
Information Processing Letters 113 (2013) 94–99
Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A linear algorithm for 3-letter longest common weakly increasing
subsequence ✩

Lech Duraj

Theoretical Computer Science Department, Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Prof. St. Lojasiewicza 6, 30-348 Krakow, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 September 2012
Received in revised form 2 November 2012
Accepted 13 November 2012
Available online 12 December 2012
Communicated by A. Tarlecki

Keywords:
Algorithms
Longest common weakly increasing
subsequence

The problem of finding a longest weakly increasing common subsequence (LCWIS) of two
sequences is a variant of the popular longest common subsequence (LCS) problem. While
there are no known methods to find LCS in truly sub-quadratic time, there are faster
algorithms to compute LCWIS if the alphabet size is small enough. We present a linear-time
algorithm finding LCWIS over 3-letter alphabet. Up to now, the fastest known algorithm
was O (min{m + n log n,m log log m}), where m � n denote lengths of the sequences.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The problem of longest common weakly increasing sub-
sequence (LCWIS) is one of the many variants of a popular
longest common subsequence (LCS) problem.

We say that a sequence X = (x1, . . . , xr) is a subse-
quence of another sequence Y = (y1, . . . , ys), if there exist
α1 < α2 < · · · < αr such that yαi = xi for i = 1,2, . . . , r.
The LCS problem is formulated as follows: given two se-
quences A, B over some alphabet Σ find the longest se-
quence C which is a common subsequence of A and B .

The canonical dynamic programming algorithm by
Wagner and Fischer [1] solves this problem in O (mn) time,
where m = |A|, n = |B|. Hirschberg [2] provided a version
of the same algorithm with linear space complexity. To the
day, the fastest known algorithm for LCS is O (mn/ log n)

provided by Masek and Paterson [3]. Despite extensive
studies, no further speedup has been achieved for over
30 years. Even restricting the problem to small alphabet
case (|Σ | = 2) has not resulted in any faster algorithms.
The question of solving LCS in O (n2−ε) time complexity

✩ This article was supported by funding from the Jagiellonian University
within the SET project. The project is co-financed by the European Union
within the European Social Fund.

E-mail address: duraj@tcs.uj.edu.pl.
0020-0190/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2012.11.007
is considered a very important open problem of the string
algorithms theory.

In this paper we consider a natural modification of the
LCS problem: we search for the common subsequences
which are sorted, i.e., non-decreasing. This problem, as
well as similar variants, has also been studied before, and
it is known in literature as the longest common weakly in-
creasing subsequence (LCWIS).

Yang, Huang and Chao [4] found a simple and clever
dynamic-programming algorithm to find a longest com-
mon increasing sequence, with running time O (mn). While
their algorithm was designed to find a longest common
strictly increasing sequence (LCIS), it can be easily adapted to
find common sorted subsequences as well. The result was
later improved by Sakai [5] by applying Hirschberg’s tech-
nique and reducing space complexity to linear. As in the
case of LCS, it seems hard to achieve a truly sub-quadratic
complexity. Some algorithms, though, work faster under
certain conditions. For example, Kutz et al. [6,7] found
an algorithm for both LCIS and LCWIS that works in
O ((m + n�) log log |Σ | + SortΣ(m)), where � denotes the
output size, and SortΣ(m) is the time complexity of sorting
an m-element sequence over Σ . This algorithm is consid-
erably faster for small outputs.

The authors of [6] noted that LCWIS for small alphabets
behaves differently from both LCS and LCIS. Specifically,

http://dx.doi.org/10.1016/j.ipl.2012.11.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:duraj@tcs.uj.edu.pl
http://dx.doi.org/10.1016/j.ipl.2012.11.007

L. Duraj / Information Processing Letters 113 (2013) 94–99 95
we can search for non-trivial algorithms for LCWIS of bet-
ter than quadratic complexity, while no such algorithm has
been found for LCS. (Note also that the problem makes lit-
tle sense for strictly-increasing variant, as for small alpha-
bets the output is also small.) A simple linear algorithm for
the 2-letter case as well as two algorithms for the 3-letter
case (one O (m + n log n) [6] and the other O (m log log m)

[7]) have been found up to date.
This paper improves the latter result: we show an opti-

mal O (m + n) algorithm for LCWIS for 3-letter alphabet.
This improvement turns out to refine one of the ideas
in [7], but we use simple list-like data structures instead
of (relatively) complex van Emde-Boas priority queues,
achieving better time complexity.

