
Information Processing Letters 129 (2018) 11–15
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A hardness result and new algorithm for the longest common

palindromic subsequence problem

Shunsuke Inenaga a,∗, Heikki Hyyrö b

a Department of Informatics, Kyushu University, Japan
b Faculty of Natural Sciences, University of Tampere, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 January 2017
Accepted 29 August 2017
Available online 11 September 2017
Communicated by R. Uehara

Keywords:
Algorithms
String processing
Palindromic subsequences
Longest common subsequences
Nesting rectangles

The 2-LCPS problem, first introduced by Chowdhury et al. (2014) [17], asks one to compute
(the length of) a longest common palindromic subsequence between two given strings A
and B . We show that the 2-LCPS problem is at least as hard as the well-studied longest
common subsequence problem for four strings. Then, we present a new algorithm which
solves the 2-LCPS problem in O (σ M2 +n) time, where n denotes the length of A and B , M
denotes the number of matching positions between A and B , and σ denotes the number of
distinct characters occurring in both A and B . Our new algorithm is faster than Chowdhury
et al.’s sparse algorithm when σ = o(log2 n log logn).

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Given k ≥ 2 string, the longest common subsequence prob-
lem for k strings (k-LCS problem for short) asks to compute
(the length of) a longest string that appears as a subse-
quence in all the k strings. Whilst the problem is known
to be NP-hard for arbitrary many strings [1], it can be
solved in polynomial time for a constant number of strings
(namely, when k is constant).

The 2-LCS problem that concerns two strings is the
most basic, but also the most widely studied and used,
form of longest common subsequence computation. In-
deed, the 2-LCS problem and similar two-string variants
are central topics in theoretical computer science and have
applications e.g. in computational biology, spelling correc-
tion, optical character recognition and file versioning. The
fundamental solution to the 2-LCS problem is based on
dynamic programming [2] and takes O (n2) for two given

* Corresponding author.
E-mail addresses: inenaga@inf.kyushu-u.ac.jp (S. Inenaga),

heikki.hyyro@uta.fi (H. Hyyrö).
http://dx.doi.org/10.1016/j.ipl.2017.08.006
0020-0190/© 2017 Elsevier B.V. All rights reserved.
strings of length n.1 Using the so-called “Four Russians”
technique [3], one can solve the 2-LCS problem for strings
over a constant alphabet in O (n2/ log2 n) time [4]. For a
non-constant alphabet, the 2-LCS problem can be solved in
O (n2 log log n/ log2 n) time [5]. Despite much effort, these
have remained as the best known algorithms to the 2-LCS
problem, and no strongly sub-quadratic time 2-LCS algo-
rithm is known. Moreover, the following conditional lower
bound for the 2-LCS problem has been shown: For any
constant λ > 0, an O (n2−λ)-time algorithm which solves
the 2-LCS problem over an alphabet of size 7 refutes the
so-called strong exponential time hypothesis (SETH) [6].

In many applications it is reasonable to incorporate ad-
ditional constraints to the LCS problem (see e.g. [7–16]).
Along this line of research, Chowdhury et al. [17] intro-
duced the longest common palindromic subsequence problem
for two strings (2-LCPS problem for short), which asks one
to compute (the length of) a longest common subsequence

1 For simplicity, we assume that input strings are of equal length n.
However, all algorithms mentioned and proposed in this paper are appli-
cable for strings of different lengths.

http://dx.doi.org/10.1016/j.ipl.2017.08.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:inenaga@inf.kyushu-u.ac.jp
mailto:heikki.hyyro@uta.fi
http://dx.doi.org/10.1016/j.ipl.2017.08.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.08.006&domain=pdf

12 S. Inenaga, H. Hyyrö / Information Processing Letters 129 (2018) 11–15
between strings A and B with the additional constraint
that the subsequence must be a palindrome. The problem
is equivalent to finding (the length of) a longest palin-
drome that appears as a subsequence in both strings A
and B , and is motivated for biological sequence compar-
ison [17]. Chowdhury et al. presented two algorithms for
solving the 2-LCPS problem. The first is a conventional dy-
namic programming algorithm that runs in O (n4) time and
space. The second uses sparse dynamic programming and
runs in O (M2 log2 n log log n + n) time and O (M2) space,2

where M is the number of matching position pairs be-
tween A and B .

