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Time series with missing values occur in almost any domain of applied sciences. Ignoring missing values 

can lead to a loss of efficiency and unreliable results, especially for large missing sub-sequence(s). This 

paper proposes an approach to fill in large gap(s) within time series data under the assumption of ef- 

fective information. To obtain the imputation of missing values, we find the most similar sub-sequence 

to the sub-sequence before (resp. after) the missing values, then complete the gap by the next (resp. 

previous) sub-sequence of the most similar one. Dynamic Time Warping algorithm is applied to compare 

sub-sequences, and combined with the shape-feature extraction algorithm for reducing insignificant solu- 

tions. Eight well-known and real-world data sets are used for evaluating the performance of the proposed 

approach in comparison with five other methods on different indicators. The obtained results proved that 

the performance of our approach is the most robust one in case of time series data having high auto- 

correlation and cross-correlation, strong seasonality, large gap(s), and complex distribution. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Recent advances in monitoring systems, communication and in-

ormation technology, storage capacity and remote sensing systems

ake it possible to consider huge time series databases. These

atabases have been collected over many years with intraday sam-

lings. However, they are usually incomplete due to sensor failures,

ommunication/transmission problems or bad weather conditions

or manual measures or maintenance. This is particularly the case

or marine samples [3,26] . Incomplete missing data are problem-

tic [8] because most data analysis algorithms and most statistical

oftwares are not designed to handle this kind of data. 

Let consider some terminologies and a real marine data set

o illustrate the problem. A time series x = { x t | t = 1 , 2 , · · · , N} is

 set of N observations successive indexed in time, occurring in

niform intervals. A single hole at index t is an isolated missing

alue where observations at time t − 1 and t + 1 are available,

e note x t = NA ( NA stands for not available). A hole of size T ,

lso called gap, is an interval [ t : t + T − 1] of consecutive missing

alues and is denoted x [ t : t + T − 1] = NA . We define a large gap

hen T is larger than the known-process change, so it depends
∗ Corresponding authors. 
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n each application. At the MAREL Carnot station, a marine water

onitoring platform in the eastern English Channel, France [15] ,

9 large time series are collected every 20 min as fluorescence,

urbidity, oxygen saturation and so on. These data contain single

nd large holes. For example, oxygen saturation series has 131,472

bservations and only 81.9% available. This series comprises 4004

solated missing values and many consecutive missing data. The

ize of these gaps are various from one hour to few months; the

argest gap is a 3044 points corresponding to 42 days. Single holes

nd gaps having T < tide duration-holes (807 missing points)

ould be easily replaced by local averages. For the other gaps, the

hytoplankton bloom dynamics or composition changes too fast to

se linear or spline imputation method. 

Other classical solution consists in ignoring missing data or

istwise deletion. But it is easy to imagine that this drastic solution

ay lead to serious problems, especially for time series data

the considered values would depend on the past values). The

rst potential consequence of this method is information loss

hich could lose efficiency [20] . The second consequence is about

ystematic differences between observed and unobserved data

hat leads to biased and unreliable results [9] . 

Therefore, it is crucial to propose a new technique to esti-

ate missing values. One prospective approach to solve missing

ata problems is the adoption of imputation techniques [12] .

hese techniques should ensure that the obtained results are
ed imputation for univariate time series data, Pattern Recognition 

http://dx.doi.org/10.1016/j.patrec.2017.08.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
mailto:ptthong@vnua.edu.vn
mailto:hongptvn@gmail.com
mailto:emilie.poisson@univ-littoral.fr
http://dx.doi.org/10.1016/j.patrec.2017.08.019
http://dx.doi.org/10.1016/j.patrec.2017.08.019


2 T.-T.-H. Phan et al. / Pattern Recognition Letters 0 0 0 (2017) 1–9 

ARTICLE IN PRESS 

JID: PATREC [m5G; August 30, 2017;13:44 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d  

w  

(  

t  

s  

c  

s  

a  

m

3

 

a  

f  

f  

a

 

 

 

 

 

 

 

 

 

 

 

 

c  

i  

[  

t  

(  

o  

T  

s  

H  

r  

G

4

 

v

 

c  

t  

x  

p  

f  

k

 

(  

g  

g

 

D  

o  

[  

a  
efficient (having minimal standard errors) and reliable (effective,

curve-shape respect). 

According to our knowledge, there is no application for filling

time series data with large missing gap(s) size for univariate time

series. We therefore investigate and propose an algorithm to com-

plete large gap(s) of univariate time series based on Dynamic Time

Wrapping [28] . We do not deal with all the missing data over the

entire series, but we focus on each large gap where series-shape

change could occur over the duration of this large gap. Further,

the distribution of missing values or entire signal could be very

difficult to estimate, so it is necessary to make some assumptions.

Our approach makes the assumption that the information about

missing values exists within the univariate time series and takes

into account the time series characteristics. 

This paper is organized as follows. First,we discuss the related

work in Section 2 . The analysis of time series data is discussed

in Section 3 . The proposed approach is introduced in Section 4 .

Experimental results and discussion on 8 data sets are illustrated

in Section 5 . Conclusion is set out in Section 6 . 