2. Preliminaries

Let us formally define the input and output of the algo-
rithm:

Input: Two sequences A, B ∈ {0,1,2}∗ .
Output: A non-decreasing sequence C such that C is

a subsequence of both A and B and C is a longest such
sequence.

Throughout the paper we use m = |A| and n = |B| as
the lengths of the sequences. We denote the i-th element
of sequences A and B by A[i] and B[i] respectively. Ev-
ery common subsequence C of A and B corresponds to a
matching between symbols in A and symbols in B , such
that only the same symbols may be matched, and match-
ing edges do not cross each other. Formally, we can view a
common subsequence of length r as a set of pairs (iγ , jγ)

where γ = 1,2, . . . , r, A[iγ] = B[jγ] and i1 < i2 < · · · < ir

as well as j1 < j2 < · · · < jr . Finding the longest matching
is equivalent to LCWIS problem, as matchings can be easily
constructed from common subsequences in linear time.

We start with a simple lemma, which justifies some
greedy strategy for this problem:

Lemma 2.1. Suppose the optimal LCWIS matches k 0’s and l 2’s.
There exists an optimal LCWIS which matches the k first 0’s and
the l last 2’s in both sequences.

Proof. Simply replace the 0’s in LCWIS by the first 0’s
of the sequences. This clearly cannot violate the solution
correctness. Similarly, we can replace 2’s with the last
ones. �

Suppose that there are z(A) occurrences of 0 in A and
z(B) in B . If z(A) > z(B), we can simply delete the last
z(A) − z(B) zeros from A, as they do not appear in the
optimal solution supplied by Lemma 2.1. Therefore we can
assume without loss of generality that z(A) = z(B) and de-
note this number by f0. In a similar way (deleting some
of the first 2’s from A or B if needed) we assume that the
numbers of 2’s in A and B are equal and denote this num-
ber by f2.

We define a position as a pair of integers (x, y) with
0 � x � m and 0 � y � n. A position corresponds to a pair
of (possibly empty) prefixes of A and B , though we will
more often identify it with the last letters of the prefixes.
For α = (αA,αB) and β = (βA, βB) being arbitrary posi-
tions, we use the following notions:

• We use a partial order on positions: α � β iff αA � βA

and αB � βB .
• For α � β , we define d(α,β) as βA − αA + βB − αB .
• For α � β , we use #1(αA, βA) to denote the number of
1’s in A[αA + 1 . . . βA − 1], and #1(αB , βB) in similar
way.

• For k = 1,2, . . . , f0, let Z [k] = (Z [k]A, Z [k]B) be the
position of k-th symbol 0 in both strings. Similarly,
T [j] = (T [j]A, T [j]B) is the position of j-th sym-
bol 2 for j = 1,2, . . . , f2. For convenience, we also use
Z [0] = T [0] = (0,0) and Z [f0 +1] = T [f2 +1] = (m,n).

Fix any position α = (αA,αB). By a left-matching for
α we mean a non-decreasing subsequence of A[1 . . . αA]
and B[1 . . . αB] containing only 0’s and 1’s. We also distin-
guish the k-th left-matching for α as the one which greedily
matches first k 0’s and (also greedily) maximal possible
number of 1’s. Let score(k,α) denote the length of k-th
left-matching. Obviously,

score(k,α) = k + min
{

#1
(

Z [k]A,αA
)
,#1

(
Z [k]B ,αB

)}
.

We also define an auxiliary function

surplus(k,α) = #1
(

Z [k]A,αA
) − #1

(
Z [k]B ,αB

)
.

This function tells us how many 1’s are left unmatched
between Z [k] and α. Note that this value is positive if un-
matched 1’s are in A and negative if they are in B .

Observe that for given α and k, both score and surplus
can be easily calculated in constant time if we precompute
the number of 1’s in every prefix of A and B .

Lemma 2.2. The value of the optimal LCWIS is

max
1� j� f2+1

(
f2 + 1 − j + max

k: Z [k]�T [j]
score

(
k, T [j])

)
.

