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Attribute-Based Classification for Zero-Shot
Visual Object Categorization
Christoph H. Lampert, Hannes Nickisch and Stefan Harmeling

Abstract—We study the problem of object recognition for categories for which we have no training examples, a task also called zero-
data or zero-shot learning. This situation has hardly been studied in computer vision research, even though it occurs frequently: the
world contains tens of thousands of different object classes and for only few of them image collections have been formed and suitably
annotated. To tackle the problem we introduce attribute-based classification: objects are identified based on a high-level description
that is phrased in terms of semantic attributes, such as the object’s color or shape. Because the identification of each such property
transcends the specific learning task at hand, the attribute classifiers can be pre-learned independently, e.g. from existing image
datasets unrelated to the current task. Afterwards, new classes can be detected based on their attribute representation, without the
need for a new training phase. In this paper we also introduce a new dataset, Animals with Attributes, of over 30,000 images of 50
animal classes, annotated with 85 semantic attributes. Extensive experiments on this and two more datasets show that attribute-based
classification indeed is able to categorize images without access to any training images of the target classes.

F

1 INTRODUCTION

The field of object recognition in natural images has
made tremendous progress over the last decade. For
specific object classes, in particular faces, pedestrians, and
vehicles, reliable and efficient detectors are available,
based on the combination of powerful low-level features,
such as SIFT [1] or HoG [2], with modern machine
learning techniques, such as support vector machines [3],
[4] or boosting [5]. However, in order to achieve good
classification accuracy, these systems require a lot of
manually labeled training data, typically several thou-
sand example images for each class to be learned.

While building recognition systems this way is feasible
for categories of large common or commercial interest,
one cannot expect it to solve object recognition for all
natural categories. It has been estimated that humans
distinguish between approximately 30,000 basic object
categories [6], and many more subordinate ones, such as
different breeds of dogs or different car models [7]. It has
even been argued that there are infinitely many poten-
tially relevant categorization tasks, because humans can
create new categories on the fly, e.g., “things to bring to a
camping trip” [8]. Training conventional object detectors
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otter

black: yes
white: no
brown: yes
stripes: no
water: yes
eats fish: yes

polar bear

black: no
white: yes
brown: no
stripes: no
water: yes
eats fish: yes

zebra

black: yes
white: yes
brown: no
stripes: yes
water: no
eats fish: no

Fig. 1. Examples from the Animals with Attributes: object
classes with per-class attribute annotation.

for all these would require millions or billions of well-
labeled training images and is likely out of reach for
many years, if it is possible at all. Therefore, numerous
techniques for reducing the number of necessary training
images have been developed, some of which we will
discuss in Section 3. However, all of these techniques
still require at least some labeled training examples to
detect future object instances.

Human learning works differently: although humans
can, of course, learn and generalize well from examples,
they are also capable of identifying completely new
classes when provided with a high-level description. For
example, from the phrase “eight-sided red traffic sign with
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white writing”, we will be able to detect stop signs, and
when looking for “large gray animals with long trunks”,
we will reliably identify elephants. In this work, which
extends our original publication [9], we build on this
observation and propose a system that is able to classify
objects from a list of high-level semantically meaningful
properties that we call attributes. The attributes serve as
an intermediate layer in a classifier cascade and they
enable the system to recognize object classes for which
it had not seen a single training example.

Clearly, a large number of potential attributes exist and
collecting separate training material to learn an ordinary
classifier for each of them would be as tedious as doing
so for all object classes. Therefore, one of our main contri-
butions in this work is to show how instead of creating a
separate training set for each attribute, we can exploit the
fact that meaningful high-level concepts transcend class
boundaries. To learn such attributes, we can make use
of existing training data by merging images of several
object classes. To learn, e.g., the attribute striped, we can
use images of zebras, bees and tigers. For the attribute
yellow, zebras would not be included, but bees and tigers
would still prove useful, possibly together with canary
birds. It is this possibility to obtain knowledge about
attributes from different object classes, and, vice versa,
the fact that each attribute can be used for the detection
of many object classes that makes our proposed learning
method statistically efficient.

2 INFORMATION TRANSFER BY ATTRIBUTE
SHARING

We begin by formalizing the problem and our intuition
from the previous section that the use of attributes
allows us to transfer information between object classes.
We first define the exact situation of our interest:

Learning with Disjoint Training and Test Classes:
Let X be an arbitrary feature space and let
Y = {y1, . . . , yK} and Z = {z1, . . . , zL} be sets of
object categories, also called classes. The task of learning
with disjoint training and test classes is to construct a
classifier f : X → Z by making use of training examples
(x1, l1), . . . , (xn, ln) ⊂ X × Y even if Y ∩ Z = ∅1.

Figure 2(a) illustrates graphically why this task cannot
be solved by ordinary multi-class classification: standard
classifiers learn one parameter vector (or other represen-
tation) αk for each training class y1, . . . , yK . Because the
classes z1, . . . , zL are not present during the training step,
no parameter vector can be derived for them, and it is
impossible to make predictions about these classes for
future samples.

In order to make predictions about classes for which
no training data is available one needs to introduce

1. It is not necessary for Y and Z to be disjoint for the problems
described to occur, Z 6⊆ Y is sufficient. However, for the sake of clarity
we only treat the case of disjoint class sets in this work.

a coupling between the classes in Y and Z . Since no
training data for the unobserved classes is available, this
coupling cannot be learned from samples, but it has to be
inserted into the system by human effort. Preferably, the
amount of human effort to specify new classes should be
small, because otherwise collecting and labeling training
samples might be a simpler solution.

2.1 Attribute-Based Classification
We propose a solution for learning with disjoint training
and test classes by introducing a small set of high-level
semantic attributes that can be specified either on a
per-class or on a per-image level. While we currently
have no formal definition of what should count as
an attribute, in the rest of the manuscript rely on the
following characterization:

Attributes:
We call a property of an object an attribute, if a human
has the ability to decide whether the property is present
or not for a certain object.2

Attributes are typically nameable properties, e.g. the
color of an object, or the presence or absence of a certain
body part. Note that the definition allows properties that
are not directly visible but related to visual information,
such as an animal’s natural habitat. Figure 1 shows
examples of classes and attributes.

