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1. Introduction

Given k > 2 string, the longest common subsequence prob-
lem for k strings (k-LCS problem for short) asks to compute
(the length of) a longest string that appears as a subse-
quence in all the k strings. Whilst the problem is known
to be NP-hard for arbitrary many strings [1], it can be
solved in polynomial time for a constant number of strings
(namely, when k is constant).

The 2-LCS problem that concerns two strings is the
most basic, but also the most widely studied and used,
form of longest common subsequence computation. In-
deed, the 2-LCS problem and similar two-string variants
are central topics in theoretical computer science and have
applications e.g. in computational biology, spelling correc-
tion, optical character recognition and file versioning. The
fundamental solution to the 2-LCS problem is based on
dynamic programming [2] and takes O(n?) for two given
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strings of length n.! Using the so-called “Four Russians”
technique [3], one can solve the 2-LCS problem for strings
over a constant alphabet in O(nz/log2 n) time [4]. For a
non-constant alphabet, the 2-LCS problem can be solved in
0 (n? loglogn/log2 n) time [5]. Despite much effort, these
have remained as the best known algorithms to the 2-LCS
problem, and no strongly sub-quadratic time 2-LCS algo-
rithm is known. Moreover, the following conditional lower
bound for the 2-LCS problem has been shown: For any
constant A > 0, an O(n?~*)-time algorithm which solves
the 2-LCS problem over an alphabet of size 7 refutes the
so-called strong exponential time hypothesis (SETH) [6].
In many applications it is reasonable to incorporate ad-
ditional constraints to the LCS problem (see e.g. [7-16]).
Along this line of research, Chowdhury et al. [17] intro-
duced the longest common palindromic subsequence problem
for two strings (2-LCPS problem for short), which asks one
to compute (the length of) a longest common subsequence

1 For simplicity, we assume that input strings are of equal length n.
However, all algorithms mentioned and proposed in this paper are appli-
cable for strings of different lengths.
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between strings A and B with the additional constraint
that the subsequence must be a palindrome. The problem
is equivalent to finding (the length of) a longest palin-
drome that appears as a subsequence in both strings A
and B, and is motivated for biological sequence compar-
ison [17]. Chowdhury et al. presented two algorithms for
solving the 2-LCPS problem. The first is a conventional dy-
namic programming algorithm that runs in O (n*) time and
space. The second uses sparse dynamic programming and
runs in O (M2 log®nloglogn +n) time and O (M?2) space?
where M is the number of matching position pairs be-
tween A and B.

The contribution of this paper is two-folds: Firstly, we
show a tight connection between the 2-LCPS problem and
the 4-LCS problem by giving a simple linear-time reduc-
tion from the 4-LCS problem to the 2-LCPS problem. This
means that the 2-LCPS problem is at least as hard as
the 4-LCS problem, and thus achieving a significant im-
provement on the 2-LCPS problem implies a breakthrough
on the well-studied 4-LCS problem, to which all exist-
ing solutions [18-22] require at least O(n*) time in the
worst case. Secondly, we propose a new algorithm for the
2-LCPS problem which runs in O (o M2 +n) time and uses
0 (M2 +n) space, where o denotes the number of distinct
characters occurring in both A and B. We remark that our
new algorithm is faster than Chowdhury et al.’s sparse al-
gorithm with 0(M?2 log? nloglogn + n) running time [17]
when o = o(log? nloglogn).

2. Preliminaries

Let ¥ be an alphabet. An element of ¥ is called a
character and that of X* is called a string. For any string
A =aqay---a, of length n, |A| denotes its length, that is,
|Al =n.

For any string A =aj ---am, let AR denote the reverse
string of A, namely, AR =ay,---a;. A string P is said to be
a palindrome iff P reads the same forward and backward,
namely, P = PR,

A string S is said to be a subsequence of another string
A iff there exist increasing positions 1 <iy <--- <i|s| <
|A| in A such that S =aj, ---ajg. In other words, S is a
subsequence of A iff S can be obtained by removing zero
or more characters from A.

A string S is said to be a common subsequence of k
strings (k > 2) iff S is a subsequence of all the k strings.
S is said to be a longest common subsequence (LCS) of the k
strings iff other common subsequences of the k strings are
not longer than S. The problem of computing (the length
of) an LCS of k strings is called the k-LCS problem.

