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The 2-LCPS problem, first introduced by Chowdhury et al. (2014) [17], asks one to compute 
(the length of) a longest common palindromic subsequence between two given strings A
and B . We show that the 2-LCPS problem is at least as hard as the well-studied longest 
common subsequence problem for four strings. Then, we present a new algorithm which 
solves the 2-LCPS problem in O (σ M2 +n) time, where n denotes the length of A and B , M
denotes the number of matching positions between A and B , and σ denotes the number of 
distinct characters occurring in both A and B . Our new algorithm is faster than Chowdhury 
et al.’s sparse algorithm when σ = o(log2 n log logn).

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Given k ≥ 2 string, the longest common subsequence prob-
lem for k strings (k-LCS problem for short) asks to compute 
(the length of) a longest string that appears as a subse-
quence in all the k strings. Whilst the problem is known 
to be NP-hard for arbitrary many strings [1], it can be 
solved in polynomial time for a constant number of strings 
(namely, when k is constant).

The 2-LCS problem that concerns two strings is the 
most basic, but also the most widely studied and used, 
form of longest common subsequence computation. In-
deed, the 2-LCS problem and similar two-string variants 
are central topics in theoretical computer science and have 
applications e.g. in computational biology, spelling correc-
tion, optical character recognition and file versioning. The 
fundamental solution to the 2-LCS problem is based on 
dynamic programming [2] and takes O (n2) for two given 
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strings of length n.1 Using the so-called “Four Russians” 
technique [3], one can solve the 2-LCS problem for strings 
over a constant alphabet in O (n2/ log2 n) time [4]. For a 
non-constant alphabet, the 2-LCS problem can be solved in 
O (n2 log log n/ log2 n) time [5]. Despite much effort, these 
have remained as the best known algorithms to the 2-LCS 
problem, and no strongly sub-quadratic time 2-LCS algo-
rithm is known. Moreover, the following conditional lower 
bound for the 2-LCS problem has been shown: For any 
constant λ > 0, an O (n2−λ)-time algorithm which solves 
the 2-LCS problem over an alphabet of size 7 refutes the 
so-called strong exponential time hypothesis (SETH) [6].

In many applications it is reasonable to incorporate ad-
ditional constraints to the LCS problem (see e.g. [7–16]). 
Along this line of research, Chowdhury et al. [17] intro-
duced the longest common palindromic subsequence problem
for two strings (2-LCPS problem for short), which asks one 
to compute (the length of) a longest common subsequence 

1 For simplicity, we assume that input strings are of equal length n. 
However, all algorithms mentioned and proposed in this paper are appli-
cable for strings of different lengths.
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between strings A and B with the additional constraint 
that the subsequence must be a palindrome. The problem 
is equivalent to finding (the length of) a longest palin-
drome that appears as a subsequence in both strings A
and B , and is motivated for biological sequence compar-
ison [17]. Chowdhury et al. presented two algorithms for 
solving the 2-LCPS problem. The first is a conventional dy-
namic programming algorithm that runs in O (n4) time and 
space. The second uses sparse dynamic programming and 
runs in O (M2 log2 n log log n + n) time and O (M2) space,2

where M is the number of matching position pairs be-
tween A and B .

The contribution of this paper is two-folds: Firstly, we 
show a tight connection between the 2-LCPS problem and 
the 4-LCS problem by giving a simple linear-time reduc-
tion from the 4-LCS problem to the 2-LCPS problem. This 
means that the 2-LCPS problem is at least as hard as 
the 4-LCS problem, and thus achieving a significant im-
provement on the 2-LCPS problem implies a breakthrough 
on the well-studied 4-LCS problem, to which all exist-
ing solutions [18–22] require at least O (n4) time in the 
worst case. Secondly, we propose a new algorithm for the 
2-LCPS problem which runs in O (σ M2 + n) time and uses 
O (M2 + n) space, where σ denotes the number of distinct 
characters occurring in both A and B . We remark that our 
new algorithm is faster than Chowdhury et al.’s sparse al-
gorithm with O (M2 log2 n log log n + n) running time [17]
when σ = o(log2 n log log n).