An important distinction between attributes and arbi-
trary features is the aspect of semantics: humans associate
a meaning with a given attribute name. This allows them
to create annotation directly in form of attribute values,
which can then be used by the computer. Ordinary im-
age features, on the other hand, are typically computable
but they lack the human interpretability.

It is possible to assign attributes on a per-image basis,
or on a per-class basis. The latter is particularly helpful,
since it allows the creation of attribute annotation for
a new classes with minimal effort. To make use of
such attribute annotation, we propose attribute-based
classification.

Attribute-Based Classification:
Assume the situation of learning with disjoint training
and test classes. If for each class z ∈ Z and y ∈ Y
an attribute representation az, ay ∈ A is available, then
we can learn a non-trivial classifier α : X → Z by
transferring information between Y and Z through A.

In the rest of this paper, we will demonstrate that
attribute-based classification indeed offers a solution to
the problem of learning with disjoint training and test
classes, and how it can be practically used for object
classification. For this, we introduce and compare two

2. In this manuscript we only consider binary-valued attributes. More
general forms of attributes have already appeared in the literature, see
Section 3.
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α1 α2 αK ? ? ?

y1 y2 . . . yK z1 z2 . . . zL

x

(a) Flat multi-class classification

β1 β2 βM

zLy1 yK . . .z2y2 . . . z1

a2 aM. . .a1

x

(b) Direct attribute prediction (DAP)

α1 α2 αK

zLz2 . . .z1

aMa2 . . .a1

. . . yKy1 y2

x

(c) Indirect attribute
prediction (IAP)

Fig. 2. Graphical representation of the proposed across-class learning task: dark gray nodes are always observed,
light gray nodes are observed only during training. White nodes are never observed but must be inferred. An ordinary,
flat, multi-class classifier (left) learns one parameter set αk for each training class. It cannot generalize to classes
(zl)l=1...,L that are not part of the training set. In an attribute-based classifier (middle) with fixed class–attribute relations
(thick lines), training labels (yk)k=1,...,K imply training values for the attributes (am)m=1,...,M , from which parameters
βm are learned. At test time, attribute values can directly be inferred, and these imply output class label even for
previously unseen classes. A multi-class based attribute classifier (right) combines both ideas: multi-class parameters
αk are learned for each training class. At test time, the posterior distribution of the training class labels induces a
distribution over the labels of unseen classes by means of the class–attribute relationship.

generic methods to integrate attributes into multi-class
classification:

Direct attribute prediction (DAP), illustrated by Fig-
ure 2(b), uses an in between layer of attribute vari-
ables to decouple the images from the layer of labels.
During training, the output class label of each sample
induces a deterministic labeling of the attribute layer.
Consequently, any supervised learning method can be
used to learn per-attribute parameters βm. At test time,
these allow the prediction of attribute values for each
test sample, from which the test class labels are inferred.
Note that the classes during testing can differ from the
classes used for training, as long as the coupling attribute
layer is determined in a way that does not require a
training phase.

Indirect attribute prediction (IAP), depicted in Fig-
ure 2(c), also uses the attributes to transfer knowledge
between classes, but the attributes form a connecting
layer between two layers of labels, one for classes that
are known at training time and one for classes that are
not. The training phase of IAP consists of learning a
classifier for each training class, as it would be the case
in ordinary multi-class classification. At test time, the
predictions for all training classes induce a labeling of
the attribute layer, from which a labeling over the test
classes is inferred.

The major difference between both approaches lies in
the relationship between training classes and test classes.
Directly learning the attributes results in a network
where all classes are treated equally. When class labels
are inferred at test time, the decision for all classes
are based only on the attribute layer. We can expect it
therefore to also handle the situation where training and

test classes are not disjoint. In contrast, when predicting
the attribute values indirectly, the training classes occur
also at test time as an intermediate feature layer. On the
one hand, this can introduce a bias, if training classes are
also potential output classes during testing. On the other
hand, one can argue that deriving the attribute layer
from the label layer instead of from the samples will act
as regularization step that creates only sensible attribute
combinations and therefore makes the system more ro-
bust. In the following, we will develop realizations for
both methods and benchmark their performance.

2.2 A Probabilistic Realization
Both classification methods, DAP and IAP, are essen-
tially meta-strategies that can be realized by combin-
ing existing learning tools: a supervised classifier or
regressor for the image–attribute or image–class prediction
with a parameter free inference method to channel the
information through the attribute layer. In the following,
we use a probabilistic model that reflects the graphical
structures of Figures 2(b) and 2(c). For simplicity, we
assume that all attributes have binary values such that
the attribute representation a = (a1, . . . , aM ) for any class
are fixed-length binary vectors. Continuous attributes
can in principle be handled in the same way by using
regression instead of classification. A generalization to
relative attributes [10] or variable length descriptions
should also be possible, but lies beyond the scope of
this paper.

2.2.1 Direct Attribute Prediction (DAP)
For DAP, we start by learning probabilistic classifiers
for each attribute am. As training samples, we can use
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all images from all training classes, as labels, we use
either per-image attribute annotations, if available, or
we infer the labels from the entry of the attribute vector
corresponding to the sample’s label, i.e. all samples of
class y have the binary label aym. The trained classifiers
provide us with estimates of p(am|x), from which we
form a model for the complete image–attribute layer
as p(a|x) =

∏M
m=1 p(am|x). At test time, we assume

that every class z induces its attribute vector az in a
deterministic way, i.e. p(a|z) = Ja = azK, where we have
made use of Iverson’s bracket notation [11]: JP K = 1
if the condition P is true and it is 0 otherwise. By
applying Bayes’ rule we obtain p(z|a) = p(z)

p(az)Ja = azK as
the representation of the attribute–class layer. Combining
both layers, we can calculate the posterior of a test class
given an image:

p(z|x) =
∑

a∈{0,1}M
p(z|a)p(a|x) =

p(z)

p(az)

M∏
m=1

p(azm|x). (1)