The contribution of this paper is two-folds: Firstly, we
show a tight connection between the 2-LCPS problem and
the 4-LCS problem by giving a simple linear-time reduc-
tion from the 4-LCS problem to the 2-LCPS problem. This
means that the 2-LCPS problem is at least as hard as
the 4-LCS problem, and thus achieving a significant im-
provement on the 2-LCPS problem implies a breakthrough
on the well-studied 4-LCS problem, to which all exist-
ing solutions [18–22] require at least O (n4) time in the
worst case. Secondly, we propose a new algorithm for the
2-LCPS problem which runs in O (σ M2 + n) time and uses
O (M2 + n) space, where σ denotes the number of distinct
characters occurring in both A and B . We remark that our
new algorithm is faster than Chowdhury et al.’s sparse al-
gorithm with O (M2 log2 n log log n + n) running time [17]
when σ = o(log2 n log log n).

2. Preliminaries

Let � be an alphabet. An element of � is called a
character and that of �∗ is called a string. For any string
A = a1a2 · · ·an of length n, |A| denotes its length, that is,
|A| = n.

For any string A = a1 · · ·am , let AR denote the reverse
string of A, namely, AR = am · · ·a1. A string P is said to be
a palindrome iff P reads the same forward and backward,
namely, P = P R .

A string S is said to be a subsequence of another string
A iff there exist increasing positions 1 ≤ i1 < · · · < i|S| ≤
|A| in A such that S = ai1 · · ·ai|S| . In other words, S is a
subsequence of A iff S can be obtained by removing zero
or more characters from A.

A string S is said to be a common subsequence of k
strings (k ≥ 2) iff S is a subsequence of all the k strings.
S is said to be a longest common subsequence (LCS) of the k
strings iff other common subsequences of the k strings are
not longer than S . The problem of computing (the length
of) an LCS of k strings is called the k-LCS problem.

A string P is said to be a common palindromic subse-
quence of k strings (k ≥ 2) iff P is a palindrome and is a
subsequence of all these k strings. P is said to be a longest
common palindromic subsequence (LCPS) of the k strings iff

2 The original time bound claimed in [17] is O (M2 log2 n log logn), since
they assume that the matching position pairs are already computed. For
given strings A and B of length n each over an integer alphabet of poly-
nomial size in n, we can compute all matching position pairs of A and B
in O (M + n) time.
other common palindromic subsequences of the k strings
are not longer than P .

In this paper, we consider the following problem:

Problem 1 (The 2-LCPS problem). Given two strings A and B ,
compute (the length of) an LCPS of A and B .

For two strings A = a1 · · ·an and B = b1 · · ·bn , an or-
dered pair (i, j) with 1 ≤ i, j ≤ n is said to be a matching
position pair between A and B iff ai = b j . Let M be the
number of matching position pairs between A and B . We
can compute all the matching position pairs in O (n + M)

time for strings A and B over integer alphabets of polyno-
mial size in n.

3. Reduction from 4-LCS to 2-LCPS

In this section, we show that the 2-LCPS problem is at
least as hard as the 4-LCS problem.

Theorem 1. The 4-LCS problem can be reduced to the 2-LCPS
problem in linear time.

Proof. Let A, B , C , and D be four input strings for the
4-LCS problem. We wish to compute an LCS of all these
four strings. For simplicity, assume |A| = |B| = |C | = |D| =
n. We construct two strings X = AR Z B and Y = C R Z D of
length 4n +1 each, where Z = $2n+1 and $ is a single char-
acter which does not appear in A, B , C , or D . Then, since
Z is a common palindromic subsequence of X and Y , and
since |Z | = 2n +1 while |A| +|B| = |C | +|D| = 2n, any LCPS
of X and Y must be at least 2n + 1 long containing Z as a
substring. This implies that the alignment for any LCPS of
X and Y is enforced so that the two Z ’s in X and Y are
fully aligned. Since any LCPS of X and Y is a palindrome,
it must be of form T R Z T , where T is an LCS of A, B , C ,
and D . Thus, we can solve the 4-LCS problem by solving
the 2-LCPS problem. �
Example 1. Consider four strings A = aabbccc, B =
aabbcaa, C = aaabccc, and D = abcbbbb of length
7 each. Then, an LCPS of X = cccbbaa$15aabbcaa and
Y = cccbaaa$15abcbbbb is cba$15abc, which is ob-
tained by e.g., the following alignment:

Observe that abc is an LCS of A, B , C , and D .

