
Discrete Applied Mathematics 212 (2016) 96–103

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

New tabulation and sparse dynamic programming based
techniques for sequence similarity problems
Szymon Grabowski
Lodz University of Technology, Institute of Applied Computer Science, Al. Politechniki 11, 90–924 Łódź, Poland

a r t i c l e i n f o

Article history:
Received 5 October 2014
Received in revised form 19 July 2015
Accepted 27 October 2015
Available online 2 December 2015

Keywords:
Sequence similarity
Longest common subsequence
Sparse dynamic programming
Tabulation

a b s t r a c t

Calculating the length ℓ of a longest common subsequence (LCS) of two strings, A of
length n and B of length m, is a classic research topic, with many known worst-case
oriented results. We present three algorithms for LCS length calculation with respectively
O(mn lg lg n/ lg2 n), O(mn/ lg2 n + r) and O(n + r) time complexity, where the second one
works for r = o(mn/(lg n lg lg n)), and the third one for r = Θ(mn/ lgk n), for a real
constant 1 ≤ k ≤ 3, and ℓ = O(n/(lgk−1 n(lg lg n)2)), where r is the number of matches
in the dynamic programming matrix. We also describe conditions for a given problem
sufficient to apply our techniques, with several concrete examples presented, namely the
edit distance, the longest common transposition-invariant subsequence (LCTS) and the
merged longest common subsequence (MerLCS) problems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Measuring the similarity of sequences is an old research topic andmany actualmeasures are known in the stringmatching
literature. One classic example concerns the computation of a longest common subsequence (LCS) in which a subsequence
that is common to all sequences and has the maximal possible length is looked for. A simple dynamic programming (DP)
solution works in O(mn) time for two sequences of length n and m, respectively, but faster algorithms are known. The
LCS problem has many applications in diverse areas, like version control systems, comparison of DNA strings, structural
alignment of RNA sequences. Other related problems comprise calculating the edit (Levenshtein) distance between two
sequences, the longest common transposition-invariant subsequence, or LCS with constraints in which the longest common
subsequence of two sequences must contain, or exclude, some other sequence.

Let us focus first on the LCS problem, for two sequences A and B. It is defined as follows. Given two sequences,
A = a1 . . . an = A[1 . . . n] and B = b1 . . . bm = B[1 . . .m], over an alphabet Σ of size σ , find a longest subsequence
⟨ai1 , ai2 , . . . , aiℓ⟩ of A such that ai1 = bj1 , ai2 = bj2 , . . . , aiℓ = bjℓ , where 1 ≤ i1 < i2 < · · · < iℓ ≤ n and 1 ≤ j1 < j2 <
· · · < jℓ ≤ m. The found sequence may not be unique. W.l.o.g. we assume n ≥ m. To avoid uninteresting complications,
we also assume that m = Ω(lg2 n). Additionally, we assume that σ = O(m). The case of a general alphabet, however, can
be handled with standard means, i.e., we can initially map the sequences A and B onto an alphabet of size σ ′

= O(m), in
O(n lg σ ′) time, using a balanced binary search tree. We do not comprise this tentative preprocessing step in further com-
plexity considerations.

Often, a simplified version of the LCS problem is considered, when one is interested in telling only the length of a longest
common subsequence (LLCS).

In this paper we present three techniques for finding the LCS length, one (Section 3) based on tabulation and improving
the result of Bille and Farach-Colton [3] by a factor of lg lg n, second (Section 4) combining tabulation and sparse dynamic

E-mail address: sgrabow@kis.p.lodz.pl.

http://dx.doi.org/10.1016/j.dam.2015.10.040
0166-218X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2015.10.040
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2015.10.040&domain=pdf
mailto:sgrabow@kis.p.lodz.pl
http://dx.doi.org/10.1016/j.dam.2015.10.040

S. Grabowski / Discrete Applied Mathematics 212 (2016) 96–103 97

Table 1
Summary of main results for finding ℓ, the length of a longest common subsequence (LLCS) for two
sequences of lengthm and n, respectively, wherem ≤ n, over an integer alphabet of size σ . The number
of pairs of symbols shared by the two input sequences is denoted with r , 0 ≤ r ≤ mn. The number of
dominant matches is denoted with D, D ≤ r . All the algorithms require (at most) linear extra space in
addition to the space for storing the input sequences. ‘‘Stand. DP’’ and ‘‘Stand. 4R’’ are abbreviations for
the standard dynamic programming and the standard Four Russians (tabulation) algorithm.

Algorithm Time complexity Conditions Ref.

Stand. DP O(mn) – folklore
Stand. 4R O(n + mn/ lg2 n) σ = O(1) and m ≥ lg n [15]
Sparse DP O(nσ + D lg lg(min(D,mn/D))) – [8]
BFC O(n + mn(lg lg n)2/ lg2 n) m ≥ lg n lg lg n [3]
Our-1 O(mn lg lg n/ lg2 n) m ≥ lg2 n Section 3
Our-2 O(mn/ lg2 n + r) m ≥ lg2 n and

r = o(mn/(lg n lg lg n)) Section 4
Our-3 O(n + r) m ≥ lg2 n and

r = Θ(mn/ lgk n),
for real k ∈ [1, 3], and
ℓ = O(n/(lgk−1 n(lg lg n)2)) Section 5

programming and being slightly faster if the number of matches is appropriately limited, and the last (Section 5) improving
the previous result if also the LCS length is conveniently limited. In Section 6 we show the conditions necessary to apply
these algorithmic techniques. Some other, LCS-related, problems fulfill these conditions, so we immediately obtain new
results for these problems as well. The summary of our results for the LLCS-finding problem is presented in Table 1. The
other results listed there are briefly discussed in Sections 2 and 3.