2. Related work 

In the literature, missing data mechanisms can be divided into

three categories. Each category is based on one possible cause:

“Missing data are completely random” (Missing Completely At Ran-

dom, MCAR, in the literature), “Missing data are random” (Missing

At Random, MAR) and “Missing data are not random” (Not Missing

At Random, NMAR) [17] . It is important to understand the causes

that produce missing data to develop an imputation task. This

can help to select an appropriate imputation algorithm [19] . But

in practice, understanding the causes remains a challenging task

when missing data cannot be known at all, or when these data

have a complex distribution [8] . Similarly, assigning sub-sequences

of missing values to a category can be blurry [19] . Commonly, most

current research works focus on the three types of missing data

previously defined to find out corresponding imputation methods.

Regarding imputation methods, a large number of successful

approaches have been proposed for completing missing data. 

Concerning the imputation task for multivariate time series,

many studies have been investigated using machine learn-

ing techniques as [16,25,30] and model techniques such as

[6,7,11,14,23,24,27,29,31,33,35] . The efficiency of these algorithms

is based on correlations between signals or their features, and

missing values are estimated from the observed values. However,

handling missing values within univariate time series data differs

from multivariate time series techniques. We must only rely on the

available values of this unique variable to estimate the incomplete

values of the time series. Moritz et al. [19] showed that imputing

univariate time series data is a particularly challenging task. 

Fewer studies are devoted to the imputation task for univari-

ate time series. Allison [1] and Bishop [2] proposed to simply sub-

stitute the mean or the median of available values to each miss-

ing value. These simple algorithms provide the same result for all

missing values leading to bias result and to undervalue standard

error [5,32] . Other imputation techniques for univariate time series

are linear interpolation, spline interpolation and the nearest neigh-

bor interpolation. These techniques were studied for missing data

imputation in air quality data sets [12] . The results showed that

univariate methods are dependent on the size of the gap in time:

the larger gap, the less effective technique. Walter et al. [36] car-

ried out a performance comparison of three methods for univari-

ate time series, namely, ARIMA (Autoregressive Integrated Moving

Average), SARIMA (Seasonal ARIMA), and linear regression. The lin-

ear regression method was more efficient and effective than the

other two methods, only when rearranging the data in periods.

This study treated non-stationary seasonal time series data but it
Please cite this article as: T.-T.-H. Phan et al., Dynamic time warping-bas
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id not take into account series without seasonality. Chiewchan-

attana et al. proposed the Varied-Window Similarity Measure

VWSM) algorithm [4] . This method is better than the spline in-

erpolation, the multiple imputation, and the optimal completion

trategy fuzzy c-means algorithms. However, this research only fo-

used on filling one isolated missing value, but did not consider

ub-sequence missing. Moritz et al. [19] performed an overview

bout univariate time series imputation comparing six imputation

ethods. Nevertheless, this study only considered the MCAR type. 

. Time series characterization 

Filling large gaps within time series requires firstly to char-

cterize the data. This step permits to extract useful information

rom the data set and makes the data set easily exploitable. The

our specific components of time series are trend, seasonal, cyclical

nd random change: 

1. Trend component : That is the change of variable(s) in terms of

monitoring for a long time. If there exists a trend within the

time series data (i.e. on the average data), the measurements

tend to increase (or decrease) over time. 

2. Seasonal component : This component takes into account

intra-interval fluctuations. That means there is a regular and

repeated pattern of peaks and valleys within the time series

related to a calendar period such as seasons, quarters, months,

weekdays, and so on. 

3. Cyclical component : This component equals the seasonal one,

the difference is that its cycle duration is more than one year. 

4. Random change component : This component considers random

fluctuations around the trend; this could affect the cyclical and

seasonal variations of the observed sequence, but it cannot be

predicted by previous data (in the past of time series). 

There are different techniques to decompose time series into

omponents. “Decompose a time series into seasonal, trend and

rregular components using moving averages” (R-starts package,

22] ) is the most common technique. In this study, we use this

echnique to analyze time series data. Auto-correlation function

ACF) provides an additional important indication of the properties

f time series (i.e. how past and future data points are related).

herefore, it can be used to identify the possible structure of time

eries data, and to create reliable forecasts and imputations [19] .

igh auto-correlation values mean that the future is strongly cor-

elated to the past. Fig. 1 indicates the auto-correlation of Mackey-

lass chaotic, water level and Google data sets in our experiment. 

. The proposed method - DTWBI 

In this part, we present a new method for imputing missing

alues of univariate time series data. 

A time series x is referred as incomplete time series when it

ontains missing values (or values are Not Available-NA). Recall

hat the portion of a time series between two points x t and

 t+ T −1 with x i = NA ( i = t : t + T − 1) is called a gap of T -size at

osition t . In this paper, we consider a large gap when T ≥ 6% N

or small time series ( N < 10, 0 0 0) or when T is larger than the

nown-process change. 

The proposed approach finds the most similar sub-sequence

 Qs ) to a query ( Q ), with Q (cf. Fig. 2 ) is the sub-sequence before a

ap of T size at position t ( Q = x [ t − T : t − 1] ), and completes this

ap by the following sub-sequence of the Qs . 

To find the Qs similar sub-sequence, we use the principles of

ynamic Time Warping - DTW [28] , especially transformed from

riginal data to Derivative Dynamic Time Warping - DDTW data

13] . The DDTW data are used because we can obtain information

bout the shape of sequence [13] . The dynamics and the shape
ed imputation for univariate time series data, Pattern Recognition 
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Fig. 1. ACF of Mackey-Glass chaotic, water level and Google time series. 