In the absence of more specific knowledge, we assume
identical test class priors, which allows us to ignore
the factor p(z) in the following. For the factor p(a)

we assume a factorial distribution p(a) =
∏M

m=1 p(am),
using the empirical means p(am) = 1

K

∑K
k=1 a

yk
m over

the training classes as attribute priors.3 As decision rule
f : X → Z that assigns the best output class from all test
classes z1, . . . , zL to a test sample x, we then use MAP
prediction:

f(x) = argmax
l=1,...,L

p(z|x) = argmax
l=1,...,L

M∏
m=1

p(azlm|x)

p(azlm)
. (2)

2.2.2 Indirect Attribute Prediction (IAP)
In order to realize IAP, we only modify the image–
attribute stage: as a first step, we learn a probabilistic
multi-class classifier estimating p(yk|x) for each training
classes yk, k = 1, . . . ,K. As for DAP we assume a de-
terministic dependence between attributes and classes,
setting p(am|y) = Jam = aymK. The combination of both
steps yields

p(am|x) =

K∑
k=1

p(am|yk)p(yk|x), (3)

so in comparison to DAP we only perform an addi-
tional matrix-vector multiplication after evaluating the
classifiers. With the estimate of p(a|x) obtained from
Equation (3) we proceed in the same way as in for DAP,
i.e. we classify test samples using Equation (2).

3 RELATED WORK

Multi-layer or cascaded classifiers have a long tradition
in pattern recognition and computer vision: multi-layer
perceptrons [12], decision trees [13], mixtures of experts [14]

3. In practice, the prior p(a) is not crucial to the procedure and
setting p(am) = 1

2
yields comparable results.

and boosting [15] are prominent examples of classification
systems built as feed-forward architectures with several
stages. Multi-class classifiers are also often constructed
as layers of binary decisions from which the final out-
put is inferred, e.g. [16], [17]. These methods differ in
their training methodologies, but they share the goal
of decomposing a difficult classification problem into a
collection of simpler ones. However, their emphasis lies
on the classification performance in a fully supervised
scenario, so the methods are not capable of generalizing
across class boundaries.

Especially in the area of computer vision, multi-
layered classification systems have been constructed, in
which intermediate layers have interpretable properties:
artificial neural networks or deep belief networks have been
shown to learn interpretable filters, but these are typi-
cally restricted to low-level properties like edge and cor-
ner detectors [18]. Popular local feature descriptors, such
as SIFT [1] or HoG [2], can be seen as hand-crafted stages
in a feed-forward architecture that transform an image
from the pixel domain into a representation invariant
to non-informative image variations. Similarly, image
segmentation has been formulated as an unsupervised
method to extract contours that are discriminative for
object classes [19]. Such preprocessing steps are generic
in the sense that they still allow the subsequent detection
of arbitrary object classes. However, the basic elements,
local image descriptors or segments shapes, alone are
not reliable enough indicators of generic visual object
classes, unless they are used as input to a subsequent
statistical learning step.

On a higher level of abstraction, pictorial structures [20],
the constellation model [21] and recent discriminatively
trained deformable part models [22] are examples of the
many methods that recognize objects in images by de-
tecting discriminative parts. In principle, humans can give
descriptions of object classes in terms of such parts, e.g.
arms or wheels. However, it is a difficult problem to
build a system that learns to detect exactly the parts
described. Instead, the above methods identify parts
in an unsupervised way during training, which often
reduces the parts to reproducible patterns of local feature
points, not to units with a semantic meaning. In general,
parts learned this way do not generalize across class
boundaries.

3.1 Sharing Information between Classes
The aspect of sharing information between classes has
attracted the attention of many researchers. A common
idea is to construct multi-class classifiers in a cascaded
way. By making similar classes share large parts of their
decision paths, fewer classification functions need to
be learned, thereby increasing the system’s prediction
speed [23]. Similarly, one can reduce the number of
feature calculations by actively selecting low-level fea-
tures that help discrimination for many classes simulta-
neously [24]. Combinations of both approaches are also
possible [25].
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In contrast, inter-class transfer does not aim at higher
speed, but at better generalization performance, typically
for object classes with only few available training in-
stances. From known object classes, one infers prior dis-
tributions over the expected intra-class variance in terms
of distortions [26] or shapes and appearances [27]. Al-
ternatively, features that are known to be discriminative
for some classes can be reused and adapted to support
the detection of new classes [28]. To our knowledge,
no previous approach allows the direct incorporation
of human prior knowledge. Also, all above methods
require at least some training examples of the target
classes and cannot handle completely new objects.

A notable exception is [29] that, like DAP and IAP,
aims at classification with disjoint train and test set. It
assumes that each class has a description vector, which
can be used to transfer between classes. However, be-
cause these description vectors do not necessarily have a
semantic meaning they cannot be obtained from human
prior knowledge. Instead, an additional data source is
needed to create them, e.g. data samples in a different
representation.

3.2 Predicting Semantic Attributes

A second relevant line of related work is the prediction of
high-level semantic attributes for images. Prior work in the
area of computer vision has mainly studied elementary
properties, such as colors and geometric patterns [30],
[31], [32], achieving high accuracy by developing task-
specific features and representations. In the field of
multimedia retrieval, similar tasks occur. For example,
the TRECVID contest [33] contains a task of high-level
feature extraction, which consists of predicting semantic
concepts, in particular scene types, e.g. outdoor, urban, and
high-level actions, e.g. sports. It has been shown that by
combining searches for several such attributes one can
build more powerful retrieval database mechanisms, e.g.
of faces [34], [35].

Instead of relying on manually defined attributes, it
has recently been proposed to identify attributes auto-
matically. Parikh and Grauman [36] introduced a semi-
automatic technique for this that combines classifier out-
puts with human feedback. Sharmanska et al. [37] pro-
pose an unsupervised technique for augmenting existing
attribute representations with additional non-semantic
binary features in order to make them more discrim-
inative. It has also been shown that new attributes
can be found by text mining [38], [39], [40], and that
object classes themselves can act as attributes for other
tasks [41]. Berg et al. [40] showed that instead of predict-
ing only the presence or absence of an attribute, their
occurrence can also be localized within the image. Other
alternative models for predicting attributes from images
include conditional random fields [42], and probabilistic
topic models [43]. Scheirer et al. [44] introduced an
alternative technique for turning the output of attribute
classifiers into probability estimates based on extremal

value theory. The concept that attributes are properties
of single images has also been generalized: Parikh and
Grauman [10] introduced relative attributes, that encode
a comparison between two images instead of specifying
an absolute property, for example is larger than, instead
of is large.