Throughout the paper, we assume the word-RAM model of computation with machine word size w ≥ lg n. All used
logarithms are base 2.

A preliminary version of this article appeared in Proc. PSC 2014 [10].

2. Related work

A standard solution to the LCS problem is based on dynamic programming, and it is to fill amatrixM of size (n+1)×(m+

1), where n + 1 is the number of columns, m + 1 the number of rows, and each cell value depends on a pair of compared
symbols from A and B (that is, only if they match or not), and its (at most) three already computed neighbor cells. Each
computedM[i, j] cell, 1 ≤ i ≤ n, 1 ≤ j ≤ m, stores the value of LLCS(A[1 . . . i], B[1 . . . j]). A well-known property describes
adjacent cells:M(i, j) − M(i − 1, j) ∈ {0, 1} and M(i, j) − M(i, j − 1) ∈ {0, 1} for all valid i, j.

Despite almost 40 years of research, surprisingly little can be said about the worst-case time complexity of LCS. It is
known that in the very restrictive model of unconstrained alphabet and comparisons with equal/unequal answers only, the
lower bound is Ω(mn) [21], which is reached by a trivial DP algorithm. If the input alphabet is of constant size, the known
lower bound is simply Ω(n), but if total order between alphabet symbols exists and ≤-comparisons are allowed, then the
lower bound grows to Ω(n lg n) [11]. In other words, the gap between the proven lower bounds and the best worst-case
algorithm is huge.

A simple idea proposed in 1977 by Hunt and Szymanski [13] has become a milestone in LCS research, and the departure
point for theoretically better algorithms (e.g., [8]). The Hunt–Szymanski (HS) algorithm is essentially based on dynamic
programming, but it visits only the matching cells of the matrix, typically a small fraction of the entire set of cells. This kind
of selective scan over the DP matrix is called sparse dynamic programming (SDP). We note that the number of all matches in
M , denoted with the symbol r , can be found in O(n) time, and after this (negligible) preprocessing we can decide if the HS
approach is promising to given data. More precisely, the HS algorithm works in O(n + r lgm) or even O(n + r lg lgm) time.
Note that in the worst case, i.e., for r = Θ(mn), this complexity is however superquadratic.

The Hunt–Szymanski concept was an inspiration for a number of subsequent algorithms for LCS calculation, and the best
of them, the algorithm of Eppstein et al. [8], achieves O(D lg lg(min(D,mn/D)))worst-case time (plus O(nσ) preprocessing),
whereD ≤ r is the number of so-called dominantmatches inM (amatch (i, j) is called dominant iffM[i, j] = M[i−1, j]+1 =

M[i, j − 1] + 1). Note that this complexity is O(mn) for any value of D. A more recent algorithm, by Sakai [19], is an
improvement if the alphabet is very small (in particular, constant), as its time complexity isO(mσ +min(Dσ , ℓ(m−q))+n),
where ℓ = LLCS(A, B) and q = LLCS(A[1 . . .m], B).

A different approach is to divide the dynamicmatrix into small blocks, such that the number of essentially different blocks
is small enough to be precomputed before the main processing phase. In this way, the block may be processed in constant
time each, making use of a built lookup table (LUT). This ‘‘Four Russians’’ technique was first used to the LCS problem by
Masek and Paterson [15], for a constant alphabet, and refined by Bille and Farach-Colton [3] to work with an arbitrary
alphabet. The obtained time complexities were O(mn/ lg2 n) and O(mn(lg lg n)2/ lg2 n), respectively, with linear space.

A related, but different approach, is to use bit-parallelism to compute several cells of the dynamic programming matrix
at a time. There are a few such variants (see [14] and references therein), all of them working in O(⌈m/w⌉n) worst-case
time, after O(σ⌈m/w⌉ + m)-time and O(σm)-space preprocessing, where w is the machine word size.

98 S. Grabowski / Discrete Applied Mathematics 212 (2016) 96–103

Yet another line of research considers the input sequences in compressed form. There exist such LCS algorithms for RLE-,
LZ- and grammar-compressed inputs.We brieflymention two results. Crochemore et al. [4] exploited the LZ78-factorization
of the input sequences over a constant alphabet, to achieve O(hmn/ lg n) time, where h ≤ 1 is the entropy of the inputs.
Gawrychowski [9] considered the case of two strings described by SLPs (straight line programs) of total size k, to show a
solution computing their edit distance in O(kn

√
lg(n/k)) time, where n is the sum of their (non-compressed) length.

Some other LCS-related results can be found in the surveys [1,2].