2. Preliminaries

Let � be an alphabet. An element of � is called a 
character and that of �∗ is called a string. For any string 
A = a1a2 · · ·an of length n, |A| denotes its length, that is, 
|A| = n.

For any string A = a1 · · ·am , let AR denote the reverse 
string of A, namely, AR = am · · ·a1. A string P is said to be 
a palindrome iff P reads the same forward and backward, 
namely, P = P R .

A string S is said to be a subsequence of another string 
A iff there exist increasing positions 1 ≤ i1 < · · · < i|S| ≤
|A| in A such that S = ai1 · · ·ai|S| . In other words, S is a 
subsequence of A iff S can be obtained by removing zero 
or more characters from A.

A string S is said to be a common subsequence of k
strings (k ≥ 2) iff S is a subsequence of all the k strings. 
S is said to be a longest common subsequence (LCS) of the k
strings iff other common subsequences of the k strings are 
not longer than S . The problem of computing (the length 
of) an LCS of k strings is called the k-LCS problem.

A string P is said to be a common palindromic subse-
quence of k strings (k ≥ 2) iff P is a palindrome and is a 
subsequence of all these k strings. P is said to be a longest 
common palindromic subsequence (LCPS) of the k strings iff 

2 The original time bound claimed in [17] is O (M2 log2 n log logn), since 
they assume that the matching position pairs are already computed. For 
given strings A and B of length n each over an integer alphabet of poly-
nomial size in n, we can compute all matching position pairs of A and B
in O (M + n) time.
other common palindromic subsequences of the k strings 
are not longer than P .

In this paper, we consider the following problem:

Problem 1 (The 2-LCPS problem). Given two strings A and B , 
compute (the length of) an LCPS of A and B .

For two strings A = a1 · · ·an and B = b1 · · ·bn , an or-
dered pair (i, j) with 1 ≤ i, j ≤ n is said to be a matching 
position pair between A and B iff ai = b j . Let M be the 
number of matching position pairs between A and B . We 
can compute all the matching position pairs in O (n + M)

time for strings A and B over integer alphabets of polyno-
mial size in n.

3. Reduction from 4-LCS to 2-LCPS

In this section, we show that the 2-LCPS problem is at 
least as hard as the 4-LCS problem.

Theorem 1. The 4-LCS problem can be reduced to the 2-LCPS 
problem in linear time.

Proof. Let A, B , C , and D be four input strings for the 
4-LCS problem. We wish to compute an LCS of all these 
four strings. For simplicity, assume |A| = |B| = |C | = |D| =
n. We construct two strings X = AR Z B and Y = C R Z D of 
length 4n +1 each, where Z = $2n+1 and $ is a single char-
acter which does not appear in A, B , C , or D . Then, since 
Z is a common palindromic subsequence of X and Y , and 
since |Z | = 2n +1 while |A| +|B| = |C | +|D| = 2n, any LCPS 
of X and Y must be at least 2n + 1 long containing Z as a 
substring. This implies that the alignment for any LCPS of 
X and Y is enforced so that the two Z ’s in X and Y are 
fully aligned. Since any LCPS of X and Y is a palindrome, 
it must be of form T R Z T , where T is an LCS of A, B , C , 
and D . Thus, we can solve the 4-LCS problem by solving 
the 2-LCPS problem. �
Example 1. Consider four strings A = aabbccc, B =
aabbcaa, C = aaabccc, and D = abcbbbb of length 
7 each. Then, an LCPS of X = cccbbaa$15aabbcaa and 
Y = cccbaaa$15abcbbbb is cba$15abc, which is ob-
tained by e.g., the following alignment:

Observe that abc is an LCS of A, B , C , and D .