4. A new algorithm for 2-LCPS

In this section, we present a new algorithm for the
2-LCPS problem.

4.1. Finding rectangles with maximum nesting depth

Our algorithm follows the approach used in the sparse
dynamic programming algorithm by Chowdhury et al. [17]:

S. Inenaga, H. Hyyrö / Information Processing Letters 129 (2018) 11–15 13
Fig. 1. Illustration for the relationship between the 2-LCPS problem and the MDNRS problem. The two nesting rectangles defined by 〈(i, k), (j, �)〉 and
〈(i′, k′), (j′, �′)〉 correspond to a common palindromic subsequence cc′c′c of A and B , where c = ci,k = c j,� and c′ = ci′,k′ = c j′,�′ .
They showed that the 2-LCPS problem can be reduced to a
geometry problem called the maximum depth nesting rectan-
gle structures problem (MDNRS problem for short), defined
as follows:

Problem 2 (The MDNRS problem).

Input: A set of integer points (i, k) on a 2D grid, where
each point is associated with a color c ∈ �. The color of a
point (i, k) is denoted by ci,k .

Output: A largest sorted list L of pairs of points, such that

1. for any 〈(i, k), (j, �)〉 ∈ L, ci, j = c j,� , and
2. for any two adjacent elements 〈(i, k), (j, �)〉 and

〈(i′, k′), (j′, �′) in L, i′ > i, k′ > k, j′ < j, and �′ < �.

Consider two points (i, k), (j, �) in the grid such that
i < j and k < � (see also Fig. 1). Imagine a rectangle de-
fined by taking (i, k) as its lower-left corner and (j, �) as
its upper-right corner. Clearly, this rectangle can be identi-
fied as the pair 〈(i, k), (j, �)〉 of points. Now, suppose that
i and k are positions of one input string A = a1 · · ·am and
j and � are positions of the other input string B = b1 · · ·bn

for the 2-LCPS problem. Then, the first condition ci, j = c j,�

for any element in L implies that ai = a j = bk = b� , namely,
i, j, k, � are matching positions in A and B . Meanwhile,
the second condition i′ > i, k′ > k, j′ < j, and �′ < � im-
plies that i′, j′, k′, �′ are matching positions that are “in-
side” i, j, k, �. Hence if we define the set of 2D points (i, k)

to consist of the set of matching position pairs between
A and B and then solve the MDNRS problem, the solu-
tion list L describes a set of rectangles with maximum
nesting depth, and the characters that correspond to the
lower-left and upper-right corner matching position pairs
define an LCPS between the input strings A and B . Recall
that M is the number of such pairs. As here the lower-left
and upper-right corners of each rectangle corresponding to
matching position pairs, the overall number of unique rect-
angles in this type of MDNRS problem is O (M2).

4.2. Our new algorithm

Consider the MDNRS over the set of 2D points (i, k) de-
fined by the matching position pairs between A and B , as
described above.
The basic strategy of our algorithm is to process from
larger rectangles to smaller ones. Given a rectangle R =
〈(i, k), (j, �)〉, we locate for each character c ∈ � a maxi-
mal sub-rectangle 〈(i′, k′), (j′, �′)〉 in R that is associated to
character c (namely, ci′,k′ = c j′,�′ = c). The following lemma
is important:

Lemma 1. For any character c ∈ �, its maximal sub-rectangle
is unique (if it exists).

Proof. Assume on the contrary that there are two dis-
tinct maximal sub-rectangles 〈(i′, k′), (j′, �′)〉 and 〈(i′′, k′′),
(j′′, �′′)〉 both of which are associated to character c. As-
sume w.o.l.g. that i′ > i′′ , k′ < k′′ , j′ < j′′ and �′′ > �′ .
Then, there is a larger sub-rectangle 〈(i′′, k′), (j′, �′′)〉 of R
which contains both of the above rectangles, a contradic-
tion. Hence, for any character c, a maximal sub-rectangle
in R is unique if it exists. �

Lemma 1 permits us to define the following recursive
algorithm for the MDNRS problem:

We begin with the initial virtual rectangle 〈(0, 0),

(n + 1, n + 1)〉. Suppose we are processing a rectangle R .
For each character c ∈ �, we compute its maximal sub-
rectangle Rc in R and recurse into Rc until we meet one
of the following conditions:

(1) There remains only a single point in Rc ,
(2) There remains no point in Rc , or
(3) Rc is already processed.