3. LCS in O(mnlglgn/lg2n) time

In this section we modify the technique of Bille and Farach-Colton (BFC) [3, Sect. 4], improving its worst-case time
complexity to O(mn lg lg n/ lg2 n), i.e., by a factor of lg lg n, with linear space. First we present the original BFC idea, and then
signal how our algorithm diverts from it. In the presentation, some unimportant details of the BFC solution are changed, to
make the description more compatible with our variant.

The dynamic programming matrix M[0 . . . n, 0 . . .m] is divided into rectangular blocks with shared borders, of size
(x1 + 1) × (x2 + 1), and the matrix is processed in horizontal stripes of x2 rows. By ‘‘shared borders’’ we mean that e.g. the
bottom row of some block being part of its output is also part of the input of the block below. Values inside each block
depend on:

(i) x1 corresponding symbols from sequence A,
(ii) x2 corresponding symbols from sequence B,
(iii) the top row of the block, which can be encoded differentially in x1 bits,
(iv) the leftmost column of the block, which can be encoded differentially in x2 bits.

The output of each block will be found via a lookup table built in a preprocessing stage. The key idea of the BFC technique is
alphabet remapping in superblocks of size y × y. W.l.o.g. we assume that both x1 and x2 divide y. Consider one superblock
of the matrix, corresponding to the two substrings: A[i′y + 1 . . . (i′ + 1)y] and B[j′y + 1 . . . (j′ + 1)y], for some i′ and j′. For
the substring B[j′y + 1 . . . (j′ + 1)y] its symbols are sorted and q ≤ y unique symbols are found. Then, the y symbols are
remapped to ΣBj′ = {0 . . . q − 1}, using a balanced BST. Next, for each symbol from the snippet A[i′y + 1 . . . (i′ + 1)y] we
find its encoding in ΣBj′ , or assign q to it if it was not found there. This takes O(lg y) time per symbol, thus the substrings of
A and B associated with the superblock are remapped in O(y lg y) time. The overall alphabet remapping time for the whole
matrix is thus O((mn lg y)/y).

This remapping technique allows to represent the symbols from the input components (i) and (ii) on O(lgmin(y+1, σ))
bits each, rather thanΘ(lg σ) bits. It works because not the actual symbols from A and B are important for LCS computations,
but only equality relations between them. To simplify notation, let us assumea large enough alphabet so thatmin(y+1, σ) =

y + 1.
In this way, the input per block, comprising the components (i)–(iv) listed above, takes x1 lg(y+1)+x2 lg(y+1)+x1+x2

bits, which cannot sum toω(lg n) bits, otherwise the preprocessing time and space for building the LUT handling all possible
blocks would be superpolynomial in n. Setting y = x21 and x1 = x2 = lg n/(6 lg lg n), we obtain O(mn(lg lg n)2/ lg2 n) overall
time, with sublinear LUT space.

Now, we present our idea. Again, the matrix is processed in horizontal stripes of x2 rows and the alphabet remapping in
superblocks of size y × y is used. The difference concerns the lookup table; instead of one, we build many of them. More
precisely, for each (remapped) substring of length x2 from sequence Bwe build a lookup table for fast handling of the blocks
in one horizontal stripe. Once a stripe is processed, its LUT is discarded to save space. This requires to compute the answers
for all possible inputs in components (i), (iii) and (iv) (the component (ii) is fixed for a given stripe). The input thus takes
x1 lg(y + 1) + x1 + x2 = x1 lg(2(y + 1)) + x2 bits.

The return value associated with each LUT key is the bottom and the right border of a block, in differential form (the
lowest cell in the right border and the rightmost cell in the bottom border are the same cell, which is represented twice;
once as a difference (0 or 1) to its left neighbor in the bottom border and once as a difference (0 or 1) to its upper neighbor
in the right border) and the difference between the values of the bottom right and the top left corner (to know the explicit
value ofM in the bottom right corner), requiring x1 + x2 + lg(min(x1, x2) + 1) bits in total. Fig. 1 illustrates.

As long as the input and the output of an LUT fit a machine word, i.e., do not exceed w bits, we will process one block
in constant time. Still, as in the original BFC algorithm, the LUT building costs also impose a limitation. More precisely, we
are going to minimize the total time of remapping the alphabet in all the superblocks, building all O(m/x2) LUTs and finally
processing all the blocks, which is described by the formula:

O(m lg y + (mn lg y)/y + (m/x2)2x1 lg(2(y+1))+x2x1x2 + mn/(x1x2)),

where 2x1 lg(2(y+1))+x2 is the number of all possible LUT inputs and the x1x2 multiplier corresponds to the computation
time per one LUT cell. The four additive terms of the formula correspond, in order, to: creating the alphabets for all
superblocks, performing all the alphabet remappings, building all LUTs and processing all the blocks. Let us set y = lg2 n/2,
x1 = lg n/(4 lg lg n) and x2 = lg n/4. In total we obtain O(mn lg lg n/ lg2 n) time with o(n) extra space (for the lookup
tables, used one at a time, and alphabet remapping), which improves the Bille and Farach-Colton result by a factor of lg lg n.