Fig. 2. Diagram of DTWBI method for univariate time series imputation. 
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f data before a gap are a key-point of our method. The elastic

atching is used to find a similar window to the Q query of T

ize in the search database. Once the most similar window is

dentified, the following window will be copied to the location of

issing values. Fig. 2 describes the different steps of our approach.

The detail of DTWBI (namely DTW-Based Imputation) algo-

ithm is introduced in Algorithm 1 . In the proposed method, the

hape-feature extraction algorithm [21] is applied before using

TW algorithm in order to reduce the computation time. As we

now DTW’s time complexity is O ( N 

2 ), so this is a very useful

tep to decrease computation time of DTW method. A reference
Please cite this article as: T.-T.-H. Phan et al., Dynamic time warping-bas
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indow is selected to calculate DTW cost only if the correlation

etween the shape-features (also called the global features) of

his window and the ones of the query is very high. In addition,

e apply the shape-feature extraction algorithm because it better

resents the shape and dynamics of series through 9 elements,

uch as moments (the 1 st moment, the 2 nd moment, the 3 rd

oment), number of peaks, entropy, etc (see [21] for more detail).

his is an important objective of the proposed method. In Algo-

ithm 1, we just mention the finding of similar windows before

he gap. In case of finding similar windows after the gap, the

ethod just needs to shift the corresponding index. 

. Experimental results and discussion 

.1. Data presentation 

In this study, we analyzed 8 data sets in order to evaluate the

erformance of the proposed technique. 4 data sets come from

SA package [10] . These data sets are chosen because they are

sually used in the literature, including Airpassenger, Beersales,

oogle, and SP. Besides, we also choose other data sets from

arious domains in different places: 

1. Airpassenger - Monthly total international airline passengers

from 01/1960 to 12/1971. 

2. Beersales - Monthly beer sales in millions of barrels, from

01/1975 to 12/1990. 

3. Google - Daily returns of the google stock from 08/20/04 to

09/13/06. 

4. SP - Quarterly S&P Composite Index, 1936Q1–1977Q4. 

5. CO 2 concentrations - This data set contains monthly mean CO 2 

concentrations at the Mauna Loa Observatory from 1974 to

1987 [34] . 

6. Mackey-Glass chaotic - The data is generated from the Mackey-

Glass equation which is the nonlinear time delay differential

[18] . 

7. Phu Lien temperature - This data set is composed of monthly

mean air temperature at the Phu Lien meteorological station in

Vietnam from 1/1961 to 12/2014. 

8. Water level - The MAREL Carnot data in France acquired from

2005 up today. For our study, we focus on the water level, sam-

pling frequency of 20 min from 01/1/2015 to 31/12/2009 [15] . 

Table 1 summarizes characteristics of the data sets. 
ed imputation for univariate time series data, Pattern Recognition 
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Table 1 

Data characteristics. 

N0 Data set name N0 of instants Trend (Y/N) Seasonal (Y/N) Frequency 

1 Air passenger 144 Y Y Monthly 

2 Beersales 192 Y Y Monthly 

3 Google 521 N N Daily 

4 SP 168 Y Y Quarterly 

5 CO 2 concentrations 160 Y Y Monthly 

6 Mackey-Glass chaotic 1201 N N 

7 Phu Lien temperature 648 N Y Monthly 

8 Water level 131 ,472 N Y 20 min 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

g  

a  

o  

F  

s  

d  

i  

F  

m  

p

 

8  

d  

w  

s  

s  

1  

t  

r  

t  

t

5

5

 

n  

d

 

c  
5.2. Univariate time series imputation algorithms 

The performance of the proposed method compared with

5 other existing methods for univariate time series (namely,

na.interp, na.locf, na.approx, na.aggregate, na.spline) is evaluated

in this paper. All these methods are implemented using R language

(na stands for Not Available): 

1. na.interp (forecast R-package): linear interpolation for non-

seasonal series and Seasonal Trend decomposition using Loess

(STL decomposition) for seasonal series to replace missing

values [10] . A seasonal model is fitted to the data, and then

interpolation is made on the seasonally adjusted series, before

re-seasonalizing. So, this method is especially devoted to strong

and clear seasonality data. 

2. na.locf (last observation carried forward) (zoo R-package): any

missing value is replaced by the most recent non-NA value

prior to it [37] . Conceptually, this method assumes that the

outcome would not change after the last observed value. There-

fore, there has been no time effect since the last observed data.

3. na.approx (zoo R-package): generic function for replacing each

NA with interpolated values [37] . 

4. na.aggregate (zoo R-package): generic function for replacing

each NA with aggregated values. This allows imputing using the

overall mean, by monthly means, etc [37] . In our experiment,

we use the overall mean. 

5. na.spline (zoo R-package): polynomial (cubic) interpolation to

fill in missing data [37] . 

5.3. Imputation performance indicators 

After the completion of missing values, we assess the perfor-

mance of our method, and then compare it with existing imputa-

tion methods based on four different metrics described as follows:

1. Similarity: Sim ( y, x ) indicates the similarity between actual

data ( X ) and imputation data ( Y ). It is calculated by: 

Sim (y, x ) = 

1 

T 

T ∑ 

i =1 

1 

1 + 

| y i −x i | 
max (x ) −min (x ) 

(1)

Where T is the number of missing values. A higher similarity

(similarity value ∈ [0, 1]) highlights a better ability method for

the task of completing missing values. 