4. A new algorithm for 2-LCPS

In this section, we present a new algorithm for the 
2-LCPS problem.

4.1. Finding rectangles with maximum nesting depth

Our algorithm follows the approach used in the sparse 
dynamic programming algorithm by Chowdhury et al. [17]: 
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Fig. 1. Illustration for the relationship between the 2-LCPS problem and the MDNRS problem. The two nesting rectangles defined by 〈(i, k), ( j, �)〉 and 
〈(i′, k′), ( j′, �′)〉 correspond to a common palindromic subsequence cc′c′c of A and B , where c = ci,k = c j,� and c′ = ci′,k′ = c j′,�′ .
They showed that the 2-LCPS problem can be reduced to a 
geometry problem called the maximum depth nesting rectan-
gle structures problem (MDNRS problem for short), defined 
as follows:

Problem 2 (The MDNRS problem).

Input: A set of integer points (i, k) on a 2D grid, where 
each point is associated with a color c ∈ �. The color of a 
point (i, k) is denoted by ci,k .

Output: A largest sorted list L of pairs of points, such that

1. for any 〈(i, k), ( j, �)〉 ∈ L, ci, j = c j,� , and
2. for any two adjacent elements 〈(i, k), ( j, �)〉 and

〈(i′, k′), ( j′, �′) in L, i′ > i, k′ > k, j′ < j, and �′ < �.

Consider two points (i, k), ( j, �) in the grid such that 
i < j and k < � (see also Fig. 1). Imagine a rectangle de-
fined by taking (i, k) as its lower-left corner and ( j, �) as 
its upper-right corner. Clearly, this rectangle can be identi-
fied as the pair 〈(i, k), ( j, �)〉 of points. Now, suppose that 
i and k are positions of one input string A = a1 · · ·am and 
j and � are positions of the other input string B = b1 · · ·bn

for the 2-LCPS problem. Then, the first condition ci, j = c j,�

for any element in L implies that ai = a j = bk = b� , namely, 
i, j, k, � are matching positions in A and B . Meanwhile, 
the second condition i′ > i, k′ > k, j′ < j, and �′ < � im-
plies that i′, j′, k′, �′ are matching positions that are “in-
side” i, j, k, �. Hence if we define the set of 2D points (i, k)

to consist of the set of matching position pairs between 
A and B and then solve the MDNRS problem, the solu-
tion list L describes a set of rectangles with maximum 
nesting depth, and the characters that correspond to the 
lower-left and upper-right corner matching position pairs 
define an LCPS between the input strings A and B . Recall 
that M is the number of such pairs. As here the lower-left 
and upper-right corners of each rectangle corresponding to 
matching position pairs, the overall number of unique rect-
angles in this type of MDNRS problem is O (M2).

4.2. Our new algorithm

Consider the MDNRS over the set of 2D points (i, k) de-
fined by the matching position pairs between A and B , as 
described above.
The basic strategy of our algorithm is to process from 
larger rectangles to smaller ones. Given a rectangle R =
〈(i, k), ( j, �)〉, we locate for each character c ∈ � a maxi-
mal sub-rectangle 〈(i′, k′), ( j′, �′)〉 in R that is associated to 
character c (namely, ci′,k′ = c j′,�′ = c). The following lemma 
is important:

Lemma 1. For any character c ∈ �, its maximal sub-rectangle 
is unique (if it exists).

Proof. Assume on the contrary that there are two dis-
tinct maximal sub-rectangles 〈(i′, k′), ( j′, �′)〉 and 〈(i′′, k′′),
( j′′, �′′)〉 both of which are associated to character c. As-
sume w.o.l.g. that i′ > i′′ , k′ < k′′ , j′ < j′′ and �′′ > �′ . 
Then, there is a larger sub-rectangle 〈(i′′, k′), ( j′, �′′)〉 of R
which contains both of the above rectangles, a contradic-
tion. Hence, for any character c, a maximal sub-rectangle 
in R is unique if it exists. �

Lemma 1 permits us to define the following recursive 
algorithm for the MDNRS problem:

We begin with the initial virtual rectangle 〈(0, 0),

(n + 1, n + 1)〉. Suppose we are processing a rectangle R . 
For each character c ∈ �, we compute its maximal sub-
rectangle Rc in R and recurse into Rc until we meet one 
of the following conditions:

(1) There remains only a single point in Rc ,
(2) There remains no point in Rc , or
(3) Rc is already processed.

