-CNN (region convo-
lutional neural network) [6] to provide real time detection of fish species [10]. He
also demonstrated how segmentation could be achieved based on ROI (region
of interest). Subsequently, they employed region proposal network (RPN) [16]
which returns the best ROI scores at the ROI pooling layer [9]. This procedure
was repeated on the same data set as in [10] and got a MAP of 82.7% which is
slightly higher than the previous. But most importantly, this was at the expense
of significantly larger training time. Closely related to this, is the work done by
Zhang et al. in applying objectness to detect fishes from under water images [22].
Bridget et al. proposed a Haar classifier with a field programmable gate arrays
framework for detecting fish species [1].

Established algorithms where also tested on noisy and real videos/images.
Boudhane’s experiment was based on images the authors acquired from the
Baltic sea using AUV [2]. Their idea is to isolate fish from a turbid and noisy

3 https:/ /www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring.
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under water images. The authors made use of Poison-Gaussian theory in de-
noising and enhancing of image quality. They also applied posterior and log
likely-hood probabilities in detecting objects in the images. The goal is to enable
marine researchers to monitor underwater marine life through the AUV feed.
SIFT, Viola and Jones and Kalman filters were used in detecting and tracking
of fish by Ekaterina et al. [8]. Their approach was based on applying techniques
on wild videos and those obtained in a controlled environment. Background sub-
traction technique with some algorithms they developed assist in isolating fish
species. The authors reported a 73% accuracy on real videos. And they argued
that not all established solutions are applicable to real images although they
perform excellently on synthetic datasets. Noisy fish images were classified using
SVM by Hossein et al. in [7]. They used Gaussian mix model for background
subtraction and kalman filter in tracking fish species. However, they reported a
significant drop in the detection accuracy of 40.1% in low quality images com-
pared to 91.7% accuracy in high resolution images.

Similar studies were also conducted to investigate the quality of detection,
classification and tracking algorithms on fish datasets. Comparison between
PCA, SIFT and Viola and Jones performances in detecting and recognizing fish
species from images was carried out by Matai et al. in [12]. Dataset used was
privately collected and results suggested that more datasets used for training will
increase the performance. Ogunlana et al. in [14] used an SVM in classifying fish
species with 74.56% accuracy. However, the size of dataset used was small and
some assumptions were made which might not hold in other cases. Rodriguez
et al. in [17] suggested that artificial radius immune algorithm combined (ARIA)
combined with PCA-features and a KNN classifier achieves better results in fish
classification. Training was carried out using six species of fishes in formalde-
hyde. Nguyen et al. in [13] investigated a combination of GMM, kalman filters
and frame-differencing in detecting and tracking fish species. Their approach
shows robustness to different scenarios considered during experimentation such
as speed, clarity of water and appearance than other approaches.

In this paper, we propose an experimental framework that study performance
of convolutional neural networks in the context of noisy images. Results obtained
shows that when images are well annotated, performances improves.

3 Dataset

In this paper we used a dataset of images provided by kaggle*. It contains 3777
images of fish. The fish categories include Albacore tuna, Bigeye tuna, Yellowfin
tuna, Dolphin, Lampris guttatus, Sharks, other categories and images with no
Fish, labelled as ALB, BET, YFT, LAG, DOL, SHARK, OTHER and NoF. It is
worth pointing out that these images are extracted from video footage of fishing
boat. Fish detection in these images is challenging even to the humans. Light
variation in images, presence of multiple objects, pulse variation and partial

4 https:/ /www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring.
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(c) Original + Noise Image. (d) Annotated + Noise Image.

Fig. 1. Sample images

occlusion makes fish recognition very challenging. A sample image from this
dataset is shown in Fig. 1a below.

A second dataset was generated from the original images by annotating all
the images using an annotation tool®. It contains 3777 fish images. Annotation
was done by isolating individual fish instances from an image using a bounding
box. The bounding box was made big enough to incorporate other surrounding
objects to maintain variability in the training set. Annotated instances contain
a complete fish with head and tail visible or partially occluded head or tail
but not both. It was observed that object view angles and light variation with
shadows differs in similar images. This difference was considered visible enough
to distinguish adjacent image frames as such no further cleaning was required.
Figure 1b shows the result of this process.