S. Grabowski / Discrete Applied Mathematics 212 (2016) 96–103 99

Fig. 1. One horizontal stripe of the DPmatrix, with 4 blocks of size 5×5 (x1 = x2 = 4). The corresponding snippets from sequences A and B are abbea and
fgadf, respectively. These snippets are translated to a new alphabet (the procedure for creating the new alphabet is not shown here) of size 6, where the
characters from A are mapped onto the alphabet {0, 1, . . . , 4} and value 5 is used for the characters from B not used in the encoding of the symbols from
A belonging to the current superblock (the superblock is not shown here). The LCS values are stored explicitly in the dark shaded cells. The white and dark
shaded cells with arrows are part of the input, and their LCS values are encoded differentially, with regard to their left or upper neighbor. The diagonally
shaded cells are the output cells, also encoded differentially. The bottom right corner (BR) is stored in three forms: as the difference to its left neighbor (0
or 1), as the difference to its upper neighbor (0 or 1) and the value of UL (upper-left corner) plus the difference between BR and UL. The difference between
BR and UL is part of the LUT output for the current block.

The improvement is achieved thanks to using multiple lookup tables (one per horizontal stripe). Formally, we obtain the
following theorem.

Theorem 1. The length of the longest common subsequence (LCS) of two sequences, A, of length n, and B, of length m, where
n ≥ m ≥ lg2 n, both over an integer alphabet, can be computed in O(mn lg lg n/ lg2 n)worst-case time. The algorithm needs o(n)
words of space, apart for the two sequences themselves.

4. LCS in o(mn/lg2n + r) time (for some r)

In this algorithm we also work in blocks, of size (b + 1) × (b + 1), but divide them into two groups: sparse blocks are
those which contain at most K matches and dense blocks are those which contain more than K matches. Obviously, we do
not count possible matches on the input boundaries of a block.

We observe that knowing the left and top boundaries of a block plus the location of all thematches in the block is enough
to compute the remaining (right andbottom) boundaries. This is a nice property as it eliminates theneed to (explicitly) access
the corresponding substrings of A and B.

The sparse block input will be encoded as:

(i) the top row of the block, represented differentially in b bits,
(ii) the leftmost column of the block, represented differentially in b bits,
(iii) the match locations inside the block, each in lg(b2) bits, with O(K lg b) bits in total.

Each sparse blockwill be computed in constant time, thanks to an LUT. Dense blocks, on the other hand,will be partitioned
into smaller blocks, which in turnwill be handledwith our algorithm fromSection 3. Clearly, we have b = O(lg n) (otherwise
the LUT build costs would be dominating) and b = ω(lg n/

√
lg lg n) (otherwise this algorithm would never be better than

the one from Section 3), which implies that K = Θ(lg n/ lg lg n), with an appropriate constant.
As this algorithm’s worst-case time is Ω(mn/ lg2 n), it is easy to notice that the preprocessing costs for building required

LUTs and alphabetmappingwill not dominate. Each dense block is divided into smaller blocks of sizeΘ(lg n/ lg lg n)×Θ(b).
Let the fraction of dense blocks in the matrix be denoted as fd (for example, if half of the (b + 1) × (b + 1) blocks in the
matrix are dense, then fd = 0.5). The total time complexity (without preprocessing) is then

O((1 − fd)mn/b2 + fd(mn lg lg n/(b lg n))).

The fraction fd must be o(1), otherwise this algorithm is not better in complexity than the previous one. This also means
that 1 − fd may be replaced with 1 in further complexity considerations.

Recall that r is the number of matches in the dynamic programming matrix. We have fd = O((r/K)/(mn/b2)) =

O(rb2 lg lg n/(mn lg n)). From the fd = o(1) conditionwe also obtain that rb2 = o(mn lg n/ lg lg n). If r = o(mn/(lg n lg lg n)),
then we can safely use the maximum possible value of b, i.e., b = Θ(lg n) and obtain the time of O(mn/ lg2 n). Note that the
conditions r = o(mn/(lg n lg lg n)) and fd = o(1) are equivalent, remembering that K = Θ(lg n/ lg lg n).

Unfortunately, in the preprocessing we have to find and encode all matches in all sparse blocks, which requires O(n+ r)
time. Overall, this leads to the following theorem.

100 S. Grabowski / Discrete Applied Mathematics 212 (2016) 96–103

Theorem 2. The length of the longest common subsequence (LCS) of two sequences, A, of length n, and B, of length m, where
n ≥ m ≥ lg2 n, both over an integer alphabet, can be computed in O(mn/ lg2 n + r) worst-case time, assuming r =

o(mn/(lg n lg lg n)), where r is the number of symbol pairs Ai, Bj such that Ai = Bj. The algorithm needs o(n) words of space,
apart for the two sequences themselves.

Considering the presented restriction on r , the achieved complexity is better than the result from the previous section.
On the other hand, it is essential to compare the obtained time complexitywith the one from Eppstein et al. algorithm [8].

All we can say about the number of dominant matches D is the D ≤ r inequality,1 so we replace D with r in their
complexity formula to obtain O(r lg lg(min(r,mn/r))) in the worst case. Our result is better if r = ω(mn/(lg2 n lg lg lg n))
and r = o(mn). Overall, it gives the niche of r = ω(mn/(lg2 n lg lg lg n)) and r = o(mn lg lg n/ lg2 n) in which the algorithm
presented in this section is competitive.