The recursion depth clearly corresponds to the rectangle
nesting depth, and we associate each R with its maximum
nesting depth dR . Whenever we meet a rectangle Rc with
Condition (3), we do not recurse inside Rc but simply re-
turn the already-computed maximum nesting depth dRc .

Initially, every rectangle R is marked non-processed,
and it gets marked processed as soon as the recursion
for R is finished and R receives its maximum nesting
depth. Each already processed rectangle remains marked
processed until the end of the algorithm.

Theorem 2. Given two strings A and B of length n over an in-
teger alphabet of polynomial size in n, we can solve the MDNRS
problem (and hence the 2-LCPS problem) in O (σ M2 + n) time

14 S. Inenaga, H. Hyyrö / Information Processing Letters 129 (2018) 11–15
and O (M2 + n) space, where σ denotes the number of distinct
characters occurring in both A and B.

Proof. To efficiently perform the above recursive algo-
rithm, we conduct the following preprocessing (alphabet
reduction) and construct the two following data structures.

Alphabet reduction: First, we reduce the alphabet size as
follows. We radix sort the original characters in A and B ,
and replace each original character by its rank in the
sorted order. Since the original integer alphabet is of poly-
nomial size in n, the radix sort can be implemented with
O (1) number of bucket sorts, taking O (n) total time. This
way, we can treat A and B as strings over an alphabet
[1, 2n]. Further, we remove all characters that occur only
in A from A, and remove all characters that occur only in
B from B . Let Â = â1 · · · âm̂ and B̂ = b̂1 · · · b̂n̂ be the result-
ing strings, respectively. It is clear that we can compute
Â and B̂ in O (n) time. The key property of the shrunk
strings Â and B̂ is that since all M matching position pairs
in the original strings A and B are essentially preserved in
Â and B̂ , it is enough to work on strings Â and B̂ to solve
the original problem. If σ is the number of distinct char-
acters occurring in both A and B , then Â and B̂ are strings
over alphabet [1, σ]. It is clear that σ ≤ min{m̂, ̂n} ≤ n.

Data structure for finding next maximal sub-rectangles:
For each character c ∈ [1, σ], let P Â,c and PB̂,c be the set
of positions of Â and B̂ which match c, namely, P Â,c = {i |
âi = c, 1 ≤ i ≤ m̂} and PB̂,c = {k | b̂k = c, 1 ≤ k ≤ n̂}. Then,
given a rectangle R , finding the maximal sub-rectangle Rc

for character c reduces to two predecessor and two suc-
cessor queries on P Â,c and PB̂,c . We use two tables of size
σ × m̂ each, which answer predecessor/successor queries
on Â in O (1) time. Similarly, we use two tables of size
σ × n̂ each, which answer predecessor/successor queries
on B̂ in O (1) time. Such tables can easily be constructed
in O (σ (m̂+n̂)) time and occupy O (σ (m̂+n̂)) space. Notice
that for any position i in Â there exists a matching posi-
tion pair (i, k) for some position k in B̂ , and vice versa.
Therefore, we have max{m̂, ̂n} ≤ M . Since σ ≤ min{m̂, ̂n} ≤
max{m̂, ̂n}, we have σ(m̂ + n̂) = O (M2). Hence the data
structure occupies O (M2) space and can be constructed in
O (M2) time.

Data structure for checking already processed rectan-
gles: To construct a space-efficient data structure for
checking if a given rectangle is already processed or
not, we here associate each position in Â and B̂ with
the following character counts: For any position i in Â,
let cnt Â(i) = |{i′ | âi′ = âi, 1 ≤ i′ ≤ i}| and for any po-

sition k in B̂ , let cntB̂(k) = |{k′ | b̂k′ = b̂k, 1 ≤ k′ ≤ k}|.
For each character c ∈ [1, σ], let Mc denotes the num-
ber of matching position pairs between Â and B̂ for
character c. We maintain the following table Tc of size
Mc × Mc : For any two matching positions pairs (i, k)

and (j, �) for character c (namely, âi = b̂k = â j = b̂� = c),
we set Tc[cnt Â(i), cntB̂(k), cnt Â(j), cnt Â(�)] = 0 if the cor-
responding rectangle 〈(i, k), (j, �)〉 is non-processed, and
set Tc[cnt Â(i), cntB̂(k), cnt Â(j), cnt Â(�)] = 1 if the corre-
sponding rectangle is processed. Clearly, this table tells us
whether a given rectangle is processed or not in O (1) time.
The total size for these tables is

∑
c∈[1,σ] M2

c = O (M2).
We are now ready to show the complexity of our recur-

sive algorithm.