A third dataset was created from the previous datasets. Images where gener-
ated from both the original and annotated images. The motive behind this is to
address the biased nature of image distribution among classes. We also intend to
achieve optimum model performance with more data. The new dataset contains
12,275 images across 8 categories. These images were synthesized by applying
random noise and affine transform. Images were distorted using varying degree

5 http://sloth.readthedocs.io/en/latest/.
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Table 1. Dataset summary

Dataset Number of images | Noise | Affine
Original 3777 - -
Annotated 3777 - -
Original+Noise 12275 X X
Annotated+Noise | 12275 X X

of rotation angles (between 15 and 105°) and noise intensities. It is similar to
the work done by Dostovistkiy et al. in [4] to generate training samples. This is
to create enough distortion to generate distinct images from the originals. The
result is shown in Fig.1lc and d. A summary of the datasets is shown in the
following Table 1.

4 Methods

This section describes the techniques used in the study. Details of CNN archi-
tecture and model initialization are also discussed.

4.1 VGG Network

VGG networks were proposed by the Oxford visual geometry group (VGG) [19].
These networks where 11, 13, 16 and 19 layers deep also known as VGG-11,
VGG-13, VGG-16 and VGG-19. These models ranked first and second place in
the ImageNet classification challenge in 2014. Their models are one of the most
widely used CNN models in image classification today. For the purpose of this
experiment, we considered an untrained VGG-16 network. The model contains
5 blocks of 13 convolution layers and 3 fully connected layers. It makes use of
a filter size of 3 for all convolution layers. It also employs a max-pooling layer
between successive convolution blocks with a unit stride for down sampling.
The 3 fully connected layers contains 4096, 4096 and 1000 ReLu activated units
respectively (see [19] for details). The VGG-16 network architecture is illustrated
below (Fig. 2).

Given that the dataset used has only 8 categories, the final layer was replaced
with an 8 way soft-max classifier to suit experiment.

4.2 Transfer Learning

The second model used was proposed by applying transfer learning to the VGG-
16 model from a pre-trained network on ImageNet dataset. Transfer learning
attempts to reproduce similar results from experience on previous task. It enables
a new model to inherit learned parameters from another trained model. This
has proved to be effective where training images are scarce [5,21]. The intuition
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Fig. 2. VGG-16 architecture

behind this is to have a model that have already converged for comparison
purposes. Model architecture is exactly the same as the one in Sect.4.1 but
its weights and biases were initialized from learned parameter from training on
ImageNet dataset. The motivation behind using transfer learning is that given
the size of the dataset, we try to fine tune the network as against learning new
features from scratch with the hope that better results could be achieved.

5 Experiments and Results

Both Experiments where ran on NVIDIA DGX-1 machine®. Full advantage of the
multiple GPU system was taken and this significantly reduced training and test
time. Models were implemented using keras” with tensorflow® back end. Before
training was initiated, all images were resized to 224 by 224. This is to accom-
modate them in the VGG-16 model. Each model was trained using all datasets

5 http://www.nvidia.com/object/deep-learning-system.html.
" https://keras.io/.
8 https://www.tensorflow.org/.
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described above. At the beginning of training, images were shuffled, then split
into test and train with 75% of data used for training and the remaining 25% of
data for testing. Experiment on VGG-16 was carried out using a learning rate
of 1072 over 16 epochs and training was done using stochastic gradient descend
with a batch size of 32. A weight decay was chosen as a ratio of learning rate to
number of epochs and a momentum of 0.9 was maintained. The settings were
to ensure faster convergence of models. Dataset normalization was applied by
simply dividing each pixel by 255 for both training and test set where as the
original VGG-16 experiment normalize by subtracting the mean pixel value from
each pixel. This does not affect model accuracy but training time. We also differ
in the choice of weight decay because subsequent experiments revealed that a
dynamic weight decay works better than a statically chosen one. Training batch
size was significantly lower than the one proposed in VGG-16 because the prob-
lem has significantly smaller dataset. Moreover, with smaller batch size shorter
gradient updates can be realized. Apart from resizing, no further preprocessing
was applied. During testing, we did not employ random crop or other methods
as in [19], images are resized and the network is allowed to freely process the
images.

Initial training settings for VGG-16 model were maintained for transfer learn-
ing as well. However, all the layers of the pre-trained model were fine tuned. No
layer was fixed, hence the model was allowed the freedom to update parameter
values for better performance similar to the methodology in [18].