The alphabet size is yet another constraint. From the comparison to Sakai’s algorithm [19]we conclude that our algorithm
needs σ = ω(lg lg lg n) to dominate for the case of r = ω(mn/(lg2 n lg lg lg n)).

5. LCS in O(n + r) time (sometimes)

The improvement of the first of the two previously presented algorithms (Section 3) over the standard dynamic
programming is bounded by a factor related to the O(lg lg n) bits needed for a symbol encoding in the block. The second
algorithm (Section 4) removes this obstacle if the total number of matches, r , is small enough, since the match positions
(in sparse blocks, which dominate) may be used instead of the sequence snippets. The first term in its time complexity of
O(mn/ lg2 n+ r) is however related to the differential representation of the top and leftmost boundaries of the block. In this
section we present another sparse dynamic programming technique, which, under favorable conditions, removes even the
latter constraint.

In the DP matrix for the LCS problem the number of cells in a row (column) which have their value greater than their
left (upper) neighbor is up to ℓ, the LCS length. Correspondingly, the number of set bits in a differentially encoded row or
column is upper-bounded by ℓ. If ℓ is small, this may allow for amore compact representation of the top row or the leftmost
column of a rectangular block, the computation unit in the tabulation-based algorithms.

Assume for a moment that we know the value of ℓ beforehand. We follow the general approach of the algorithm
from the previous section, dividing the blocks into sparse and dense ones, but using a different definition. A block of size
(x1 + 1) × (x2 + 1) will now be called sparse if it contains not more than K1 matches and its top row in the differential
representation contains not more than K2 set bits. Otherwise, a block is considered dense. We set x2 = lg n/4. At the
moment we know that x1 = ω(lg n/ lg lg n), otherwise this algorithm cannot obtain lower time complexity than the one
fromSection 3. Dense blockswill be partitioned into smaller blocks, of size (lg n/(4 lg lg n)+1)×(lg n/4+1), andprocessed in
constant time each with the algorithm from Section 3. Nowwe have to find suchmaximal x1 which allows to process sparse
blocks in constant time.

A dense block is split into h = Θ(x1 lg lg n/ lg n) smaller blocks. In other words, processing a dense block is h times
more costly than processing a sparse one. We should thus choose such x1 for which the fraction of dense blocks fd is O(1/h).
The total time complexity (without preprocessing) of O((1 − fd)mn/(x1 lg n) + fd(mn lg lg n/ lg2 n)) becomes then simply
O(mn/(x1 lg n)), and we assume that h = ω(1) and thus x1 = ω(lg n/ lg lg n).

The maximal x1 we can choose depends on two output parameters, r and ℓ. Note that the average number of set bits in a
block’s top row is upper-bounded by O(x1ℓ/n). Let us assume that r = mn/ polylog(n), or more precisely, r = Θ(mn/ lgk n),
where k ≥ 1 is some real constant.

Setting K1 = O(rh/(mn/(x1 lg n))) = O(x21 lg lg n/ lgk n) satisfies the requirement fd = O(1/h) = O(lg n/(x1 lg lg n)), as
far as the match component of the block’s input is involved. The other crucial component is however the top row of the
block. Setting K2 = O((x1ℓ/n)h) = O(x21ℓ lg lg n/(n lg n)) is enough to have fd = O(1/h) with regard to this constraint.

We however also require that (i) K1 lg(x1 lg n) = O(lg n) (with an appropriately small constant), since the (up to) K1
encoded matches are part of the input of a sparse block, and (ii) K2 lg(x1/K2) = O(lg n), again with an appropriately small
constant, since the gaps between successive set bits in the top rowmay be encoded with, e.g., Elias code [20, Sect. 2.4], with
less than 2 lg2 g bits spent per gap of size g; the cost is maximized for K2 equal-sized gaps, from the convexity of the log
function.

Putting together the conditions on K1 and choosing K1 as large as possible (since it also maximizes x1), we obtain
x21(lg lg n/ lgk n) lg(x1 lg n) = Θ(lg n), hence x21 lg(x1 lg n) = Θ(lgk+1 n/ lg lg n), and finally x1 = Θ(lg(k+1)/2 n/

√
k).

We now use the obtained value of x1 in the constraints on K2. Namely, we have K2 = O(ℓ lgk n lg lg n/(nk)) and
K2 lg(lg(k+1)/2 n/(K2

√
k)) = Θ(lg n). From the latter we have K2 = Θ(lg n/(k lg lg n)). The former condition entails ℓ, and

with the latter condition taken into account we must have ℓ = O(n/(lgk−1 n(lg lg n)2)).
There is one more thing to notice. The output of each block is its bottom and right boundaries, and while the block’s

rightmost column of size Θ(lg n) poses no problem, one may wonder if this is alike for the bottom row, which may contain

1 A slightly more precise upper bound on D is min(r,m2), but it may matter, in complexity terms, only if m = o(n) (cf. also [19, Th. 1]), which is a less
interesting case.

S. Grabowski / Discrete Applied Mathematics 212 (2016) 96–103 101

more set bits than the top row of the block. Fortunately, the increase in the number of set bits is obviously not greater than
the number of matches in this block, i.e., does not exceed K2, and the (Elias) encoding of a set bit in the bottom row is not
more expensive than the encoding of a match within a block. We thus conclude that handling the possibly greater number
of set bits in the bottom row will not compromise the time complexity.