2. NMAE: The Normalized Mean Absolute Error between the

imputed value y and the respective true value time series x is

computed as: 

NMAE(y, x ) = 

1 

T 

T ∑ 

i =1 

| y i − x i | 
V max − V min 

(2)

Where V max , V min are the maximum and the minimum values

of input time series (time series has missing data) by ignoring

the missing values. A lower NMAE means better performance

method for the imputation task. 
Please cite this article as: T.-T.-H. Phan et al., Dynamic time warping-bas
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3. RMSE: The Root Mean Square Error is defined as the average

squared difference between the imputed value y and the

respective true value time series x . This indicator is very useful

for measuring overall precision or accuracy. In general, the

most effective method would have the lowest RMSE. 

RMSE(y, x ) = 

√ 

1 

T 

T ∑ 

i =1 

(y i − x i ) 2 (3)

4. FSD: Fraction of Standard Deviation of the imputed value y and

the respective true value time series x is defined as follows: 

F SD (y, x ) = 2 ∗ | SD (y ) − SD (x ) | 
SD (y ) + SD (x ) 

(4)

This fraction indicates whether a method is acceptable or not

(here SD stands for Standard Deviation). For the imputation

task, FSD should be closer to 0, the imputation values are

closer to the real values. 

.4. Experiment protocol 

Indeed, we could not compare the ability of imputation al-

orithms on real missing data because the true values are not

vailable. Therefore, we have to create simulated missing values

n full data to compare the performance of imputation algorithms.

or assessing the results, we use a technique based on three

teps. In the first step, we create artificial missing data by deleting

ata values from known time series. The second step consists

n applying the imputation algorithms to complete missing data.

inally, the third step compares the performance of the proposed

ethod with published methods using the different imputation

erformance indicators as previously defined. 

In the present study, 5 missing data levels are considered on

 data sets. If the size of a data set (number of instants of the

ata set) is less than or equal to 10,0 0 0 samples, we create gaps

ith different sizes: 6%, 7.5%, 10%, 12.5%, 15% of overall data set

ize. In contrast, when the size of a data set is greater than 10,0 0 0

ampling points, gaps are built at rates 0.6%, 0.75%, 1%, 1.25%, and

.5% of the data set size (here the largest gap of the water level

ime series is 1972 missing values, corresponding to the missing

ate 1.5%). For each missing rate, the algorithms are conducted 10

imes by randomly selecting the missing positions on the data. We

hen run 50 iterations for each data set. 

.5. Results and discussion 

.5.1. Comparison of quantitative performance 

Table 2 shows imputation average results of DTWBI, na.interp,

a.locf, na.approx, na.aggregate, na.spline methods applied on 8

ata sets using 4 indicators: similarity, NAME, RMSE, FSD. 

• Airpassenger, Beersales, Google, SP data sets 

The Airpassenger data set has both trend and seasonality

omponents. The result from Table 2 indicates that when the gap
ed imputation for univariate time series data, Pattern Recognition 
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Table 2 

Average imputation performance indexes of six methods on eight data sets (best results in bold). 

Gap size Method Airpassenger Beersales Google SP 

Sim NMAE RMSE FSD Sim NMAE RMSE FSD Sim NMAE RMSE FSD Sim NMAE RMSE FSD 

6% DTWBI 0.777 0.034 21.1 0.24 0.88 0.035 0.7 0.14 0.83 0.14 0.034 0.43 0.74 0.026 35.5 0.7 

na.interp 0.85 0.019 11.1 0.24 0.89 0.063 0.6 0.15 0.83 0.11 0.032 1.11 0.74 0.028 36.3 0.54 

na.locf 0.76 0.044 26.3 2 0.81 0.129 1.2 2 0.81 0.126 0.036 2 0.75 0.022 29.2 2 

na.approx 0.77 0.037 21.8 1.01 0.8 0.136 1.3 1.5 0.83 0.11 0.032 1.11 0.73 0.028 37 1.03 

na.aggregate 0.8 0.033 20.1 2 0.83 0.11 1.1 2 0.86 0.082 0.024 2 0.78 0.021 26.5 2 

na.spline 0.71 0.057 35.1 0.52 0.68 0.26 2.3 0.55 0.5 1.813 0.473 1.02 0.63 0.045 56.8 0.41 

7.5% DTWBI 0.782 0.035 20.6 0.3 0.87 0.038 0.7 0.1629 0.84 0.131 0.032 0.33 0.76 0.03 38.9 0.52 

na.interp 0.86 0.023 13.6 0.3 0.885 0.067 0.6 0.163 0.83 0.119 0.034 1.18 0.78 0.024 33.1 0.67 

na.locf 0.77 0.046 27.4 2 0.81 0.123 1.2 2 0.82 0.126 0.035 2 0.77 0.026 34.8 2 

na.approx 0.74 0.053 31.3 1.49 0.8 0.132 1.3 1.51 0.83 0.119 0.034 1.18 0.78 0.025 34 1.1 

na.aggregate 0.81 0.033 20.2 2 0.82 0.112 1.1 2 0.87 0.081 0.024 2 0.8 0.022 29.1 2 

na.spline 0.6 0.112 65.4 0.45 0.6 0.404 3.5 0.43 0.44 3.652 0.963 1.38 0.69 0.042 54.5 0.55 