3.3 Other Uses of Semantic Attributes
In parallel to our original work [9], Farhadi et al. [45].
introduced the concept of predicting high-level semantic
attributes of objects with the objective of being able
to describe objects, even if their class membership is
unknown.

Numerous follow-up papers have explored even more
applications of attributes in computer vision tasks, e.g.
for scene classification [46], face verification [35], action
recognition [47] and surveillance [48]. Rohrbach et al. [49]
performed an in-depth analysis of attribute-based clas-
sification for transfer learning. Kulkarni et al. [50] used
attribute predictions in combination with object detec-
tion and techniques from natural language processing
to automatically create descriptions of images in natural
language of images. Attributes have also been suggested
as feedback mechanisms to improve image retrieval [51]
and categorization [52].

3.4 Related Work outside of Computer Science
In comparison to computer science, cognitive science re-
search started much earlier to study the relations be-
tween object recognition and attributes. Typical ques-
tions in the field are how human judgements are influ-
enced by characteristic object attributes [53], [54], and
how the human performance in object detection tasks
depends on the presence or absence of object properties
and contextual cues [55]. Since one of our goals is to
integrate human knowledge into a computer vision task,
we would like to benefit from the prior work in this field,
at least as a source of high quality data that, so far, cannot
be obtained by an automatic process. In the following
section, we describe a dataset of animal images that al-
lows us to leverage established class-attribute association
data from the cognitive science research community.

4 THE ANIMALS WITH ATTRIBUTES DATASET

In the early 1990s, Osherson and Wilkie [56] collected
judgements from human subjects on the “relative strength
of association” between 85 semantic attributes and 48
mammals. Kemp et al. [57] later added two more classes
and their attributes for a total of 50 × 85 class–attribute
associations4. The full list of classes and attributes can be
found in Tables 1 and 2. Besides the original continuous-
valued matrix, also a binary version was created by
thresholding the original matrix at its overall mean
value, see Figure 3 for excerpts from both matrices. Note

4. http://www.psy.cmu.edu/˜ckemp/code/irm.html
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TABLE 1
Animal classes of the Animals with Attributes dataset.

The 40 classes of the first four column are used for
training, the 10 classes of the last column (in italics) are

the test classes.

skunk polar bear beaver giraffe leopard
lion killer whale bobcat wolf pig
fox grizzly bear collie tiger hippopotamus
ox chihuahua otter cow seal

mole dalmatian antelope weasel persian cat
sheep spider monkey hamster mouse chimpanzee
horse blue whale squirrel buffalo rat

bat siamese cat elephant moose humpback whale
zebra rhinoceros rabbit walrus giant panda
deer german shepherd dolphin gorilla raccoon

TABLE 2
85 semantic attributes of the Animals with Attributes
dataset in short form. Longer forms given to human

subject for annotation were complete phrases, such as
has flippers, eats plankton, or lives in water.

black toughskin tail bipedal stalker mountains
white bulbous horns active skimmer water
blue lean claws inactive cave newworld

brown flippers tusks nocturnal fierce oldworld
gray hands smelly hibernate arctic timid

orange hooves flies agility coastal smart
red longleg hops fish desert group

yellow pads swims meat bush solitary
patches paws tunnels plankton plains nestspot

spots longneck walks vegetation forest domestic
stripes chewteeth fast insects fields
furry meatteeth slow forager jungle

hairless buckteeth strong grazer tree
big strainteeth weak hunter ocean

small quadrapedal muscle scavenger ground

that because of the data collection process, the data is not
completely error free. For example, contrary to what is
specified in the binary matrix, panda bears do not have
buck teeth, and walruses do have tails.

Our goal in creating the Animals with Attributes (AwA)
dataset5 was to make this attribute-matrix accessible for
computer vision experiments. We collected images by
querying the image search engines of Google, Microsoft,
Yahoo and Flickr for each of the 50 animals classes. We
manually removed outliers and duplicates as well as
images in which the target animals was not in prominent
enough view to be recognizable. The remaining image
set has 30,475 images, where the minimum number of
images for any class is 92 (mole) and the maximum is
1168 (collie). Figure 1 shows exemplary images and their
attribute annotation.

To facilitate use by research from outside of computer
vision, and to increase the reproducibility of results, we
provide pre-computed feature vectors for all images of
the dataset. The representations were chosen to reflect
different aspects of the images (color, texture, shape),
and to allow easy use with off-the-shelf classifiers: HSV
color histograms, SIFT [1], rgSIFT [58], PHOG [59],

5. http://www.ist.ac.at/˜chl/AwA/

SURF [60] and local self-similarity histograms [61]. The
color histograms and PHOG feature vectors are extracted
separately for all 21 cells of a 3-level spatial pyramids
(1×1, 2×2, 4×4). For each cell, 128-dimensional color
histograms are extracted and concatenated to form a
2688-dimensional feature vector. For PHOG, the same
pyramid is used, but with 12-dimensional base his-
tograms in each cell. The other feature vectors each are
bag-of-visual-words histograms obtained from quantizing
the original descriptors with 2000-element codebooks
that were obtained by k-means clustering on 250,000
element subsets of the descriptors.

We define a fixed split of the dataset into 40 classes
(24,295 images) to be used for training, and 10 classes
(6180 images) to be used for testing, see Table 1. This
split was not done randomly, but such that much of
the diversity of the animals in the dataset (water/land-
based, wild/domestic, etc.) is reflected in the training as
well as in the test set of classes. The assignments were
based only on the class names and before any experi-
ments were performed, so in particular the split was not
designed for best zero-shot classification performance.
Random train-test splits of similar characteristics can be
created by 5-folds cross-validation over the classes.

5 OTHER DATASETS FOR ATTRIBUTE-BASED
CLASSIFICATION

Besides the Animals with Attributes dataset we also
perform experiments on two other datasets of natural
images for which attribute annotations have been re-
leased. We briefly summarize their characteristics here.
An overview is also provided in Table 3.