Log loss and accuracy metrics were used to evaluate the models. Multi-class
logarithmic loss is shown in Eq. (1) below;

| NoM
logloss = N Zzyijl()g(pij) (1)

i=1 j=1

Where N and M represents the size of the sample and categories respectively, y;;
is the correct prediction of sample i being in category j, and p;; is the estimated
probability that the sample i belongs to the class j. Logarithm loss penalizes
the accuracy of the classifiers on false positives. Probabilities where obtained as
predictions from the soft-max layer in the networks. Table 2 below shows the log
loss summary of the experiments conducted.

The accuracy of a classifier is the ratio of number of correct prediction from
sample to the total number of samples to be predicted. Accuracy is represented
as follows;

number of correct predictions

accuracy = *100 (2
4 total number of all cases to be predicted 2)
Table 2. Models log loss
Model Original | Annotated | Original+Noise | Annotated+Noise
VGG-16 0.54 1.20 0.12 0.38

VGG-16 (transfer) | 18.45 27.88 0.10 30.61
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Table 3 shows test accuracy of models.

Table 3. Test accuracy of models

Model Original | Annotated | Original+Noise | Annotated+Noise
VGG-16 97.20% |90.17% 99.38% 98.00%
VGG-16 (transfer) | 86.60% | 79.81% 99.54% 77.80%

High accuracy of models was observed during testing on original dataset.
This could be attributed partly to the fact that images were obtained from
fishing boat cameras. In a still camera with 24 frames per second set up, not
much difference exists between adjacent frames. Although the object view angles
and illumination may vary. Again, closely looking at the feature maps from the
network layers revealed that prominent background objects also contributed to
this. Learning was tuned towards these objects as against the fish instance. This
can be seen clearly in the cross section of feature maps from the first and fourth
convolutional layers in the figure below (Fig. 3).

(a) Convolution Layer 1. (b) Convolution Layer 4.

Fig. 3. Feature maps from original image

This effect became more obvious as we go deeper into the network. When
training is done on these noisy images, it over-fit on stationary objects that
re-appear in images. This adds to the high accuracies recorded. However, these
effects were minimal in the experiment with annotated dataset. Fish instances
dominate images and this suggest that learning is based on object of interest.
Fish parts are visible through the feature maps even as we go deeper into the
network. A cross section of feature maps from the first and fourth convolutional
layers is shown in the figure below (Fig.4).
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(a) Convolution Layer 1. (b) Convolution Layer 4.

Fig. 4. Feature maps from annotated image

Unbalanced nature of image distribution among classes is also associated with
weird model results. This issue was addressed when generating more data for the
experiment. Large margin between classes was checked to reduce the variance.
Test results shows higher recall when more training data is available. Initial
experiments with annotated data performed poorly than the original dataset
but we observed increase in performance when more training examples become
available. A summary of sensitivity analysis of VGG-16 model (untrained) on the
datasets is shown in Table 4. Experiments on the new dataset showed significant
increase in accuracy by both models but did not reduce the effects observed.
However, transfer learning model log loss was far worse than expected. This
could be associated with its strong confidence in false classifications. Another
reason could be the variation between images used and the ImageNet images.
Transfer learning works best when the two datasets are closely similar.

Table 4. Summary of VGG-16 model performance

Dataset Precision | Recall | F1-score
Original 0.82 0.82 |0.81
Annotated 0.43 0.54 |0.47
Original+Noise 0.92 0.91 0.91
Annotated+Noise | 0.96 0.96 10.96

6 Conclusion

Deep convolutional neural network performances in context of noisy images was
studied. Results shows that in noisy images, the network learns general features
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that are also common to all objects in the images. Features from these noisy
prominent objects becomes more dominant as we go deeper into the network.
As such, they prevent the network from learning specific fish features required
for category classification. With well annotated images, the network learns deep
features that are category specific and for correct classification. Transfer learning
is an emerging area in CNN that has established its presence in recent litera-
tures and has shown stringent results in recent times. But in this study, transfer
learning from a pre-trained model on ImageNet was not effective. Learned fea-
tures are transferable but a closely related dataset could have produced better
results. These Results further solidifies that optimum performances are obtained
when careful annotation of images is carried out. Manually annotating a massive
dataset is challenging and automatic annotation require other techniques such
as segmentation and objectness approaches to achieve good results. This opens
new research direction in the area of image labelling and data annotation.
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