Let us now settle the final time complexity. Using x1 = Θ(lg(k+1)/2 n/
√
k) (with a small enough constant) we obtain

O(n+mn
√
k/ lg(k+3)/2 n) time, if r = Θ(mn/ lgk n), for any real constant k ≥ 1, and ℓ = O(n/(lgk−1 n(lg lg n)2)). To this, we

need to add the preprocessing costs: o(n) time for the LUT construction and O(n + r) time for encoding the matches. The
achieved time complexity dominates over the Eppstein et al. one [8] for k ≤ 3.

Now we recall the initial assumption that we know the value of ℓ beforehand. We solve this issue with simple means:
find first the value of r (in O(n) time) and if r = Θ(mn/ lgk n), we assume that ℓ = Θ(n/(lgk−1 n(lg lg n)2)) and set the
values of x1, K1 and K2 correspondingly. If, after Θ(r) (with a large enough constant) units of computation, we have not
arrived to the solution yet, which means that the fraction of dense blocks is too large, we stop this procedure and switch to
another algorithm, e.g. the one from Section 4 (with no loss in complexity terms in this case).

To sum up, we just obtained the following result.

Theorem 3. The length ℓ of the longest common subsequence (LCS) of two sequences, A, of length n, and B, of length m, where
n ≥ m ≥ lg2 n, both over an integer alphabet, can be computed in O(n + r) worst-case time, assuming r = Θ(mn/ lgk n), for a
real constant 1 ≤ k ≤ 3, and ℓ = O(n/(lgk−1 n(lg lg n)2)), where r is the number of symbol pairs Ai, Bj such that Ai = Bj. The
algorithm needs o(n) words of space, apart for the two sequences themselves.

We note that the time complexity is better than the one from Theorem 2 for k > 2. As a result, the algorithm’s niche is
for 2 < k ≤ 3.

6. Algorithmic applications

The techniques presented in the three previous sections may be applied to any sequence similarity problem fulfilling
certain properties. The conditions are specified in the following lemma.

Lemma 4. Let Q be a sequence similarity problem returning the length ℓ of a desired subsequence, involving two sequences, A of
length n and B of length m, both over a common integer alphabet Σ of size σ = O(m). We assume that 1 ≤ m ≤ n. Let Q admit
a dynamic programming solution in which M(i, j) − M(i − 1, j) ∈ {−1, 0, 1}, M(i, j) − M(i, j − 1) ∈ {−1, 0, 1} for all valid i
and j, and M(i, j) depends only on the values of its (at most) three neighbors M(i−1, j), M(i, j−1), M(i−1, j−1), and whether
Ai = Bj.

There exists a solution to problem Q with O(mn lg lg n/ lg2 n) worst-case time. There also exists a solution to Q with
O(mn/ lg2 n + r) worst-case time, for r = o(mn/(lg n lg lg n)), where r is the number of symbol pairs Ai, Bj such that Ai = Bj.
Finally, there exists a solution to Q with O(n + r) worst-case time, for r = Θ(mn/ lgk n), for a real constant 1 ≤ k ≤ 3, and
ℓ = O(n/(lgk−1 n(lg lg n)2)). The space use in all the solutions is O(n) words.

Proof. We straightforwardly apply the ideas presented in the previous three sections. The only modification is to allow a
broader range of differences ({−1, 0, 1}) between adjacent cells in the dynamic programming matrix. This only affects a
constant factor in parameter setting. �

Lemma 4 immediately serves to calculate the edit (Levenshtein) distance between two sequences (in fact, the BFC
technique was presented in [3] in terms of the edit distance). We therefore obtain the following theorem.

Theorem 5. The edit distance between two sequences, A, of length n, and B, of lengthm,where n ≥ m ≥ lg2 n, both over an integer
alphabet, can be computed in O(mn lg lg n/ lg2 n) worst-case time. Alternatively, the distance can be found in O(mn/ lg2 n + r)
worst-case time, for r = o(mn/(lg n lg lg n)), where r is the number of symbol pairs Ai, Bj such that Ai = Bj. The space use in
both solutions is O(n) words.

In fact, our result can also be extended to the weighted edit distance problem, if the set of weights is predefined and
bounded (of constant size), as the penalties in time and/or preprocessing space are only by a constant factor.