The recursion depth clearly corresponds to the rectangle 
nesting depth, and we associate each R with its maximum 
nesting depth dR . Whenever we meet a rectangle Rc with 
Condition (3), we do not recurse inside Rc but simply re-
turn the already-computed maximum nesting depth dRc .

Initially, every rectangle R is marked non-processed, 
and it gets marked processed as soon as the recursion 
for R is finished and R receives its maximum nesting 
depth. Each already processed rectangle remains marked 
processed until the end of the algorithm.

Theorem 2. Given two strings A and B of length n over an in-
teger alphabet of polynomial size in n, we can solve the MDNRS 
problem (and hence the 2-LCPS problem) in O (σ M2 + n) time 
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and O (M2 + n) space, where σ denotes the number of distinct 
characters occurring in both A and B.

Proof. To efficiently perform the above recursive algo-
rithm, we conduct the following preprocessing (alphabet 
reduction) and construct the two following data structures.

Alphabet reduction: First, we reduce the alphabet size as 
follows. We radix sort the original characters in A and B , 
and replace each original character by its rank in the 
sorted order. Since the original integer alphabet is of poly-
nomial size in n, the radix sort can be implemented with 
O (1) number of bucket sorts, taking O (n) total time. This 
way, we can treat A and B as strings over an alphabet 
[1, 2n]. Further, we remove all characters that occur only 
in A from A, and remove all characters that occur only in 
B from B . Let Â = â1 · · · âm̂ and B̂ = b̂1 · · · b̂n̂ be the result-
ing strings, respectively. It is clear that we can compute 
Â and B̂ in O (n) time. The key property of the shrunk 
strings Â and B̂ is that since all M matching position pairs 
in the original strings A and B are essentially preserved in 
Â and B̂ , it is enough to work on strings Â and B̂ to solve 
the original problem. If σ is the number of distinct char-
acters occurring in both A and B , then Â and B̂ are strings 
over alphabet [1, σ ]. It is clear that σ ≤ min{m̂, ̂n} ≤ n.

Data structure for finding next maximal sub-rectangles:
For each character c ∈ [1, σ ], let P Â,c and PB̂,c be the set 
of positions of Â and B̂ which match c, namely, P Â,c = {i |
âi = c, 1 ≤ i ≤ m̂} and PB̂,c = {k | b̂k = c, 1 ≤ k ≤ n̂}. Then, 
given a rectangle R , finding the maximal sub-rectangle Rc

for character c reduces to two predecessor and two suc-
cessor queries on P Â,c and PB̂,c . We use two tables of size 
σ × m̂ each, which answer predecessor/successor queries 
on Â in O (1) time. Similarly, we use two tables of size 
σ × n̂ each, which answer predecessor/successor queries 
on B̂ in O (1) time. Such tables can easily be constructed 
in O (σ (m̂+n̂)) time and occupy O (σ (m̂+n̂)) space. Notice 
that for any position i in Â there exists a matching posi-
tion pair (i, k) for some position k in B̂ , and vice versa. 
Therefore, we have max{m̂, ̂n} ≤ M . Since σ ≤ min{m̂, ̂n} ≤
max{m̂, ̂n}, we have σ(m̂ + n̂) = O (M2). Hence the data 
structure occupies O (M2) space and can be constructed in 
O (M2) time.