Proof. Suppose that the optimal LCWIS matches 2 sym-
bols starting at j-th one, which means exactly f2 + 1 − j
of them (the case of j = f2 + 1 corresponds to no 2’s
matched). Let k be the number of 0’s in the solution.
Clearly, Z [k] � T [j]. All 1’s in the solution must fit be-
tween the positions Z [k] and T [j], and we can match
no more than min{#1(Z [k]A, T [j]A),#1(Z [k]B , T [j]B)} of
them, with greedy strategy being the optimal one. Then
the length of LCWIS is equal to score(k, T [j])+ (f2 + 1 − j)
for some k and j, and the formula for the best solution is
obtained by taking maximum over j and k. �
3. Algorithm

From Lemma 2.2 we know that it is enough to com-
pute for every 1 � j � f2 + 1 the best left-matching for
position T [j]. Our algorithm will do exactly that: iterate
over j and compute, for position T [j], the maximum over
k of score(k, T [j]) in amortized constant time. The maxi-
mum for position T [j] will be calculated using the data
from position T [j − 1].

96 L. Duraj / Information Processing Letters 113 (2013) 94–99
To do this, we will maintain the set S of some left-
matchings (informally, the ones that can still produce the
optimal solution). Elements of S will be triples (k, s, p),
where s = score(k, T [j]), p = surplus(k, T [j]), with j being
the current step number.

A single step of the algorithm will consist of three sub-
routines:

• Update(j): Calculate the score and surplus for left-
matchings in S for position T [j], using ones from
T [j − 1].

• Add(j,k): Process the matchings which became
available since last step (all k such that Z [k] � T [j]
but not Z [k] � T [j − 1]), and add them to S if neces-
sary.

• Check(j): Obtain the best left-matching for this step
and compare it with the overall best solution. The so-
lution is kept as a triple (a,b, c), corresponding to a
sequence 0a1b2c .

Algorithm 1: 3-Letter LCWIS

best ← 0;
for j = 1,2, . . . , f2 + 1 do

/* Update(j) */
foreach (k, s, p) ∈ S do

compute s′ = score(k, T [j]) and p′ = surplus(k, T [j]) from
(k, s, p);
replace (k, s, p) with (k, s′, p′);

end
foreach k : Z [k] � T [j] and not Z [k] � T [j − 1] do

/* Add(j,k) */
compute s = score(k, T [j]), p = surplus(k, T [j]);
add (k, s, p) to S if necessary;

end
/* Check(j) */
select (k, s, p) ∈ S such that s is maximal possible;
if s + f2 + 1 − j > best then

best ← s + f2 + 1 − j;
solution ← (k, s − k, f2 + 1 − j);

end
end
return solution;

Up to this point, this is quite similar to the algorithm
in [7], which would then use a van Emde-Boas queue
for S . The key observation that allows us to use simple
data structures and simultaneously reduce the complexity
to linear is the following one:

Observation 3.1. For integers k,k′ and position α, if
score(k,α) � score(k′,α) and either:

• surplus(k,α) � surplus(k′,α)� 0;
• or surplus(k,α)� surplus(k′,α)� 0

then for every β � α, score(k, β) � score(k′, β).

Proof. The two cases are symmetrical with respect to
swapping A with B , therefore it is enough to prove the
statement when surplus(k,α) � surplus(k′,α) � 0. Let k-th
left-matching at α match k 0’s and x 1’s, leaving y excess
1’s of A unmatched. Let k′-th left-matching match k′ 0’s,
x′ 1’s and leave y′ surplus. Suppose that between α and β
there are v A ones in A and v B in B . From the initial as-
sumptions we have k+ x � k′ + x′ and y � y′ . Consider two
cases:

• if v A � v B , then score(k, β) is equal to k + x + v B
and score(k′, β) = k′ + x′ + v B , so clearly score(k, β) �
score(k′, β);

• if v A < v B , then let v B − v A = v . After k zeros we
have x + y + v A ones in A and x + v B = x + v A + v
in B . Hence, score(k, β) = k + x + v A + min(y, v). In
the same way we compute score(k′, β) = k′ + x′ + v A +
min(y′, v). As k + x � k′ + x′ and y � y′ , the first sum
is at least the same as the second one. �

Recall that S is the set storing possible left-matchings,
whose elements are triples (k, s, p). Now let S+ , S− , S0 be
the partition of S into triples for which p > 0, p < 0 and
p = 0, respectively. From Observation 3.1 we know that if
there are triples (k, s, p) and (k′, s′, p′) in S+ with s � s′
and p � p′ , then s � s′ for the whole rest of the algorithm,
regardless of how these triples are updated. This allows
us to simply drop (k′, s′, p′) from S , as the corresponding
left-matching would never be a candidate for the best one.
Then, if we keep left-matchings of S+ ordered strictly as-
cending by value of surplus, we can erase from S+ every
matching that has a score not strictly larger than its suc-
cessors.