Another feasible problem is the longest common transposition-invariant subsequence (LCTS) [16,5], in which we look
for a longest subsequence of the form (s1 + t)(s2 + t) . . . (sℓ + t) such that all si belong to A (in increasing order), all
corresponding values si+t belong to B (in increasing order), and t ∈ {−σ+1 . . . σ−1} is some integer, called a transposition.
This problem is motivated by music information retrieval. The best known results for LCTS are O(mn lg lg σ) [17,5] and
O(mnσ(lg lg n)2/ lg2 n) if the BFC technique is applied for all transpositions (which is O(mn) if σ = O(lg2 n/(lg lg n)2)).
Applying the former result from Lemma 4, for all possible transpositions, gives immediately O(mnσ lg lg n/ lg2 n) time
complexity (if σ = O(n1−ε), for any ε > 0, otherwise the LUT build costs would dominate). Applying the latter result
requires more care. First we notice that the number of matches over all the transpositions sums up to mn, so Θ(mn) is
the total preprocessing cost. Let us divide the transpositions into dense ones and sparse ones, where the dense ones are
those that have at leastmn lg lg n/σ matches. The number of dense transpositions is thus limited to O(σ/ lg lg n). We handle

102 S. Grabowski / Discrete Applied Mathematics 212 (2016) 96–103

dense transpositions with the technique from Section 3 and sparse ones with the technique from Section 4. This gives us
O(mn+mn(σ/ lg lg n) lg lg n/ lg2 n+mnσ/ lg2 n) = O(mn(1+σ/ lg2 n)) total time, assuming that σ = ω(lg n(lg lg n)2), as
this condition on σ implies the number of matches in each sparse transposition limited to o(mn/(lg n lg lg n)), as required.
We note that σ = ω(lg2 n/(lg lg n)2) and σ = O(lg2 n) is the niche in which our algorithm is the first one to achieve O(mn)
total time.

Theorem 6. The length of the longest common transposition-invariant subsequence (LCTS) of two sequences, A, of length n, and
B, of length m, where n ≥ m ≥ lg2 n, both over an integer alphabet of size σ , can be computed in O(mn(1+σ/ lg2 n))worst-case
time, assuming that σ = ω(lg n(lg lg n)2).

A natural extension of Lemma 4 is to involvemore than two (yet a constant number of) sequences. In particular, problems
on three sequences have practical importance.

Lemma 7. Let Q be a sequence similarity problem returning the length of a desired subsequence, involving three sequences, A of
length n, B of length m and P of length u, all over a common integer alphabet Σ of size σ = O(m). We assume that 1 ≤ m ≤ n
and u = Ω(nc), for some constant c > 0. Let Q admit a dynamic programming solution in which M(i, j, k) − M(i − 1, j, k) ∈

{−1, 0, 1}, M(i, j, k) − M(i, j − 1, k) ∈ {−1, 0, 1} and M(i, j, k) − M(i, j, k − 1) ∈ {−1, 0, 1}, for all valid i, j and k, and
M(i, j, k) depends only on the values of its (at most) seven neighbors: M(i−1, j, k), M(i, j−1, k), M(i−1, j−1, k), M(i, j, k−1),
M(i − 1, j, k − 1), M(i, j − 1, k − 1) and M(i − 1, j − 1, k − 1), and whether Ai = Bj, Ai = Pk and Bj = Pk.

There exists a solution to Q with O(mnu/ lg3/2 n) worst-case time. The space use is O(n) words.

Proof. The solutionworks on cubes of size b×b×b, setting b = Θ(
√
lg n)with an appropriate constant. Instead of horizontal

stripes, 3D ‘‘columns’’ of size b × b × u are now used. The LUT input consists of b symbols from sequence P , encoded with
respect to a supercube in O(lg lg n) bits each, and three walls, of size b × b each, in differential representation. The outputs
are the three opposite walls of a cube. The restriction u = Ω(nc) implies that the overall time formula without the LUT
building times is Ω(mn1+c/ lg3/2 n), which is Ω(mn1+c′), for some constant c ′, c ≥ c ′ > 0, e.g., for c ′

= c/2. The build time
for all LUTs can be made O(mn1+c′′), for any constant c ′′ > 0, if the constant associated with b is chosen appropriately. It is
now enough to set c ′′

= c ′, to notice that the build time for the LUTs is not dominating. �

As an application of Lemma 7 we present the merged longest common subsequence (MerLCS) problem [12], which
involves three sequences, A, B and P , and its returned value is a longest sequence T that is a subsequence of P and can be split
into two subsequences T ′ and T ′′ such that T ′ is a subsequence of A and T ′′ is a subsequence of B. Deorowicz and Danek [6]
showed that in the DP formula for this problemM(i, j, k) is equal to or larger by 1 than any of the neighbors:M(i − 1, j, k),
M(i, j − 1, k) and M(i, j, k − 1). They also gave an algorithm working in O(⌈u/w⌉mn lgw) time. Peng et al. [18] gave an
algorithm with O(ℓmn) time complexity, where ℓ ≤ n is the length of the result. Motivations for the MerLCS problem, from
bioinformatics and signal processing, can be found e.g. in [6].

Based on the citedDP formula property [6]we can apply Lemma7 to obtainO(mnu/ lg3/2 n) time forMerLCS (ifu = Ω(nc)
for some c > 0), which may be competitive with existing solutions.

Theorem 8. The length of the merged longest common subsequence (MerLCS) involving three sequences, A, B and P, of length
respectively n, m and u, where m ≤ n and u = Ω(nc), for some constant c > 0, all over an integer alphabet of size σ , can be
computed in O(mnu/ lg3/2 n) worst-case time.

7. Conclusions

On the example of the longest common subsequence problem we presented three algorithmic techniques, making use
of tabulation and sparse dynamic programming paradigms, which allow to obtain competitive time complexities. Then we
generalize the ideas by specifying conditions on DP dependencies whose fulfilments lead to immediate applications of these
techniques. The actual problems considered here as applications comprise the edit distance, LCTS and MerLCS.