10% DTWBI 0.887 0.02 12.7 0.36 0.84 0.054 1 0.13 0.84 0.132 0.032 0.23 0.81 0.029 40.1 0.57 

na.interp 0.86 0.021 13.1 0.34 0.89 0.068 0.7 0.18 0.85 0.105 0.03 1.22 0.82 0.025 36.3 0.56 

na.locf 0.79 0.042 26.1 2 0.82 0.13 1.3 2 0.83 0.131 0.035 2 0.81 0.026 36.9 2 

na.approx 0.79 0.041 24.6 1.03 0.82 0.124 1.2 1.24 0.85 0.105 0.03 1.22 0.83 0.024 33.5 1.14 

na.aggregate 0.81 0.035 22.1 2 0.84 0.111 1.1 2 0.87 0.084 0.024 2 0.82 0.023 31.7 2 

na.spline 0.62 0.134 78.3 0.52 0.55 0.558 4.9 0.67 0.42 4.684 1.118 1.13 0.76 0.049 63.2 0.45 

12.5% DTWBI 0.893 0.02 12.6 0.36 0.87 0.039 0.7 0.12 0.85 0.138 0.032 0.23 0.8 0.03 41.9 0.61 

na.interp 0.86 0.023 14.8 0.39 0.89 0.068 0.6 0.15 0.85 0.115 0.032 1.27 0.81 0.028 38.8 0.52 

na.locf 0.8 0.044 26.9 2 0.82 0.127 1.2 2 0.84 0.129 0.035 2 0.81 0.027 36.1 2 

na.approx 0.79 0.043 26.7 0.95 0.8 0.147 1.4 1.28 0.85 0.115 0.032 1.27 0.825 0.027 35.6 1.06 

na.aggregate 0.82 0.035 21.8 2 0.84 0.109 1.1 2 0.88 0.083 0.024 2 0.824 0.024 31 2 

na.spline 0.64 0.129 76.8 0.67 0.61 0.458 4 0.77 0.39 2.143 0.532 1.4 0.61 0.113 132.4 0.69 

15% DTWBI 0.895 0.02 12.8 0.36 0.84 0.054 1 0.1 0.85 0.133 0.031 0.29 0.81 0.029 40.7 0.59 

na.interp 0.86 0.025 15.6 0.35 0.89 0.069 0.7 0.17 0.86 0.11 0.031 0.99 0.79 0.033 43.6 0.49 

na.locf 0.79 0.047 28.2 2 0.82 0.126 1.2 2 0.84 0.127 0.034 2 0.81 0.028 36.3 2 

na.approx 0.8 0.043 26.5 1.17 0.83 0.117 1.1 1.42 0.86 0.11 0.031 0.99 0.81 0.032 41 1 

na.aggregate 0.83 0.035 22.1 2 0.84 0.11 1.1 2 0.89 0.079 0.023 2 0.82 0.025 32 2 

na.spline 0.55 0.175 106.1 0.95 0.49 0.731 6.3 0.88 0.34 12.339 2.928 1.6 0.61 0.136 162.5 0.68 

CO 2 concentrations Mackey-Glass Chaotic Phu Lien temperature Water level 

6% DTWBI 0.93 0.001 0.3 0.04 0.95 0.005 0.01 0.03 0.88 0.06 1.7 0.08 0.95 0.009 0.1 0.05 

na.interp 0.75 0.055 1.6 1.5 0.79 0.031 0.04 0.81 0.8 0.142 3.1 0.63 0.81 0.042 0.5 1.05 

na.locf 0.73 0.059 1.7 2 0.77 0.036 0.05 2 0.77 0.173 3.8 2 0.8 0.043 0.4 2 

na.approx 0.75 0.055 1.6 1.5 0.79 0.031 0.04 0.81 0.8 0.142 3.1 0.63 0.81 0.042 0.5 1.05 

na.aggregate 0.45 0.185 4.7 2 0.82 0.025 0.03 2 0.83 0.114 2.4 2 0.83 0.035 0.4 2 

na.spline 0.75 0.057 1.6 0.75 0.65 0.072 0.09 0.38 0.61 0.413 8.5 0.52 0.3 0.654 6.6 1.61 

7.5% DTWBI 0.93 0.001 0.4 0.05 0.93 0.008 0.01 0.02 0.8788 0.061 1.7 0.06 0.96 0.007 0.1 0.02 

na.interp 0.74 0.057 1.6 1.38 0.8 0.031 0.04 1.04 0.79 0.147 3.2 0.98 0.82 0.038 0.4 0.97 

na.locf 0.76 0.053 1.6 2 0.77 0.038 0.05 2 0.77 0.171 3.7 2 0.81 0.043 0.5 2 

na.approx 0.74 0.057 1.6 1.38 0.8 0.031 0.04 1.04 0.79 0.147 3.2 0.98 0.82 0.038 0.4 0.97 

na.aggregate 0.45 0.186 4.7 2 0.83 0.025 0.03 2 0.83 0.113 2.4 2 0.83 0.036 0.4 2 

na.spline 0.74 0.058 1.6 0.79 0.69 0.062 0.08 0.39 0.58 0.701 14.5 0.8 0.2 1.228 12 1.71 