Therefore we choose to keep S+ as a doubly-linked list
sorted ascending by surplus and maintain the invariant of
strictly decreasing score. Similarly, we order S− by surplus
descending (with values close to zero at the front)—the
scores are then also kept strictly decreasing. The set S0 is
either empty or has one element, as we keep only the best
matching with zero surplus. We denote the only triple in
S0 as (zeros0, score0,0). We use the following standard list
operations:

• L.front()—returns a pointer to the first element of L;
• L.back()—returns a pointer to the last element of L;
• next(t)—returns the pointer right after t;
• prev(t)—returns the pointer right before t;
• insert(t, (k, s, p))—inserts the triple (k, s, p) after the

element pointed by t;
• push(k, s, p)—inserts the triple (k, s, p) at the front of

the list;
• delete(t)—removes the element pointed by t from the

list;
• zeros(t), score(t), surplus(t)—for the triple (k, s, p) point-

ed by t returns k, s and p, respectively.

All these operations work in O (1) time.
On S+ we maintain the invariants surplus(t) <

surplus(next(t)) and score(t) > score(next(t)) for every possi-
ble iterator t . On S− , we maintain the invariants
surplus(t) > surplus(next(t)) and score(t) > score(next(t)).
We also employ one complex operation restore(t), which
restores the score invariant on one of these lists, vio-
lated by insertion at t . We only restore violations of the
type score(t) � score(prev(t)), assuming that other ones
will never happen. The restoring is simple: we remove
the violating element prev(t) until either t becomes front

L. Duraj / Information Processing Letters 113 (2013) 94–99 97
of the list, or until score(t) < score(prev(t)). It is obvious
that restore() works in time proportional to the number of
deleted elements.

It is now evident that we can find the best left-
matching in constant time—it is enough to examine the
front elements of S+ and S− and, possibly, the only one
of S0. As long as S is updated correctly, the Check phase
is then easy to implement and produces the right answer.
Let us then analyze the other two phases of the algorithm
separately:

Update
The Update subroutine shifts the current position

from T [j−1] to T [j] and updates scores of existing match-
ings in S . We will increase the position gradually, by
adding characters of A and B one-by-one, in arbitrary or-
der. In fact, only 1 symbols matter, as other ones do not
change any values in S .

Procedure Update(j)

for i = T [j − 1]A + 1, . . . , T [j]A do
if A[i]=1 then

OneFromA();

end
for i = T [j − 1]B + 1, . . . , T [j]B do

if B[i]=1 then
OneFromB();

end

If a 1 from A is added, the following happens:

• All matchings in S+ only increase their surplus by 1—
those matchings already have excess 1’s in A.

• For matchings in S− , the new 1 matches to one of
their the excess 1’s, increasing their (negative) surplus
by 1 and also increasing score.

• The matching in S0 (if such one exists) increases
surplus to 1.

These operations may result in one of the matchings of
S− having now surplus equal to 0—in this case, we remove
it from S− and transfer to S0. Also, if there was a match-
ing in S0, it has now surplus equal to 1, so it should be
moved to S+ . Note that the adding of a 1 symbol from B
is almost identical, with roles of S+ and S− swapped and
some signs reversed.