A string P is said to be a common palindromic subse-
quence of k strings (k > 2) iff P is a palindrome and is a
subsequence of all these k strings. P is said to be a longest
common palindromic subsequence (LCPS) of the k strings iff

2 The original time bound claimed in [17] is O (M2 log® nloglogn), since
they assume that the matching position pairs are already computed. For
given strings A and B of length n each over an integer alphabet of poly-
nomial size in n, we can compute all matching position pairs of A and B
in O(M + n) time.

other common palindromic subsequences of the k strings
are not longer than P.
In this paper, we consider the following problem:

Problem 1 (The 2-LCPS problem). Given two strings A and B,
compute (the length of) an LCPS of A and B.

For two strings A =a;---a, and B = by ---bp, an or-
dered pair (i, j) with 1 <i, j <n is said to be a matching
position pair between A and B iff a; =b;. Let M be the
number of matching position pairs between A and B. We
can compute all the matching position pairs in O(n + M)
time for strings A and B over integer alphabets of polyno-
mial size in n.

3. Reduction from 4-LCS to 2-LCPS

In this section, we show that the 2-LCPS problem is at
least as hard as the 4-LCS problem.

Theorem 1. The 4-LCS problem can be reduced to the 2-LCPS
problem in linear time.

Proof. Let A, B, C, and D be four input strings for the
4-LCS problem. We wish to compute an LCS of all these
four strings. For simplicity, assume |A| =|B| =|C|=|D| =
n. We construct two strings X = ARZB and Y = CRZD of
length 4n+1 each, where Z = $2"*! and $ is a single char-
acter which does not appear in A, B, C, or D. Then, since
Z is a common palindromic subsequence of X and Y, and
since |Z| =2n+1 while |A|+|B| =|C|+|D| = 2n, any LCPS
of X and Y must be at least 2n + 1 long containing Z as a
substring. This implies that the alignment for any LCPS of
X and Y is enforced so that the two Z’s in X and Y are
fully aligned. Since any LCPS of X and Y is a palindrome,
it must be of form TRZT, where T is an LCS of A, B, C,
and D. Thus, we can solve the 4-LCS problem by solving
the 2-LCPS problem. 0O

Example 1. Consider four strings A = aabbccc, B =
aabbcaa, C = aaabccc, and D = abcbbbb of length
7 each. Then, an LCPS of X = cccbbaa$!®aabbcaa and
Y = cccbaaa$!®abebbbb is cba$'®abe, which is ob-
tained by e.g., the following alignment:

cccbbaa$$$$$$$$$$$$$$$aabbcaa
I 1rrrrrrrrrrrrrrrrr s
cccbaaa$$ssssssssssssSabcbbbb

Observe that abc is an LCS of A, B, C, and D.

4. A new algorithm for 2-LCPS

In this section, we present a new algorithm for the
2-LCPS problem.

4.1. Finding rectangles with maximum nesting depth

Our algorithm follows the approach used in the sparse
dynamic programming algorithm by Chowdhury et al. [17]:
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Fig. 1. Illustration for the relationship between the 2-LCPS problem and the MDNRS problem. The two nesting rectangles defined by ((i, k), (j, ¢)) and
(@', k), (j/,¢')) correspond to a common palindromic subsequence cc’c’c of A and B, where c =c;x=cj¢ and ¢ =cy p =cCj ¢

They showed that the 2-LCPS problem can be reduced to a
geometry problem called the maximum depth nesting rectan-
gle structures problem (MDNRS problem for short), defined
as follows:

Problem 2 (The MDNRS problem).

Input: A set of integer points (i,k) on a 2D grid, where
each point is associated with a color ¢ € X. The color of a
point (i, k) is denoted by c; .

Output: A largest sorted list L of pairs of points, such that

1. for any ((i,k), (j, £)) € L, ¢j j =cj ¢, and
2. for any two adjacent elements ((i,k), (j,£)) and
(@, k), (', ¢)in L, i’ > i,k >k, j < j,and ¢ <¢.