5.1 aPascal-aYahoo

The aPascal-aYahoo dataset6 was introduced by Farhadi
et al. in [45]. It consists of a 12,695 image subset of
the PASCAL VOC 2008 dataset7 and 2644 images that
were collected using the Yahoo image search engine. The
PASCAL part serves a training data, and the Yahoo part
as test data. Both sets have disjoint classes (20 classes
for PASCAL, 12 for Yahoo), so learning with disjoint
training and test classes is unavoidable. Attribute an-
notation is available on the image level: each image has
been annotated with 64 binary attribute that characterize
shape, material and the presence of important parts of
the visible object. As image representation we rely on
the precomputed color, texture, edge orientation and
HoG features that the authors of [45] extracted from the
objects’ bounding boxes (as provided by the PASCAL
VOC annotation) and released as part of the dataset.

6. http://vision.cs.uiuc.edu/attributes/
7. http://www.pascal-network.org/challenges/VOC/
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Fig. 3. Real-valued (left) and binary-valued (right) class–attribute matrices of the Animals with Attributes dataset.
Shown are 13×33 excerpts of the complete 50×85 matrices.

TABLE 3
Characteristics of datasets with attribute annotation:
Animals with Attributes (AwA) [9], aPascal/aYahoo

(aP/aY) [45], SUN Attributes (SUN) [46]

Dataset AwA aP/aY SUN
# Images 30475 15339 14340
# Classes 50 32 717

# Attributes 85 64 102
Annotation Level per class per image per image

Annotation Type (real- both binary binary
valued or binary)

5.2 SUN Attributes

The SUN Attributes8 dataset was introduced by Patterson
and Hays in [46]. It is a subset of the SUN Database [62]
for fine-grained scene categorization and consists of
14,340 images from 717 classes (20 images per class).
Each image is annotated with 102 binary attributes that
describe the scenes’ material and surface properties as
well as lighting conditions, functions, affordances, and
general image layout. For our experiments we rely on the
feature vectors that are provided by the authors of [46]
as part of the dataset. These consists of GIST, HOG, self-
similarity, and geometric color histograms.

6 EXPERIMENTAL EVALUATION

In this section we perform an experimental evaluation
of the DAP and the IAP model on the Animals with
Attribute dataset as well as the other datasets described
above.

Since our goal is the categorization of classes for which
no training samples are available, we always use training
and test set with disjoint class structure.

For DAP, we train one non-linear support vector ma-
chine (SVM) for each binary attributes, a1, . . . , aM . In
each case we use 90% of the images of the training
classes for training, with binary labels for the attribute,
which are either obtained from the class-attribute matrix
by assigning each image the attribute value of its class, or
by per-image attribute annotation, where available. The
remaining 10% of training images we use to estimate

8. http://cs.brown.edu/˜gen/sunattributes.html

the parameters of a sigmoid curve for Platt scaling,
in order to convert the SVM outputs into probability
estimates [63].

At test time we apply the trained SVMs with Platt
scaling to each test image and make test class predictions
using Equation (2).

For IAP, we train one-vs-rest SVMs for each training
class, again using a 90%/10% split for training of the
decision functions, and of the sigmoid coefficients for
Platt scaling. At test time, we predict a vector of class
probabilities for each test image. We L1-normalize this
vector such that we can interpret it as posterior distribu-
tion over the training classes. We then use Equation (3)
to predict attribute values, from which we obtain test
class predictions by Equation (2) as above.

6.1 SVM Kernels and Model Selection
To achieve optimal performance of the SVM classifiers
we use established kernel functions and perform thor-
ough model selection. All SVMs are trained with linearly
combined χ2-kernels: for any D-dimensional feature vec-
tors, h(x) ∈ RD and h(x̄) ∈ RD, of images x and x̄
we set k(x, x̄) = exp(−γχ2(h(x), h(x̄))) with χ2(h, h̄) =∑D

i=1
(hi−h̄i)

2

hi+h̄i
. For DAP, the bandwidth parameter γ is

selected in the following way: for each attribute we
perform 5-fold cross-validation (CV), computing the re-
ceiver operating characteristic (ROC) curve of each pre-
dictor and averaging the areas under the curves (AUCs)
over the attributes. The result is a single mean attrAUC
score for any value of the bandwidth. We perform this
estimation for γ̄ = c γ ∈ {0.01, 0.03, 0.1, 0.3, 1, 3, 10},
where c = 1

n2

∑n
i,j=1 χ

2(h(xi), h(xj)), i.e. we parameter-
ize γ relative to the average χ2-distance of all points in
the training set. γ̄ = 3 was consistently found as best
value.

Given L different feature functions, h1, . . . , hK , we
obtain L kernel functions k1, . . . , kL, and we use
their unnormalized sum as the final SVM kernel,
k(x, x̄) =

∑L
l=1 kl(x, x̄). Once we fixed the kernel, we

identify the SVMs C parameter amongst the values
{0.01, 0.03, 0.1, . . . , 30, 100, 3000, 1000} in an analogous
procedure. We perform 5-fold cross-validation for each
attribute, and we pick C that achieves the highest
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mean attrAUC. Note that we use the same C values
for all attribute classifiers. Technically, this would not
be necessary, but we prefer it in order to avoid large
scaling differences between the SVM outputs of different
attribute predictors. Also, one can expect the optimal C
values to not vary strongly between different attributes,
because all classifiers use on the same kernel matrix and
differ only in their label annotation.

For IAP we use the same kernel as for DAP, and
determine C using 5-fold cross validation similar to the
procedure one described above, except that we use the
mean area under the ROC curve of class predictions
(mean classAUC) as selection criterion.

6.2 Results

We use the above described procedures to train DAP and
IAP models for all datasets. For DAP, where applicable,
we use both per-image or per-class annotation to find
out whether the time-consuming per-image annotation
is necessary. For the dataset with per-image attribute an-
notation, we create class-attribute matrices by averaging
all attribute vectors of each class and thresholding the
resulting real-valued matrix at its global mean value. Be-
sides experiments with fixed train/test splits of classes,
we also perform experiments with random class split
using 5-fold cross validation for Animals with Attributes
(i.e. 40 training classes, 10 test classes), and 10-fold
cross validation for SUN Attributes (approx. 637±1 for
training and 70±1 for testing). We measure the quality of
the prediction steps in terms of normalized multi-class
accuracy on the test set (the mean of the diagonal of the
confusion matrix). We also report areas under the ROC
curve for each test class z and attribute a, when their
posterior probabilities p(z|x) and p(a|x), respectively, are
treated as ranking measures over all test images.

