Math.Comput.Sci. @ CrossMark
DOI 10.1007/511786-016-0288-7 Mathematics in Computer Science

Palindromic Subsequence Automata and Longest Common
Palindromic Subsequence

Md. Mahbubul Hasan - A. S. M. Sohidull Islam -
M. Sohel Rahman - Ayon Sen

Received: 21 April 2014 / Revised: 28 June 2014 / Accepted: 13 November 2014
© Springer International Publishing 2017

Abstract In this paper, we present a novel weighted finite automaton called palindromic subsequence automaton
(PSA) that is a compact representation of all the palindromic subsequences of a string. Then we use PSA to solve
the longest common palindromic subsequence problem. Our automata based algorithms are efficient both in theory
and in practice.
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1 Introduction

A string is a sequence of symbols drawn from an alphabet . A subsequence of a string is a sequence that can be
derived by deleting zero or more symbols from it without changing the order of the remaining symbols. A palindrome
isastring w such thatw = w?®, where w? is the reverse of w: often, w is said to be a palindromic string. For example,
ATTA and CATTAC are palindromes. In the Palindromic Subsequence Problem, all the palindromic subsequences

Part of this research work was conducted when M. Sohel Rahman was on a Sabbatical Leave from BUET and was partially supported
by a Commonwealth Fellowship.

Md. M. Hasan - A. S. M. S. Islam - M. S. Rahman (X)) - A. Sen
A{EDA Group, Department of CSE, BUET, Dhaka 1000, Bangladesh
e-mail: msrahman @cse.buet.ac.bd

Md. M. Hasan
e-mail: mahbub86 @cse.buet.ac.bd

Md. M. Hasan
Google, Zurich, Germany

A.S.M. S. Islam
School of Computational Science and Engineering, McMaster University, Hamilton, Canada
e-mail: sohansayed @cse.buet.ac.bd

A. Sen
Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA
e-mail: ayonsn@cse.buet.ac.bd

Published online: 02 February 2017 W Birkhiuser


http://crossmark.crossref.org/dialog/?doi=10.1007/s11786-016-0288-7&domain=pdf

Md. M. Hasan et al.

of a string are to be computed. A common subsequence of two strings is a subsequence common to both the strings.
Additionally, if the common subsequence is a palindrome, it is called a common palindromic subsequence.

Stringology researchers have been conducting research on different problems related to palindromes on strings
and sequences since long [1,7,10,19-21,23]. Palindromes appear frequently in DNA and are widespread in human
cancer cells [24]. Notice that palindromes in biological context consider complement DNA characters in the second
half. Identifying these parts of DNAs could aid in the understanding of genomic instability [3,25]. Biologists believe
that palindromes play an important role in regulation of gene activity and other cell processes because these are often
observed near promoters, introns and specific untranslated regions. So, finding palindromic subsequences in any
genome sequence is important. Also finding common palindromes in two genome sequences can be an important
criterion for comparing them, and also to find common relationships between them.

The problem of computing palindromes and variants in a single sequence has received much attention in the
literature. An on-line sequential algorithm was given by Manacher [20] that finds all initial palindromes in a string.
Another algorithm to find long approximate palindromes was given by Porto and Barbosa [23]. Gusfield gave a
linear-time algorithm to find all maximal palindromes in a string [8]. Matsubara et al. in [21] solved the problem
of finding all palindromes in SLP (Straight Line Programs)-compressed strings. Additionally, a number of variants
of palindromes have also been investigated in the literature [2,10,19]. Very recently, I et al. worked on pattern
matching problems involving palindromes [14]. Chuang, Lee and Huang [5] proposed an algorithm to solve the
palindromic subsequence problem.

1.1 Our Contribution

In this paper we present a weighted finite automaton that is a compact representation of all the palindromic sub-
sequences of a string. The space complexity of our approach is better than that of [5]. In particular, we need only
O (n?) space to represent all the palindromic subsequences of the given string while the space complexity of [5]
is directly proportional to the total number of palindromes which is exponential. Furthermore, as an interesting
application of PSA, we show how we can solve the LCPS problem of two given strings. Our algorithm is an input
sensitive algorithm with a time complexity of O(R1R32|X]|), where R and R, are the number of states of the
involved automata. Notably, since both R and R, can be O (n?), the time complexity of our algorithm is no better
than O(n4|2|) in the worst case. However, for cases when R (and/or R,) becomes o(n?) we get a far better
running time.

1.2 Roadmap

In Sect. 2, we present the Palindromic Subsequence Automaton. In Sect. 3, we present another automaton to find the
LCPS of two strings which is derived from PSA presented in Sect.2. In Sect. 4, we present extensive experimental
results. Finally we briefly conclude in Sect. 5.

2 PSA: An Automaton to Represent All Palindromic Subsequences of a String

To design this automaton we need a string and its reverse. We will find the common subsequence automaton of these
two strings. We will follow the techniques provided in [6,9]. The resulting automaton can be seen as a weighted
version of the common subsequence automaton (CSA) between a string and its reverse.

Definition 1 [Palindromic subsequence automata (PSA)] Given a string S, let the reverse of S be S¥. A palindromic
subsequence automaton (PSA) M accepts the first half of a palindromic subsequence of all palindromic subsequences
of the given string S.