10% DTWBI 0.93 0.001 0.4 0.04 0.93 0.008 0.01 0.01 0.8791 0.063 1.8 0.05 0.97 0.005 0.1 0.03 

na.interp 0.76 0.051 1.4 0.88 0.81 0.03 0.04 0.98 0.81 0.137 3 0.58 0.81 0.041 0.4 0.91 

na.locf 0.76 0.054 1.6 2 0.79 0.036 0.05 2 0.77 0.176 3.8 2 0.81 0.043 0.5 2 

na.approx 0.76 0.051 1.4 0.88 0.81 0.03 0.04 0.98 0.81 0.137 3 0.58 0.81 0.041 0.4 0.91 

na.aggregate 0.44 0.197 4.9 2 0.83 0.025 0.03 2 0.83 0.114 2.4 2 0.83 0.036 0.4 2 

na.spline 0.66 0.098 2.9 0.26 0.71 0.058 0.08 0.33 0.49 0.88 17.8 1.04 0.18 1.57 15.5 1.79 

12.5% DTWBI 0.94 0.001 0.3 0.04 0.92 0.009 0.02 0.01 0.881 0.065 1.8 0.04 0.96 0.006 0.1 0.03 

na.interp 0.78 0.049 1.5 1.39 0.8 0.033 0.04 1.13 0.79 0.163 3.5 1.44 0.81 0.044 0.5 1.21 

na.locf 0.75 0.057 1.7 2 0.79 0.036 0.05 2 0.78 0.18 3.8 2 0.81 0.043 0.5 2 

na.approx 0.78 0.049 1.5 1.39 0.8 0.033 0.04 1.13 0.79 0.163 3.5 1.44 0.81 0.044 0.5 1.21 

na.aggregate 0.44 0.2 5 2 0.84 0.025 0.03 2 0.84 0.116 2.4 2 0.83 0.036 0.4 2 

na.spline 0.71 0.073 2.2 0.38 0.61 0.093 0.12 0.63 0.55 0.653 13.7 0.99 0.25 0.96 9.8 1.74 

15% DTWBI 0.94 0.001 0.3 0.04 0.92 0.01 0.02 0.01 0.882 0.066 1.8 0.05 0.96 0.007 0.1 0.04 

na.interp 0.76 0.053 1.6 1.46 0.81 0.03 0.04 0.99 0.81 0.145 3.2 1 0.81 0.044 0.5 1.6 

na.locf 0.77 0.052 1.6 2 0.79 0.037 0.05 2 0.79 0.175 3.8 2 0.81 0.043 0.5 2 

na.approx 0.76 0.053 1.6 1.46 0.81 0.03 0.04 0.99 0.81 0.145 3.2 1 0.81 0.044 0.5 1.6 

na.aggregate 0.43 0.202 5.1 2 0.84 0.025 0.03 2 0.84 0.117 2.5 2 0.83 0.036 0.4 2 

na.spline 0.69 0.085 2.5 0.58 0.57 0.129 0.16 0.73 0.44 1.268 26.3 1.27 0.21 1.185 11.8 1.83 

s  

h

 

i  

s  

o  

m  

o  

n  

a  
ize is greater than or equal to 10%, the proposed method has the

ighest similarity and the lowest NMAE and RMSE. 

On the Beersales data set, considering similarity and RMSE

ndicators: na.interp method provides the best result and the

econd one is our approach. By contrast to these two indicators,
Please cite this article as: T.-T.-H. Phan et al., Dynamic time warping-bas
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ur method has better results on NMEA and FSD indicators at any

issing rate. When comparing na.interp method to the na.approx

ne on the Airpassenger and Beersales data sets, we can see

a.interp shows better performance than na.approx method on

ny indicators and at every level of missing data. It corresponds to
ed imputation for univariate time series data, Pattern Recognition 
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Algorithm 1 DTWBI algorithm. 

Input: x = { x 1 , x 2 , . . . , x N } : incomplete time series 

t: index of a gap (position of the first missing of the gap) 

T : size of the gap 

θ_ cos : cosine threshold (≤ 1) 

step _ threshold: increment for finding a threshold 

step _ sim _ win : increment for finding a similar window 

Output: y - completed (imputed) time series 

1: Step 1: Transform x to DDTW data Dx = DDT W (x ) 

2: Step 2: Construct a Q query - temporal window before the 

missing data Q = Dx [ t − T : t − 1] 

3: Step 3: Build a search database before the gap: SDB = Dx [1 : t −
2 T ] and deleting all lines containing missing parameter SDB = 

SDB \{ d x j , d x j = NA } 
4: Step 4: Find the threshold 

5: i ← 1 ; DT W _ costs ← NULL 

6: while i < = length (SDB ) do 

7: k ← i + T − 1 

8: Create a reference window: R (i ) = SDB [ i : k ] 

9: Calculate global feature of Q and R (i ) : g f Q, g f R 

10: Compute cosine coefficient: cos = cosine (g f Q, g f R ) 

11: if cos ≥ θ_ cos then 

12: Calculate DTW cost: cost = DT W _ cost(Q, R (i )) 

13: Save the cost to DT W _ costs 

14: end if 

15: i ← i + step _ threshold 

16: end while 

17: threshold = min { DT W _ costs } 
18: Step 5: Find similar windows on the SDB 