As a future work, we are going to relax the DP dependencies, which may for example improve the SEQ-EC-LCS result
from [7]. Another research option is to try to improve the tabulation based result on compressible sequences.

Acknowledgments

The author wishes to thank Marcin Raniszewski, Sebastian Deorowicz and the anonymous reviewers for helpful
comments on a preliminary version of the manuscript.

References

[1] A. Apostolico, String editing and longest common subsequences, in: Handbook of Formal Languages, in: LinearModeling: Background and Application,
vol. 2, Springer, 1997, pp. 361–398. Ch. 8.

[2] L. Bergroth, H. Hakonen, T. Raita, A survey of longest common subsequence algorithms, in: SPIRE, IEEE Computer Society, 2000, pp. 39–48.

http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref1
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref2

S. Grabowski / Discrete Applied Mathematics 212 (2016) 96–103 103

[3] P. Bille, M. Farach-Colton, Fast and compact regular expression matching, Theoret. Comput. Sci. 409 (3) (2008) 486–496.
[4] M. Crochemore, G.M. Landau, M. Ziv-Ukelson, A subquadratic sequence alignment algorithm for unrestricted scoring matrices, SIAM J. Comput. 32 (6)

(2003) 1654–1673.
[5] S. Deorowicz, Speeding up transposition-invariant string matching, Inform. Process. Lett. 100 (1) (2006) 14–20.
[6] S. Deorowicz, A. Danek, Bit-parallel algorithms for the merged longest common subsequence problem, Internat. J. Found. Comput. Sci. 24 (08) (2013)

1281–1298.
[7] S. Deorowicz, S. Grabowski, Subcubic algorithms for the sequence excluded LCS problem, in: Man-Machine Interactions, vol. 3, 2014, pp. 503–510.
[8] D. Eppstein, Z. Galil, R. Giancarlo, G.F. Italiano, Sparse dynamic programming I: Linear cost functions, J. ACM 39 (3) (1992) 519–545.
[9] P. Gawrychowski, Faster algorithm for computing the edit distance between slp-compressed strings, in: SPIRE, 2012, pp. 229–236.

[10] S. Grabowski, New tabulation and sparse dynamic programming based techniques for sequence similarity problems, in: J. Holub, J. Žďárek (Eds.),
Proceedings of the Prague Stringology Conference, PSC, 2014, Czech Technical University in Prague, Czech Republic, 2014, pp. 202–211.

[11] D.S. Hirschberg, An information-theoretic lower bound for the longest common subsequence problem, Inform. Process. Lett. 7 (1) (1978) 40–41.
[12] K.-S. Huang, C.-B. Yang, K.-T. Tseng, H.-Y. Ann, Y.-H. Peng, Efficient algorithm for finding interleaving relationship between sequences, Inform. Process.

Lett. 105 (5) (2008) 188–193.
[13] J.W. Hunt, T.G. Szymanski, A fast algorithm for computing longest common subsequences, Commun. ACM 20 (5) (1977) 350–353.
[14] H. Hyyrö, Bit-parallel LCS-length computation revisited, in: AWOCA, University of Sydney, Australia, 2004, pp. 16–27.
[15] W. Masek, M. Paterson, A faster algorithm computing string edit distances, J. Comput. System Sci. 20 (1) (1980) 18–31.
[16] V. Mäkinen, G. Navarro, E. Ukkonen, Transposition invariant string matching, J. Algorithms 56 (2) (2005) 124–153.
[17] G. Navarro, S. Grabowski, V. Mäkinen, S. Deorowicz, Improved time and space complexities for transposition invariant string matching, in: Technical

Report TR/DCC-2005-4, Department of Computer Science, University of Chile, 2005, URL ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/mnloglogs.ps.gz.
[18] Y.-H. Peng, C.-B. Yang, K.-S. Huang, C.-T. Tseng, C.-Y. Hor, Efficient sparse dynamic programming for the merged lcs problem with block constraints,

Inf. Control 6 (4) (2010) 1935–1947.
[19] Y. Sakai, A fast on-line algorithm for the longest common subsequence problem with constant alphabet, IEICE Trans. 95-A (1) (2012) 354–361.
[20] D. Salomon, Variable-Length Codes for Data Compression, vol. 140, Springer, 2007.
[21] C.K. Wong, A.K. Chandra, Bounds for the string editing problem, J. ACM 23 (1) (1976) 13–16.

http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref3
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref4
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref5
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref6
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref7
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref8
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref9
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref10
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref11
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref12
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref13
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref14
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref15
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref16
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/mnloglogs.ps.gz
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref18
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref19
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref20
http://refhub.elsevier.com/S0166-218X(15)00528-4/sbref21

	New tabulation and sparse dynamic programming based techniques for sequence similarity problems
	Introduction
	Related work
	LCS in O (mnlglgn/ lg2n) time
	LCS in o (mn/ lg2n+ r) time (for some r)
	LCS in O (n+ r) time (sometimes)
	Algorithmic applications
	Conclusions
	Acknowledgments
	References