In the following we show detailed results for Animals
with Attributes and summaries of the results for the other
datasets.

6.2.1 Results – Animals with Attributes

The Animals with Attributes dataset comes only with per-
class annotation, so there are two models to compare:
per-class DAP and per-class IAP. Figure 4 shows the
resulting confusion matrices for both methods. The class-
normalized multi-class accuracy can be read off from the
mean value of the diagonal as 41.4% for DAP and 42.2%
for IAP. While the results are not as high as a supervised
method could achieve, it nevertheless clearly proves
our original claim about attribute-based classification:
by sharing information via an attribute layer it is possible
to classify images of classes for which we had no training
examples. As a baseline, we compare against a zero-shot
classifier where for each test class we identify the most
similar training class and predict using a classifier for
it trained on all training data. We use two different
methods to define the similarity between the classes’

TABLE 4
Numeric results on the Animals with Attributes dataset in

percent: multi-class accuracy (MC acc.) for DAP, IAP,
class-transfer classifier using cross-correlation (CT-cc) or
Hamming distance (CT-H) of class attributes, and chance

performance (rnd).

(a) default train/test class split
method DAP IAP CT-cc CT-H rnd
MC acc. 41.4 42.2 30.7±0.2 30.8±0.2 10.0

classAUC 81.4 80.0 73.4 73.4 50.0
attrAUC 72.8 72.1 – – 50.0

(b) five random splits (mean±std.dev.)
method DAP IAP CT-cc CT-H rnd
MC acc. 37.1±3.9 34.1±5.1 27.7±4.3 27.3±4.0 10.0

classAUC 80.4±3.1 76.3±5.5 72.4±2.7 72.8±3.1 50.0
attrAUC 70.7±3.5 69.7±3.8 – – 50.0
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Fig. 4. Confusion matrices between ten test classes of
the Animals with Attributes dataset. Left: indirect attribute
prediction (IAP), right: direct attributes prediction (DAP).

attribute representations: Hamming distance or cross-
correlation. As it turns out, both variant make almost
identical decisions, resulting in multi-class accuracies
of 30.7% and 30.8%. This is clearly better than chance
performance, but below the results of DAP and IAP.

Using random class splits instead of the pre-
defined one we obtain slightly lower multiclass
accuracies of 34.8%/44.8%/34.7%/35.1%/36.3% (avg.
37.1%) for DAP, and 33.4%/42.8%/27.3%/31.9%/35.3%
(avg. 34.1%) for IAP. Again, the baselines achieve
clearly lower results: 32.4%/31.9%/28.1%/25.3%/20.9%
(avg. 27.7%) for the cross-correlation version, and
33.0%/29.0%/28.4%/25.3%/20.9% (avg. 27.3%) for the
version based on Hamming distance.

The quantitative results for all method are summa-
rized in Table 4. One can see that the differences between
the two approaches, DAP and IAP, are relatively small.
One might see a slight overall advantage for DAP, but
as the large variance between class splits is rather high,
this could also be explained by random fluctuations. To
avoid redundancy, we give detailed results only for the
DAP model in the rest of this section.

Another measure of prediction performance besides
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Fig. 5. Retrieval performance of attribute-based classifi-
cation (DAP method): ROC-curves and area under curve
(AUC) for the ten Animals with Attributes test classes.

multi-class accuracy is how well the predicted posterior
probability of any of the test classes can be used to re-
trieve images of this class from the set of all test images.
We evaluate this, by plotting the corresponding ROC
curves in Figure 5 and report their AUC. One can see,
for all classes reasonable classifiers have been learned
with AUCs clearly higher than the chance level 0.5. With
an AUC of 0.99, the performance for humpback whale is
even on par of what we can expect to achieve with fully
supervised learning techniques. Figure 6 (page 10) shows
the five images with highest posterior score for each test
class, therefore allowing to judge the quality of a hypo-
thetical image retrieval system based on Equation (1).
One can see that the rankings for humpback whales,
leopards and hippopotamuses are very reliable. Confusions
that occur are typically between animals classes with
characteristics, such as a whale mistaken for a seal, or a
racoon mistaken for a rat.

Because all classifiers base their decisions on the same
learned attribute classifiers, one can presume that the
easier classes are characterized either by more distinctive
attribute vectors or by attributes that are easier to learn
from visual data. We believe that the first explanation
is not correct, since the matrix of pairwise distances be-
tween attribute vectors does not resemble the confusion
matrices in Table 4.

We therefore analyze the quality of the individual
attribute predictors in more detail. Figure 7 summarizes
their quality in terms of the area under the ROC curve
(attrAUC). Missing entries indicate that all images in the
test set coincided in their value for this attribute, so no
ROC curve can be computed. Figure 8 (page 11) shows
for a selection of attributes the five images of highest
posterior score within the test set.

On average, attributes can be predicted clearly better
than random (the average AUC is 72.4%, whereas ran-
dom prediction would have 50%). However, the variance
within the predictions is large, ranging from near perfect
prediction, e.g. for is yellow and eats plankton, to essen-
tially random performance, e.g. on has buckteeth or is
timid. Contrary to what one might expect, attributes that

refer to visual properties are not automatically predicted
more accurately than others. For example, is blue is
identified reliably, but is brown is not. Overall good
performance is also achieved on several attributes that
describe body parts, such as has paws, or the natural
habitat lives in trees, and even on non-visual properties
like, such as, is smelly. There are two explanations for
this effect: on the one hand, attributes that are clearly
visual, such as colors, can still be hard to predict from
a global image representation, because they typically
reflect information that is localized within only the object
region. On the other hand, non-visual attributes can
often still be predicted from image information, because
they occur correlated with visual properties, for example
characteristic texture. It is known that the integration of
such contextual information can improve the accuracy
of visual classifiers, for example, road regions helps the
detection of cars. However, it remains to be seen if this
effect will be sufficient for purely non-visual attributes,
or whether it would be better in the long run to replace
non-visual attributes by the visual counterparts they are
correlated with.