Main routine: A unique visit to a non-processed rectan-
gle can be charged to itself. On the other hand, each dis-
tinct visit to a processed rectangle R can be charged to
the corresponding rectangle which contains R as one of
its maximal sub-rectangles. Since we have O (M2) rectan-
gles, the total number of visits of the first type is O (M2).
Also, since we visit at most σ maximal sub-rectangles for
each of the M2 rectangles, the total number of visits of the
second type is O (σ M2). Using the two data structures de-
scribed above, we can find each maximal sub-rectangle in
O (1) time and can check if it is already processed or not
in O (1) time. For each rectangle after recursion, it takes
O (σ) time to calculate the maximum nesting depth from
all of its maximal sub-rectangles. Thus, the main routine of
our algorithm takes a total of O (σ M2) time.

Overall, our algorithm takes O (σ M2 +n) time and uses
O (M2 + n) space. �

5. Conclusions and further work

In this paper, we studied the problem of finding a
longest common palindromic subsequence of two given
strings, which is called the 2-LCPS problem. We proposed
a new algorithm which solves the 2-LCPS problem in
O (σ M2 + n) time and O (M2 + n) space, where n denotes
the length of two given strings A and B , M denotes the
number of matching position pairs of A and B , and σ de-
notes the number of distinct characters occurring in both
A and B .

Since the 2-LCPS problem is at least as hard as the well-
studied 4-LCS problem, and since any known solution to
the 4-LCS problem takes at least O (n4) time in the worst
case, it seems a big challenge to solve the 2-LCPS prob-
lem in O (M2−λ) or O (n4−λ) time for any constant λ > 0.
This view is supported by the recent result on a condi-
tional lowerbound for the k-LCS problem: If there exists a
constant λ > 0 and an integer k ≥ 2 such that the k-LCS
problem over an alphabet of size O (k) can be solved in
O (nk−λ) time, then the famous SETH (strong exponential
time hypothesis) fails [6].

We also remark that our method should have a good
expected performance. Consider two random strings A
and B of length n each over an alphabet of size σ .
Since roughly every σ -th character matches between A
and B , we have M = O (n2/σ). Hence our method runs
in O (σ M2 + n) = O (n4/σ) expected time. On the other
hand, the conventional dynamic programming algorithm
of Chowdhury et al. [17] takes �(n4) time for any in-
put strings of length n each. Thus, our method achieves
a σ -factor speed-up in expectation.

As an open problem, we are interested in whether the
space requirement of our algorithms can be reduced, as
this could be of practical importance.

S. Inenaga, H. Hyyrö / Information Processing Letters 129 (2018) 11–15 15
References

[1] D. Maier, The complexity of some problems on subsequences and
supersequences, J. ACM 25 (2) (1978) 322–336.

[2] R.A. Wagner, M.J. Fischer, The string-to-string correction problem,
J. ACM 21 (1) (1974) 168–173.

[3] V. Arlazarov, E. Dinic, M. Kronrod, I. Faradzev, On economical con-
struction of the transitive closure of a directed graph, Sov. Math.
Dokl. 11 (1970) 1209–1210.

[4] W.J. Masek, M. Paterson, A faster algorithm computing string edit
distances, J. Comput. Syst. Sci. 20 (1) (1980) 18–31.

[5] S. Grabowski, New tabulation and sparse dynamic programming
based techniques for sequence similarity problems, Discrete Appl.
Math. 212 (2016) 96–103.

[6] A. Abboud, A. Backurs, V.V. Williams, Tight hardness results for
LCS and other sequence similarity measures, in: FOCS 2015, 2015,
pp. 59–78.

[7] F.Y.L. Chin, A.D. Santis, A.L. Ferrara, N.L. Ho, S.K. Kim, A simple al-
gorithm for the constrained sequence problems, Inf. Process. Lett.
90 (4) (2004) 175–179.

[8] A.N. Arslan, Regular expression constrained sequence alignment,
J. Discret. Algorithms 5 (4) (2007) 647–661.

[9] C.S. Iliopoulos, M.S. Rahman, New efficient algorithms for the LCS
and constrained LCS problems, Inf. Process. Lett. 106 (1) (2008)
13–18.