Consider two points (i, k), (j,¢) in the grid such that
i<jand k < ¢ (see also Fig. 1). Imagine a rectangle de-
fined by taking (i, k) as its lower-left corner and (j,¢) as
its upper-right corner. Clearly, this rectangle can be identi-
fied as the pair ((i, k), (j, ¢)) of points. Now, suppose that
i and k are positions of one input string A =ay ---ay and
j and ¢ are positions of the other input string B=bq---by
for the 2-LCPS problem. Then, the first condition ¢; j =c;j ¢
for any element in L implies that a; = a; = by = by, namely,
i, j,k, ¢ are matching positions in A and B. Meanwhile,
the second condition i’ > i, k' >k, j’ < j, and £ < ¢ im-
plies that i’, j’, k', ¢’ are matching positions that are “in-
side” i, j, k, £. Hence if we define the set of 2D points (i, k)
to consist of the set of matching position pairs between
A and B and then solve the MDNRS problem, the solu-
tion list L describes a set of rectangles with maximum
nesting depth, and the characters that correspond to the
lower-left and upper-right corner matching position pairs
define an LCPS between the input strings A and B. Recall
that M is the number of such pairs. As here the lower-left
and upper-right corners of each rectangle corresponding to
matching position pairs, the overall number of unique rect-
angles in this type of MDNRS problem is 0 (M?2).

4.2. Our new algorithm
Consider the MDNRS over the set of 2D points (i, k) de-

fined by the matching position pairs between A and B, as
described above.

The basic strategy of our algorithm is to process from
larger rectangles to smaller ones. Given a rectangle R =
((i, k), (j, £)), we locate for each character c € ¥ a maxi-
mal sub-rectangle ((i’, k), (j/, £')) in R that is associated to
character ¢ (namely, ¢y » = cjr ¢ = c). The following lemma
is important:

Lemma 1. For any character ¢ € %, its maximal sub-rectangle
is unique (if it exists).

Proof. Assume on the contrary that there are two dis-
tinct maximal sub-rectangles ((i’, k'), (j/, ¢)) and ((i",k"),
(j”, ")) both of which are associated to character c. As-
sume w.o.lg that i’ >i"”, kK <k”, j <j’ and ¢’ > ¢'.
Then, there is a larger sub-rectangle ((i”,k’), (', ¢")) of R
which contains both of the above rectangles, a contradic-
tion. Hence, for any character ¢, a maximal sub-rectangle
in R is unique if it exists. O

Lemma 1 permits us to define the following recursive
algorithm for the MDNRS problem:

We begin with the initial virtual rectangle ((0,0),
(n+1,n+ 1)). Suppose we are processing a rectangle R.
For each character ¢ € ¥, we compute its maximal sub-
rectangle R in R and recurse into R, until we meet one
of the following conditions:

(1) There remains only a single point in R,
(2) There remains no point in R, or
(3) R¢ is already processed.

The recursion depth clearly corresponds to the rectangle
nesting depth, and we associate each R with its maximum
nesting depth dg. Whenever we meet a rectangle R, with
Condition (3), we do not recurse inside R. but simply re-
turn the already-computed maximum nesting depth dg,.

Initially, every rectangle R is marked non-processed,
and it gets marked processed as soon as the recursion
for R is finished and R receives its maximum nesting
depth. Each already processed rectangle remains marked
processed until the end of the algorithm.

Theorem 2. Given two strings A and B of length n over an in-
teger alphabet of polynomial size in n, we can solve the MDNRS
problem (and hence the 2-LCPS problem) in O (o M? + n) time
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and O (M? + n) space, where o denotes the number of distinct
characters occurring in both A and B.

Proof. To efficiently perform the above recursive algo-
rithm, we conduct the following preprocessing (alphabet
reduction) and construct the two following data structures.

Alphabet reduction: First, we reduce the alphabet size as
follows. We radix sort the original characters in A and B,
and replace each original character by its rank in the
sorted order. Since the original integer alphabet is of poly-
nomial size in n, the radix sort can be implemented with
0 (1) number of bucket sorts, taking O(n) total time. This
way, we can treat A and B as strings over an alphabet
[1, 2n]. Further, we remove all characters that occur only
in A from A, and remove all characters that occur only in
B from B. Let A =da;p---Gp and B= b1 Bﬁ be the result-
ing strings, respectlvely lt is clear that we can compute
A and B in O(n) time. The key property of the shrunk
strings A and B is that since all M matching position pairs
in the original strings A and B are essentially preserved in
A and B, it is enough to work on strings A and B to solve
the original problem. If o is the number of distinct char-
acters occurring in both A and B, then A and B are strings
over alphabet [1, o]. It is clear that o < min{m, A} <n.