As these operations always affect all the elements in S+
or all in S− , they are possible to implement in O (1) time.
To do this, instead of increasing/decreasing individual val-
ues in S , we keep global modifiers score+ , score− , surplus+ ,
surplus− . Whenever we want to increase all scores in S+ ,
we only increase the variable score+ , and similarly for
other global changes. It is easy to modify the functions
score(), surplus(), insert() and push() to take the global
modifiers into account (e.g. when inserting a triple (k, s, p)

into S+ , we de facto insert (k, s − score+, p − surplus+)).
Also, transferring a zero-surplus element is obvious, as it
may only appear at the front of S+ list. The implementa-
tion of adding a 1 symbol of A is then as follows:
Procedure OneFromA()

surplus+ ← surplus+ + 1;
surplus− ← surplus− + 1;
score− ← score− + 1;
if S0 �=∅ then

if score0 > score(S+.front()) then
push(S+, (zeros0, score0,1));

end
S0 =∅;

end
if surplus(S−.front()) = 0 then

score0 = score(S−.front());
zeros0 = zeros(S−.front());
delete(S−.front());

end

The procedure OneFromB() is largely identical and
quite obvious, so it is omitted for shortness’ sake. Both
these procedures clearly take O (1) time, and for every
character of A and B at most one of them is invoked.
Therefore the total time complexity of all Update calls is
O (m + n).

Add
The goal of the Add phase of step j is to insert to S all

k-left-matchings with Z [k] < T [j] that has not been pro-
cessed before. Recall that we keep S as two sorted lists
S+ and S− and a set S0 of at most one element. We will
be inserting triples (k, s, p) (where s = score(k, T [j]) and
p = surplus(k, T [j])) into lists sorted by increasing abso-
lute value of surplus. Whenever we want to do that, we
have to find a right insertion place on the list by simply
moving a pointer to the desired spot.

For the sake of convenience, assume that we modify
both S+ and S− with only one common list pointer called
cursor which can move between these lists. We also allow
cursor to “point” at S0. To be more specific, when cursor is
at the front of S+ and is moved forward, it jumps to S0.
A further forward move will result in cursor pointing at
the front of S− . Observe that moving between elements
(k, s, p) and (k′, s′, p′) always requires at most |p − p′|
moves, regardless of the signs of p and p′ . This holds be-
cause every move on the list changes surplus(cursor) by at
least 1.

An insertion of the triple (k, s, p) consists of:

a) Moving cursor to the right list, to the last spot where
|surplus(next(cursor))| � |p|.

b) Inserting (k, s, p) at this spot or replacing the existing
element with (k, s, p). We do it only if s is big enough
(greater than score of replaced element or score of the
next element).

c) Restoring (if needed) the invariant of decreasing scores
on S+ or S− by a single restore() operation. The
only possible invariant violation could appear be-
tween cursor and prev(cursor), so the prerequisites
for restore() are fulfilled. It is also clear from Ob-
servation 3.1 that any removed elements would not
appear in any optimal LCWIS and thus can be safely
dropped.

98 L. Duraj / Information Processing Letters 113 (2013) 94–99
Procedure Add(j,k)

s ← score(k, T [j]);
p ← surplus(k, T [j]);
/* retain cursor from previous Add() */
if p > 0 then

move cursor to S+;
if p < 0 then

move cursor to S−;
if p = 0 then

move cursor to S0;
if s > score0 then

S0 = {(k, s, p)};

end
else

move cursor to last spot with |surplus(next(cursor))| � |p|;
if p = surplus(cursor) then

if s > score(cursor) then
delete(cursor);
insert(cursor, (k, s, p));
restore(cursor);

end
else

if s > score(next(cursor)) then
insert(cursor, (k, s, p));
restore(cursor);

end

end

The key routine is that after any insertion we keep
cursor at the place it ended up. The next insertion (ei-
ther Add(j,k+1) or Add(j+1,k+1)) will begin from
this spot. As we will see in a moment, this trick ensures
the linear time complexity of the algorithm.

To bound the total running time of insertions, observe
first that neither b) nor c) steps can require more than
m + n operations. This is because there are at most f0 �
min{m,n} left matchings to insert in step b), and every el-
ement of S can be erased in step c) at most once. It is
now enough to bound the total number of moves in a)-
type steps, i.e. the number of cursor moves.

Fix the step number j and consider two consecutive
inserted elements (k − 1, s′, p′) and (k, s, p). As stated be-
fore, during the insertion of (k, s, p) we do at most |p − p′|
moves, which is precisely |surplus(k, T [j]) − surplus(k − 1,

T [j])|. The special case is for the first insertion of the
step j: we start moving at the spot of the last insertion
from j − 1-th step, therefore performing |surplus(k, T [j])−
surplus(k − 1, T [j − 1])| moves at most.