19: i ← 1 ; Lop ← NULL 

20: while i < length (SDB ) do 

21: k ← i + T − 1 

22: Create a reference window: R (i ) = SDB [ i : k ] 

23: Calculate global feature of Q and R (i ) : g f Q, g f R 

24: Compute cosine coefficient: cos = cosine (g f Q, g f R ) 

25: if cos ≥ θ_ cos then 

26: Calculate DTW cost: cost = DT W _ cost(Q, R (i )) 

27: if cost < threshold then 

28: Save position of R (i ) to Lop 

29: end if 

30: end if 

31: i ← i + step _ sim _ win 

32: end while 

33: Step 6: Replace the missing values at the position t by vector 

after the Qs window having the minimum DTW cost in the Lop 

list. 

34: return y - with imputed series 
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the fact that these two data sets have a clear seasonality compo-

nent. Na.interp method takes into account the seasonality factor,

so it can better handle seasonality than na.approx does, although

both algorithms use the interpolation for completing missing data.

On Airpassenger and Beersales data sets, na.aggregate approach

gives less efficient results than na.interp. But on Google series,

na.aggregate method yields the best performance: the highest

similarity and the smallest NMEA, RMSE indicators. Without any

trend on this data set, this method leads to the best result. For SP

data set, na.aggegate method still highlights a good performance

on NMEA and RMSE, but this approach has lower similarity than

it has on Google series. The na.aggegate method replaces missing

values by overall mean. However, SP series has a clear trend;

therefore, na.aggregate method seems not to be effective with

series having a strong trend. 
Please cite this article as: T.-T.-H. Phan et al., Dynamic time warping-bas
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In all data sets, FSD value of na.aggregate and na.locf methods

lways equals 2, because they use the same value for all missing

ata (last value for na.locf method; overall mean for na.aggregate).

• CO 2 concentrations, Mackey-Glass chaotic, Phu Lien temper-

ature, water level data sets 

These data sets have a seasonality component (except Mackey-

lass chaotic series but this data set is regularly repeated),

ithout any trend (excluding CO 2 concentrations data set) and

igh auto-correlation. Our method demonstrates the best ability

or completing missing data on these series: the highest similarity,

he lowest NMAE, RMSE and FSD at any missing level. Further-

ore, on Airpassenger, Beersales, Google and SP data sets, the

imilarity of our approach is lower, but the difference value of

his indicator between the proposed method and the best method

s small. On the contrary, for these four data sets, our method

utperforms the existing techniques on any indicator and at any

issing rate. The different values of these indicators between the

roposed method and the other ones are quite large. The results

onfirm that the imputation values generated from the proposed

ethod are close to the real values on data sets having high

uto-correlation (see Fig. 1 , the ACF maximum values of water and

haotic series are approximate 1), which means that there is a

trong relationship between the available and the unknown values.

Following the proposed method, the second one is na.aggregate

ne applied on the Mackey-Glass chaotic series, Phu Lien tem-

erature and water level series. As mentioned above ( Table 1 ),

hese data sets have no trend, that is why na.aggregate could

emonstrate its ability. However, on the C02 series with clear

rend, fully opposed to these 3 data sets, the performance of this

ethod is the worst one. 

Although na.interp method is well indicated for handling data

ets with seasonality component: here with these 4 data sets this

pproach does not illustrate its capability. It gives the same results

s na.approx method and lower results than our approach and the

a.aggregate one (on the Mackey-Glass chaotic, Phu Lien tempera-

ure and water series). For any data set, na.spline method indicates

he lowest performance. However on the water series, this method

as the least performance for completing missing values. This

eans that the spline method is not suitable for this task. 

.5.2. Comparison of the visual performance 

Table 2 indicates the quantitative comparison of 6 different

ethods for the task of completing missing values. In this part,

igs. 3–5 , 7 , and 8 show the comparison of visual imputation

erformance of different methods. 

Fig. 3 presents the shape of imputation values of 5 existing

ethods (na.interp, na.locf, na.approx, na.aggregate and na.spline)

ith the true values at position 106, the gap size of 9 on the

irpassenger series. As we can notice on Table 2 , considering low

ates of missing data, the proposed approach is less effective

han na.interp and na.aggregate methods for Airpassenger time

eries. However, when looking at Fig. 4 , we find that the shape

f the imputation values generated from DTWBI method is very

imilar to the shape of true values. Despite high similarity, low

MSE and NMAE, the shape of imputation values yielded from

a.aggregate method ( Fig. 3 ) is not as effective as the proposed

ethod ( Fig. 4 ). As analyzed above, the na.interp method better

eals with seasonal factor, so their imputed values are asymptotic

o the real values ( Fig. 3 ). 

Fig. 5 illustrates the visual comparison of DTWBI’s imputation

alues and real values on water level series at position 23,282,

nd at 0.6% rate of missing values (corresponding to 789 miss-

ng points). The proposed method proves again its capability for

he task of completing missing values. We see that the shape of

he imputation values generated from our method and the one of
ed imputation for univariate time series data, Pattern Recognition 
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Fig. 3. Visual comparison of imputed values of different imputation methods with 

true values on Airpassenger series at position 106 with the gap size of 9. 