Data structure for finding next maximal sub-rectangles:
For each character c € [1, 0], let PA and Pj . be the set

of positions of A and B which match c, namely, ={i]

ai=c,1<i<m} and P _{l<|bk_c 1 <k<n} Then
given a rectangle R, ﬁndmg the maximal sub-rectangle R
for character ¢ reduces to two predecessor and two suc-
cessor queries on PA,C and Pé,c' We use two tables of size
o x m each, which answer predecessor/successor queries
on A in 0 (1) time. Similarly, we use two tables of size
o x fi each, which answer predecessor/successor queries
on B in O(1) time. Such tables can easily be constructed
in O (o (m~+n)) time and occupy O (o (+n)) space. Notice
that for any position i in A there exists a matching posi-
tion pair (i,k) for some position k in B, and vice versa.
Therefore, we have max{m, n} < M. Since ¢ < min{m, n} <
max{rm, i}, we have o (fi1 + i) = O(M?). Hence the data
structure occupies O (M?2) space and can be constructed in
0 (M?) time.

Data structure for checking already processed rectan-
gles: To construct a space-efficient data structure for
checking if a given rectangle is already processed or
not, we here associate each position in A and B with
the following character counts: For any position i in A,
let cnt;(i) = |{i’ | @y = d4;,1 < i’ <i}| and for any po-
sition k in B, let cnty(k) = [{K' | by = by, 1 < k' < k}I.
For each character c € [1,0], let M, denoges the num-
ber of matching position pairs between A and B for
character c. We maintain the following table T, of size
M. x M¢: For any two matching posmons palrs (i, k)
and (j, ¢) for character ¢ (namely, a; = bk =d;= b[ =),
we set Tc[enty (i), entg (k), ety (j), enty (€)] = 0 if the cor-
responding rectangle ((i,k),(j,ﬁ)) is non—processed, and
set Tc[entj (i), entg (k), ent; (j), ent; ()] = 1 if the corre-
sponding rectangle is processed. Clearly, this table tells us

whether a given rectangle is processed or not in O (1) time.
The total size for these tables is )" ; ,; Me = O (M?).

We are now ready to show the complexity of our recur-
sive algorithm.

Main routine: A unique visit to a non-processed rectan-
gle can be charged to itself. On the other hand, each dis-
tinct visit to a processed rectangle R can be charged to
the corresponding rectangle which contains R as one of
its maximal sub-rectangles. Since we have O(M?2) rectan-
gles, the total number of visits of the first type is O (M?).
Also, since we visit at most 0 maximal sub-rectangles for
each of the M? rectangles, the total number of visits of the
second type is O (o M?). Using the two data structures de-
scribed above, we can find each maximal sub-rectangle in
0(1) time and can check if it is already processed or not
in O(1) time. For each rectangle after recursion, it takes
O(o) time to calculate the maximum nesting depth from
all of its maximal sub-rectangles. Thus, the main routine of
our algorithm takes a total of O (o M?) time.

Overall, our algorithm takes O (o M2 +n) time and uses
0 (M? +n) space. O

5. Conclusions and further work

In this paper, we studied the problem of finding a
longest common palindromic subsequence of two given
strings, which is called the 2-LCPS problem. We proposed
a new algorithm which solves the 2-LCPS problem in
0(ocM? +n) time and O(M? + n) space, where n denotes
the length of two given strings A and B, M denotes the
number of matching position pairs of A and B, and o de-
notes the number of distinct characters occurring in both
A and B.

Since the 2-LCPS problem is at least as hard as the well-
studied 4-LCS problem, and since any known solution to
the 4-LCS problem takes at least O (n*) time in the worst
case, it seems a big challenge to solve the 2-LCPS prob-
lem in O0(M?~*) or O(n**) time for any constant A > 0.
This view is supported by the recent result on a condi-
tional lowerbound for the k-LCS problem: If there exists a
constant A > 0 and an integer k > 2 such that the k-LCS
problem over an alphabet of size O (k) can be solved in
0 (n*~—*) time, then the famous SETH (strong exponential
time hypothesis) fails [6].

We also remark that our method should have a good
expected performance. Consider two random strings A
and B of length n each over an alphabet of size o.
Since roughly every o-th character matches between A
and B, we have M = 0(n?/o). Hence our method runs
in 0(6M? +n) = 0(n*/o) expected time. On the other
hand, the conventional dynamic programming algorithm
of Chowdhury et al. [17] takes ©®(n*) time for any in-
put strings of length n each. Thus, our method achieves
a o-factor speed-up in expectation.

As an open problem, we are interested in whether the
space requirement of our algorithms can be reduced, as
this could be of practical importance.
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