We claim that:

Observation 3.2.

a) |surplus(k, T [j]) − surplus(k − 1, T [j])| � d(Z [k − 1],
Z [k]);

b) |surplus(k, T [j])− surplus(k−1, T [j −1])| � d(T [j − 1],
T [j]) + d(Z [k − 1], Z [k]).

Proof. For a), observe that the difference between
surplus(k, T [j]) and surplus(k − 1, T [j]) comes only from
1’s between Z [k] and Z [k − 1]. Therefore the surplus
change cannot exceed the total number of characters in
those two intervals.
To prove b) we need the same observation twice: the
characters in surplus(k − 1, T [j − 1]) are between Z [k − 1]
and T [j − 1]. To see the statement, imagine that we first
move the right bound from T [j −1] to T [j] (thus changing
surplus by at most d(T [j − 1], T [j])), then we move the
left bound from Z [k − 1] to Z [k], changing surplus by at
most d(Z [k − 1], Z [k]). �

Thus, for every inserted k-th matching, k = 1,2, . . . ,

f0 +1, we perform at most d(Z [k − 1], Z [k]) moves. During
first insertions of step j, for every j = 1,2, . . . , f2 + 1 we
perform at most additional d(T [j − 1], T [j]) moves. The
total number of moves is then bounded by:

f0+1∑
k=1

d
(

Z [k − 1], Z [k]) +
f2+1∑
j=1

d
(
T [j − 1], T [j]).

Calculating both sums separately we obtain:

f0+1∑
k=1

d
(

Z [k − 1], Z [k])

=
f0+1∑
k=1

(
Z [k]A − Z [k − 1]A + Z [k]B − Z [k − 1]B

)

= Z [f0 + 1]A − Z [0]A + Z [f0 + 1]B − Z [0]B �m + n

and similarly

f2+1∑
j=1

d
(
T [j − 1], T [j])� m + n.

Hence the total complexity of the algorithm does not
exceed O (m + n).

4. Final remarks

The implementation of the algorithm can be simplified—
for every triple (k, s, p) in S the values s and p can be
computed in constant time from k and the current po-
sition. Thus we can keep S as a sorted list of indices
(without partitioning it into S+ , S− and S0), with cursor
traversing this list in the same way as before. We keep an
additional single pointer to the list (call it middle) indicat-
ing the element with k = 0 (or the element with the least
non-negative value of k). The middle pointer is needed for
the Check operation and we update it by linear search
(for every 1 symbol in any of the sequences we make at
most one move of middle). This modification was proposed
by one of the paper’s reviewers. We would like to thank
the reviewers for this suggestion, as well as for all other
comments, which greatly helped to improve the paper.

References

[1] R.A. Wagner, M.J. Fischer, The string-to-string correction problem,
J. ACM 21 (1) (1974) 168–173.

[2] D.S. Hirschberg, A linear space algorithm for computing maximal com-
mon subsequences, Comm. Assoc. Comput. Mach. 18 (6) (1975) 341–
343.

[3] W.J. Masek, M.S. Paterson, A faster algorithm computing string edit
distances, J. Comput. System Sci. 20 (1980) 18–31.

L. Duraj / Information Processing Letters 113 (2013) 94–99 99
[4] I.H. Yang, C.P. Huang, K.M. Chao, A fast algorithm for computing a
longest common increasing subsequence, Inform. Process. Lett. 93 (5)
(2005) 249–253.

[5] Y. Sakai, A linear space algorithm for computing a longest common
increasing subsequence, Inform. Process. Lett. 99 (5) (2006) 203–
207.
[6] G.S. Brodal, K. Kaligosi, I. Katriel, M. Kutz, Faster algorithms for com-
puting longest common increasing subsequences, in: Combinatorial
Pattern Matching: 17th Annual Symposium, CPM 2006, Barcelona.

[7] M. Kutz, G.S. Brodal, K. Kaligosi, I. Katriel, Faster algorithms for
computing longest common increasing subsequences, J. Discrete
Algorithms (2011) 314–325.

	A linear algorithm for 3-letter longest common weakly increasing subsequence
	1 Introduction
	2 Preliminaries
	3 Algorithm
	4 Final remarks
	References