[10] G. Kucherov, T. Pinhas, M. Ziv-Ukelson, Regular language constrained
sequence alignment revisited, J. Comput. Biol. 18 (5) (2011) 771–781.

[11] S. Deorowicz, Quadratic-time algorithm for a string constrained LCS
problem, Inf. Process. Lett. 112 (11) (2012) 423–426.
[12] E. Farhana, M.S. Rahman, Doubly-constrained LCS and hybrid-
constrained LCS problems revisited, Inf. Process. Lett. 112 (13) (2012)
562–565.

[13] D. Zhu, X. Wang, A simple algorithm for solving for the generalized
longest common subsequence (LCS) problem with a substring exclu-
sion constraint, Algorithms 6 (3) (2013) 485–493.

[14] E. Farhana, M.S. Rahman, Constrained sequence analysis algorithms
in computational biology, Inf. Sci. 295 (2015) 247–257.

[15] D. Zhu, Y. Wu, X. Wang, An efficient algorithm for a new constrained
LCS problem, in: ACIIDS 2016, 2016, pp. 261–267.

[16] D. Zhu, Y. Wu, X. Wang, An efficient dynamic programming algorithm
for STR-IC-STR-EC-LCS problem, in: GPC 2016, 2016, pp. 3–17.

[17] S.R. Chowdhury, M.M. Hasan, S. Iqbal, M.S. Rahman, Computing a
longest common palindromic subsequence, Fundam. Inform. 129 (4)
(2014) 329–340.

[18] S.Y. Itoga, The string merging problem, BIT 21 (1) (1981) 20–30.
[19] W.J. Hsu, M.W. Du, Computing a longest common subsequence for a

set of strings, BIT 24 (1) (1984) 45–59.
[20] R.W. Irving, C. Fraser, Two algorithms for the longest common subse-

quence of three (or more) strings, in: CPM 1992, 1992, pp. 214–229.
[21] K. Hakata, H. Imai, The longest common subsequence problem for

small alphabet size between many strings, in: ISAAC 1992, 1992,
pp. 469–478.

[22] Q. Wang, D. Korkin, Y. Shang, A fast multiple longest common subse-
quence (MLCS) algorithm, IEEE Trans. Knowl. Data Eng. 23 (3) (2011)
321–334.

http://refhub.elsevier.com/S0020-0190(17)30148-5/bib4D616965723738s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib4D616965723738s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib5761676E6572463734s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib5761676E6572463734s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib417274617A61726F763730s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib417274617A61726F763730s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib417274617A61726F763730s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib4D6173656B503830s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib4D6173656B503830s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib477261626F77736B693136s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib477261626F77736B693136s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib477261626F77736B693136s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib4162626F756442573135s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib4162626F756442573135s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib4162626F756442573135s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib4368696E5346484B3034s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib4368696E5346484B3034s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib4368696E5346484B3034s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib4172736C616E3037s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib4172736C616E3037s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib496C696F706F756C6F7352303861s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib496C696F706F756C6F7352303861s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib496C696F706F756C6F7352303861s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib4B75636865726F76505A3131s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib4B75636865726F76505A3131s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib44656F726F7769637A3132s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib44656F726F7769637A3132s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib46617268616E61523132s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib46617268616E61523132s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib46617268616E61523132s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib5A6875573133s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib5A6875573133s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib5A6875573133s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib46617268616E61523135s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib46617268616E61523135s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib5A687557573136s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib5A687557573136s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib5A68755757313661s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib5A68755757313661s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib43686F7764687572794849523134s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib43686F7764687572794849523134s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib43686F7764687572794849523134s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib49746F67613831s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib487375443834s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib487375443834s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib497276696E67463932s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib497276696E67463932s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib48616B617461493932s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib48616B617461493932s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib48616B617461493932s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib57616E674B533131s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib57616E674B533131s1
http://refhub.elsevier.com/S0020-0190(17)30148-5/bib57616E674B533131s1

	A hardness result and new algorithm for the longest common palindromic subsequence problem
	1 Introduction
	2 Preliminaries
	3 Reduction from 4-LCS to 2-LCPS
	4 A new algorithm for 2-LCPS
	4.1 Finding rectangles with maximum nesting depth
	4.2 Our new algorithm

	5 Conclusions and further work
	References