Fig. 4. Visual comparison of imputed values of proposed method with true values 

on Airpassenger series at position 106 with the gap size of 9. 
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Fig. 5. Visual comparison of imputed values of the proposed method with true val- 

ues on water level series at position 23,282 with the gap size of 789. 

Fig. 6. Visual comparison of the query with the similar window on water level se- 

ries at position 23,282 with the gap size of 789. 
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he true values are almost completely identical. Fig. 6 shows the

atching pairs between the query and the most similar reference

indow for the considered case. The values of matching pairs are

ery close, which indicates the reason why the imputation values

enerated from DTWBI are very similar to the real values. In con-

rast to our approach, handling seasonal factor of na.interp method

s ineffective on water level data set. This method does not pro-

ide good result such as on Airpassenger series ( Fig. 3 ); its perfor-
Please cite this article as: T.-T.-H. Phan et al., Dynamic time warping-bas
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ance is the same as na.approx method ( Fig. 7 ). Fig. 8 especially

oints out the obvious inefficiency of na.spline method for the task

f completing missing values, considering series with high auto-

orrelation and large gap size (789 missing values in this case). 

In this paper, we also calculate Cross-Correlation (CC) coeffi-

ients between the query with each reference window, and then

e find the maximum coefficient. CC demonstrates that a pattern

here that is the query) exists or not in the database. High CC

alue means that there exists the recurrence of the pattern in

he database. Therefore, we could easily find the pattern. Table 3

ndicates the maximum of cross-correlation between the query

nd reference windows. 
ed imputation for univariate time series data, Pattern Recognition 
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Fig. 7. Visual comparison of imputed values of different methods with true values 

on water level series at position 23,282 with the gap size of 789. 

Fig. 8. Visual comparison of imputed values of spline method with true values on 

water level series at position 23,282 with the gap size of 789. 

 

 

 

 

 

 

 

Table 3 

The maximum of cross-correlation between the query and reference win- 

dows. 

Gap size Data set 

#1 #2 #3 #4 #5 #6 #7 #8 

6% 0.88 0.92 0.58 0.78 0.99 1 0.91 1 

7.50% 0.91 0.91 0.55 0.74 0.99 0.99 0.91 1 

10% 0.94 0.87 0.5 0.67 0.98 0.99 0.91 1 

12.50% 0.95 0.89 0.44 0.65 0.98 0.99 0.9 1 

15% 0.95 0.85 0.4 0.65 0.98 0.99 0.9 1 

#1-Airpassenger, #2-Beersales, #3-Google, #4-SP, #5-CO 2 concentrations 

#6-Mackey-Glass chaotic, #7-Phu Lien temperature, #8-water level. 
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This result is fully interpreted: for 4 data sets including CO 2 

concentrations, Mackey-Glass chaotic series, Phu Lien temperature

and water level, their cross-correlation between the query and ref-

erence windows are very high for each missing level ( Table 3 ). This

corresponds to the results in Table 2 : the proposed method yields

the highest similarity and the lowest NMAE, RMSE, FSD. It also

means that the imputation values generated from DTWBI method

are very close to the true ones. For Google (#3) and SP (#4) data
Please cite this article as: T.-T.-H. Phan et al., Dynamic time warping-bas

Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.08.019 
ets, we see that CC are not high, that is why our approach does

ot well prove its ability. With Airpassenger data set (#1), when CC

re greater than or equal to 0.94, the proposed method highlights

etter results than other methods. On Beersales data set (#2), in

ase of higher CC, DTWBI gives better results in case of lower CC. 

From these results, we can notice that the proposed method

ives the best performance in case of high CC coefficient ( > 0.9).

ndeed, CC is an indicator that gives information about the pattern

ecurrence in the data. Based on this indicator, we can predict if

ne pattern may occur in the past or in the following data from

he position we are considering. From the above analyses, we can

ee that our algorithm outperforms other imputation methods

hen data sets have high auto-correlation and cross-correlation,

o trend, strong seasonality, and complex distribution, especially in

ase of large gap(s). High cross-correlation means that these data

ets are recurrent, or in other words, these time series will repeat

hemselves over some periods. The drawback of this method is the

omputation time. The proposed algorithm may take a long time to

nd the imputation values when the size of the given data is large.

he reason is the search for all possible sliding windows to find a

eference window having the maximum similarity to the query. 

. Conclusion 

In this paper, we have proposed a new imputation method

or univariate time series data, namely DTWBI method. This

ethodology has been tested using 8 data sets: Airpassenger,

eersales, Google, SP, CO 2 concentrations, Mackey-Glass chaotic,

hu Lien temperature, and water level. The accuracy of imputation

alues produced by DTWBI is compared with 5 existing methods

na.interp, na.locf, na.approx, na.aggegate and na.spline) using 4

uantitative indicators (similarity, NMAE, RMSE and FSD). We also

ompare the visual performance of these methods. The experi-

ents show that our approach gives better results than the other

xisting methods, and is the best robust method in case of time

eries having high cross-correlation and auto-correlation, large

ap(s), complex distribution, and strong seasonality. However,

he proposed framework is restricted to applications where the

ecessary assumption of recurring data in the time series is set

p (high cross-correlation indicator), and it requires computation

ime for very large missing intervals. The present work will allow

o extend the proposed approach to complete missing values of

ultivariate time series data in the future. 
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