Another interesting observation is that the system
learned to correctly predict attributes such as is big and
is small, which are ultimately defined only by context.
While this is desirable in our setup, where the context
is consistent, it also suggests that the learned attribute
predictors themselves are context dependent and cannot
be expected to generalize to object classes very different
from the training classes.

6.2.2 Results – Other Datasets
We performed the same evaluation as for the Animals
with Attributes dataset also for the other datasets. Since
these datasets have per-image attribute annotation in
addition to per-class attribute annotation, we obtain
results for two variants of DAP: trained with per-image
labels, or trained with per-class labels. In both cases,
test time inference is done with per-class labels, since
we still assume that no examples of the test classes are
available. As additional baseline we use the class trans-
fered classifier as in Section 6.2.1. Since both variants
perform almost identically, we report only results for
the one based on Hamming distance. The results are
summarized in Tables 5(a) and 5(b).

For the SUN dataset, we measure the classification
performance based on the three-level SUN hierarchy
suggested in [62]. At test time, the ground truth label and
the predicted class label each corresponds to one path in
the hierarchy (or multiple paths, since the hierarchy is
not a tree, but a directed acyclic graph). A prediction
is considered correct at a certain level, if both paths
run through a common node in that level. At the third
level each class is a separate leaf, so level-3 accuracy
is identical to the unnormalized multi-class accuracy,
which coincides with the diagonal of the confusion ma-
trix in this case, since all classes have the same number of
images. However, at levels 1 and 2, semantically similar
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h.b. whale chimpanzee leopard persian cat hippopotamus racoon rat seal giant panda pig
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Fig. 6. Highest ranking results for each test class in the Animals with Attributes dataset. Classes with unique
characteristics are identified well, e.g. humpback whales and leopards. Confusions occur between visually similar
categories, e.g. pigs and hippopotamuses.
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Fig. 7. Quality of individual attribute predictors (trained on train classes, tested on test classes), as measured by the
area under the ROC curve (AUC). Attributes without entries have constant values for all test classes, so their ROC
curve cannot be computed.

classes are mapped to the same node, and confusions
between these classes are therefore disregarded. Note
that the values obtained for the SUN dataset are not
directly comparable to earlier supervised work using this
data. Because we split the data into disjoint train (90%)
and test classes (10%), fewer classes of the dataset are
present at test time.

The results for both datasets confirm our observations
from the Animals with Attributes dataset. DAP (both
variants) as well as IAP achieve far better than random
performance in terms of multi-class accuracy, mean per-
class AUC, and mean per-attribute AUC, and also better
than the Hamming distance based baseline classifier.

A more surprising observation is that per-image at-
tribute annotation, as it is available for the aPascal and
SUN Attributes datasets, does not improve the pre-
diction accuracy compared to the per-class annotation,

which is much easier to create. We currently do not have
a definite explanation for this. However, two additional
observations suggest that the reason might be a bias-
variance effect: First, per-image attribute annotation does
not follow class boundaries, so its mutual information
of the ground truth attribute annotation with the class
labels is lower than for per-class annotation (Table 6).
Second, the visual learning tasks defined by per-image
annotation do not seem easier learnable than the per-
class counterparts, as indicated by the reduced mean
attribute AUC in Tables 4, 5(a), and 5(b). Likely this
is because per-class annotation is correlated with many
other visual properties in the images and therefore often
easy to predict, whereas per-image annotation singles
out the actual attribute in question.

In combination, we expect the per-image annotation to
lead to less bias in the training problem, therefore having
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is yellow eats plankton has buckteeth is blue is brown has paws lives in trees is smelly is big is small
(AUC 92.9) (AUC 99.1) (AUC 40.4) (AUC 78.2) (AUC 62.1) (AUC 82.5) (AUC 78.8) (AUC 70.0) (AUC 79.7) (AUC 69.4)

Fig. 8. Highest ranking results for a selection of attribute predictors (see Section 6.2) learned by DAP on the Animals
with Attributes dataset.

the potential for better attribute classifiers given enough
data. However, because of the harder learning prob-
lem, the resulting classifiers have higher variance when
trained on a fixed amount of data. We take the results as
a sign that the second effect is currently the dominant
source of errors. We plan to explore this hypothesis in
future work by studying the learning curves of attribute
learning with per-class and per-image annotation for
varying amounts of training data.

There is also a second, more empirical, explanation:
per-class training of attribute classifiers resembles recent
work on discriminatively learned image representations,
such as classemes [64]. These have been found to work
well for image categorization tasks, even for categories
that are not part of the classemes set. A similar effect
might hold for per-class trained attribute representa-
tions: even if their interpretation as semantic image
properties is not as straight-forward as for classifiers
trained with per-image annotation, they might simply
lead to a good image representation.

6.2.3 Comparison to the Supervised Setup

Besides the relative comparison of the different methods
to each other, we also try to highlight how DAP and
IAP perform on an absolute scale. We therefore compare
our method to ordinary multi-class classification with a
small number of training examples. For each test class
we randomly pick a fixed number of training examples,
and use them to train a one-versus-rest multi-class SVM,
which we evaluate using the remaining images of the
test classes. The kernel function and parameters are the
same as for the IAP model. Figure 7 summarizes the

TABLE 5
Numeric results on the aPascal/aYahoo and the SUN
Attributes datasets in percent: DAP with per image
annotation (DAP-I), DAP with per class annotation
(DAP-C), IAP, class-transfer classifier (CT-H), and

chance performance (rnd).