Data structure for checking already processed rectan-
gles: To construct a space-efficient data structure for 
checking if a given rectangle is already processed or 
not, we here associate each position in Â and B̂ with 
the following character counts: For any position i in Â, 
let cnt Â(i) = |{i′ | âi′ = âi, 1 ≤ i′ ≤ i}| and for any po-

sition k in B̂ , let cntB̂(k) = |{k′ | b̂k′ = b̂k, 1 ≤ k′ ≤ k}|. 
For each character c ∈ [1, σ ], let Mc denotes the num-
ber of matching position pairs between Â and B̂ for 
character c. We maintain the following table Tc of size 
Mc × Mc : For any two matching positions pairs (i, k)

and ( j, �) for character c (namely, âi = b̂k = â j = b̂� = c), 
we set Tc[cnt Â(i), cntB̂(k), cnt Â( j), cnt Â(�)] = 0 if the cor-
responding rectangle 〈(i, k), ( j, �)〉 is non-processed, and 
set Tc[cnt Â(i), cntB̂(k), cnt Â( j), cnt Â(�)] = 1 if the corre-
sponding rectangle is processed. Clearly, this table tells us 
whether a given rectangle is processed or not in O (1) time. 
The total size for these tables is 

∑
c∈[1,σ ] M2

c = O (M2).
We are now ready to show the complexity of our recur-

sive algorithm.

Main routine: A unique visit to a non-processed rectan-
gle can be charged to itself. On the other hand, each dis-
tinct visit to a processed rectangle R can be charged to 
the corresponding rectangle which contains R as one of 
its maximal sub-rectangles. Since we have O (M2) rectan-
gles, the total number of visits of the first type is O (M2). 
Also, since we visit at most σ maximal sub-rectangles for 
each of the M2 rectangles, the total number of visits of the 
second type is O (σ M2). Using the two data structures de-
scribed above, we can find each maximal sub-rectangle in 
O (1) time and can check if it is already processed or not 
in O (1) time. For each rectangle after recursion, it takes 
O (σ ) time to calculate the maximum nesting depth from 
all of its maximal sub-rectangles. Thus, the main routine of 
our algorithm takes a total of O (σ M2) time.

Overall, our algorithm takes O (σ M2 +n) time and uses 
O (M2 + n) space. �

5. Conclusions and further work

In this paper, we studied the problem of finding a 
longest common palindromic subsequence of two given 
strings, which is called the 2-LCPS problem. We proposed 
a new algorithm which solves the 2-LCPS problem in 
O (σ M2 + n) time and O (M2 + n) space, where n denotes 
the length of two given strings A and B , M denotes the 
number of matching position pairs of A and B , and σ de-
notes the number of distinct characters occurring in both 
A and B .

Since the 2-LCPS problem is at least as hard as the well-
studied 4-LCS problem, and since any known solution to 
the 4-LCS problem takes at least O (n4) time in the worst 
case, it seems a big challenge to solve the 2-LCPS prob-
lem in O (M2−λ) or O (n4−λ) time for any constant λ > 0. 
This view is supported by the recent result on a condi-
tional lowerbound for the k-LCS problem: If there exists a 
constant λ > 0 and an integer k ≥ 2 such that the k-LCS 
problem over an alphabet of size O (k) can be solved in 
O (nk−λ) time, then the famous SETH (strong exponential 
time hypothesis) fails [6].

We also remark that our method should have a good 
expected performance. Consider two random strings A
and B of length n each over an alphabet of size σ . 
Since roughly every σ -th character matches between A
and B , we have M = O (n2/σ ). Hence our method runs 
in O (σ M2 + n) = O (n4/σ ) expected time. On the other 
hand, the conventional dynamic programming algorithm 
of Chowdhury et al. [17] takes �(n4) time for any in-
put strings of length n each. Thus, our method achieves 
a σ -factor speed-up in expectation.

As an open problem, we are interested in whether the 
space requirement of our algorithms can be reduced, as 
this could be of practical importance.
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