(a) aPascal-aYahoo, default train/test split
method DAP-I DAP-C IAP CT-H rnd
MC acc. 16.8 19.1 16.9 16.7±0.5 8.3

classAUC 76.9 76.5 75.4 64.2 50.0
attrAUC 70.6 73.7 73.1 – 50.0

(b) SUN Attributes, ten splits (mean±std.dev.)
method DAP-I DAP-C IAP CT-H rnd
MC acc. 18.1±1.2 22.2±1.6 18.0±1.5 12.9±1.3 1.4

level2 acc. 40.2±2.1 46.6±1.7 41.1±2.1 32.6±2.0 6.2
level1 acc. 74.2±4.0 85.7±2.1 82.1±2.5 74.2±2.0 33.3

class mAUC 90.5±0.7 92.3±0.7 87.9±0.7 77.1±0.0 50.0
attrAUC 82.0±0.6 83.9±0.8 82.7±0.8 – 50.0

TABLE 6
Mean mutual information between individual attributes

and class labels with per class or per image annotation.

Dataset per class per image
Animals with Attributes 0.736 —

aPascal-aYahoo 0.532 0.245
SUN Attributes 0.671 0.211

results in form of the mean over 10 such splits. For an
easier comparison, we also repeat the range of values
that zero-shot with DAP or IAP achieved (Tables 4, 5(a),
and 5(b)).

By comparing the last column to the others one sees
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TABLE 7
Numeric results of one-vs-rest multi-class SVMs trained
with n ∈ {1, 2, 3, 4, 5, 10, 15, 20} training examples from

each test class in comparison to the results achieved by
zero-shot learning with DAP and IAP (in percent).

(a) mean class accuracy
n = 1 2 3 4 5 10 15 20 zero-shot

AwA (def.) 23.6 26.2 29.9 32.7 34.0 39.9 42.9 45.4 41.4–42.2
AwA (5-CV) 20.1 23.4 26.3 27.7 29.7 35.7 39.8 40.6 34.1–37.1

aP/aY 22.6 29.6 33.9 38.1 40.0 48.5 50.7 57.1 16.9–19.1
SUN 13.1 18.6 22.7 25.8 28.5 36.8 – – 18.0–22.2

(b) mean classAUC
n = 1 2 3 4 5 10 15 20 zero-shot

AwA (def.) 67.4 72.4 74.0 75.5 76.6 81.2 82.6 84.1 80.0–81.4
AwA (5-CV) 63.8 67.0 69.9 71.3 72.7 77.6 80.5 82.1 76.3–80.4

aP/aY 68.7 74.2 76.2 79.3 80.4 85.3 86.0 89.2 75.4–76.9
SUN 76.9 82.2 84.9 86.9 88.1 91.3 – – 87.9–92.3

that on the Animals with Attributes dataset, attribute-
based classification achieves results on par with super-
vised training with 10-15 training examples per test class,
i.e. 100-150 training images in total. On the aPascal, the
attribute representations perform worse. Their results are
comparable to supervised training with at most 1 exam-
ple per class, if judged by multi-class accuracy, and 2–3
examples per class, if judged by mean classAUC. On the
SUN dataset, approximately 2 examples per class (142
total) are necessary for equal mean class accuracy, and
5–10 examples per class (355 to 710 total) for equal mean
AUC. Note, however, that all the above comparisons
may overestimate the power of the supervised classifiers:
in a realistic setup with so few training examples, mod-
elselection is problematic, whereas to create Table 7 we
just re-used the parameters obtained by thorough model
selection for the IAP model.

Interpreting the low performance on the aPascal-
aYahoo dataset, one has to take the background of
this dataset into account. Its attributes were selected
to provide additional information about object classes,
not to discriminate between them. While the resulting
attribute set is comparably difficult to learn (Table 5(a)),
each attribute on average contains less information about
the class labels (Table 6), mainly because several of the
attributes are meaningful only for a small subset of the
categories. We conclude from this that attributes that are
useful to describe objects from different categories are
not automatically also useful to distinguish between the
categories, a fact that should be taken into account in the
future creation of attribute annotation for image datasets.

Overall, we do not think that the experiments we
presented are sufficient to make a definite statement
about the quality of attribute-based versus supervised
classification. However, we believe that the results con-
firm the intuition that a larger ratio of attributes to
classes improves the prediction performance. However,
not only the number of attributes matters, but also how
informative the chosen attributes are about the classes.

7 CONCLUSION

In this paper, we introduced learning with disjoint training
and test classes. It formalizes the problem of learning
an object classification systems for classes for which no
training images are available. We proposed two methods
for attribute-based classification that solve this problem by
transferring information between classes. In both cases
the transfer is achieved by an intermediate represen-
tation that consists of high level semantic attributes
that provide a fast and simple way to include human
knowledge into the system. To predict the attribute level,
we either rely on classifiers trained directly on attribute
annotation (direct attribute prediction, DAP), or we infer
the attribute layer from classifiers trained to identify
other classes (indirect attribute prediction, IAP). Once
trained, the system can detect new object categories,
if a suitable characterization in terms of attributes is
available for them, and it does not require re-training.

As a second contribution we introduced the Animals
with Attributes dataset: it consists of over 30,000 im-
ages with pre-computed reference features for 50 animal
classes, for which a semantic attribute annotation is
available that has been used in earlier cognitive science
work. We hope that this dataset will foster research and
serve as a testbed for attribute-based classification.

7.1 Open Questions and Future Work

Despite the promising results of the proposed system,
several questions remain open and require future work.
For example, the assumption of disjoint training and test
classes is clearly artificial. It has been observed, e.g. in
[65], that existing methods, including DAP and IAP, do
not work well if this assumption is violated, since their
decisions become biased towards the previously seen
classes. In the supervised scenario, methods to overcome
this limitation have been suggested, e.g. [66], [67], but a
unified framework that includes the possibility of zero-
shot learning is still missing.

A related open problem is how zero-shot learning
can be unified with supervised learning when a small
number of labeled training examples are available. While
some work in this direction exists, see our discussion
in Section 3, we believe that it will also be able to
extend DAP and IAP for this for purpose. For example,
one could make use of their probabilistic formulation to
define an attribute-based prior that is combined with a
likelihood term derived from the training examples.

Beyond the specific task of multi-class classification,
there are many other open questions that will need to
be tackled if we want to make true progress in solving
the grand tasks of computer vision: How do we handle
the problem that many object categories are rare? How
can we build object recognition systems that adapt and
incorporate new categories that they encounter? How
can we integrate human knowledge about the visual
world besides specifying training examples? We believe
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that attribute-based classification will be able to help in
answering at least some of these questions.
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