The PSA M is a 6 tuple (Q, Y, 8, 0, qo, F), where

e Q is a finite set of states. Here, Q is a subset of pairs of positions in S and S%
e > is the input alphabet
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Fig. 1 A palindromic subsequence automata for string “abacbca”

e §: 0 x ) —> Q is a transition function

e 0: (0 x )Y xQ —> K assigns a edge cost between a pair of states. Here K = {0, 1, 2}. A state is said to be
an ‘error’ state if the edge from or to it has cost 0.

e ¢o € Q is the initial state

e F C Q is the set of final states. Here F consists of all the states of Q except the error states.

Here, Q and § are defined in the same way as in [6,9]. Each state g, € Q is associated with a pair of positions
(a;, aj) where a; and a; refer to positions in S and SR respectively and S[a;] = SRla 1. Let the length of S is n.
So we have 1 < a;, a; < n for any state g,. Now, for any state g, € Q and ¢ € X we have an edge from g, to state
qq if and only if S[a;] = SR[aj] =c,bj <aj,bj <ajandthereisno/, k suchthath; </ < a;,b; <k < aj and
S[I1 = c or S[k] = c. Now we explain the definition of the function o as follows. The edge cost could be one of 0, 1
and 2,1i.e., K = {0, 1, 2}. The reason for such values will be clear from the following definition of the cost function:

2, ifa; <n—a;+1.
oGy, ¢, qa) = 1, ifa;=n—a;+1. (1)
0, ifag; >n—a; +1.

A brief discussion on the elements of K, i.e., the possible values of edge cost is in order. We will construct a
palindromic string based on accepted strings of PSA. If the accepted string is w, we find the reverse of w which is
w™R and concatenate both to create a palindrome of even length. However for a palindrome having odd length we can
not do that. In this case, we have to compute u such that w = ua where a € X. In this case, we can get a palindrome
of the form uau®. To determine whether an odd-length palindrome is there (in addition to the even-length one), we
use the value two. The value of one is used to indicate that only an even-length palindrome of the form ww? is there.
A value of zero indicates that the corresponding character does not take part in the construction of a palindrome.

Example 1 Let, S = abacbca. The PSA of S is given in Fig. 1. Each state in the PSA is an ending state. In Fig. 1
each edge represents a transition. The character above each edge represents the transition character and the number
above each edge represents the cost of it. Each state is represented by [i, j], where i and j are indexes of S and S¥
respectively. For example, for the edge between states [1, 1] and [2, 3], the transition character is b and the cost is
2. For simplicity of the figure, the ‘error’ states are omitted.

Now we discuss how PSA works. Assume that we have computed a PSA, M| of a given string S1. Now we want
to check whether a string S = ajas ... a is a palindromic subsequence of Sj. Intuitively, we can always obtain a
longest palindromic subsequence of S; by first taking the longest common sequence (LCS) L of S and S lR and then
“reflecting” the first half of the result onto the second half; that is, if L has k characters, then we replace the last L%J
characters of L by the reverse of the first L%J characters of L to obtain a longest palindromic subsequence of S;. Obvi-
ously, this argument can be extended for any palindromic subsequence by taking any common subsequence of S and
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S IR . Now suppose that S, = ajaz . .. a ksl It follows from the discussion above that S will be a palindromic subse-
2

quence of Sy if and only if S;, is a common subsequence of both S; and S IR . So, to decide whether S is a palindromic
subsequence of S, it is sufficient to check whether S}, is accepted' by M. Hence, we have the following lemma.

Lemma 1 Suppose we have constructed My based on the string Sy. Further suppose that S = ajay...ar is a
palindromic string and Sy, = ayay . . . a kg1 ). If Sy, is accepted by M then S is a palindromic subsequence of S1. [

2.1 Computing All Palindromic Subsequences

To find all the palindromic subsequences, all we need is to traverse M and find the strings accepted by M as follows.
Suppose we get a string V] reaching a final state g,,. The state before that is g,—; and the transition character is c.
Let, 0(gn—1, ¢, gn) = ky. Clearly, k, € {0, 1,2}. If kK, = 2, we can get two palindromic subsequences. The first
string is Vi VlR . Suppose V| = Uc. Then, the second string is UcU®. If k, = 1 only one palindromic subsequence
can be formed which is UcUR. If k,, = 0, we can not get a palindromic subsequence with the current string reaching
the final state gj,.

The following example explains the characteristics of PSA.

Example 2 In Fig.1 a path from the starting node to [2, 3] is [0, 0], [1, 1], [2, 3]. In this case k, = 2, i.e., the
transition from [1, 1] to [2, 3] is 2. So, we can form two palindromic subsequences: abba and aba. But the transition
from [1, 1] to [3, 5] has cost 1. A path from the starting node to [3, 5] is [0, 0], [1, 1], [3, 5]. As k, = 1 only one
palindromic subsequence, aaa can be formed.

The algorithm for constructing PSA is formally presented in Algorithm 1. The algorithm requires a simple pre-
processing step which runs in O (n) time. The input for the pre-processing is the string under consideration. And
the out put is an array N P, which keeps track of the next position of a character of the string. To get the array N P
we need another array SP. Both SP and N P are formally defined below.

Definition 2 Given a string S of length n on an alphabet X, the array S P is an array of integers of size | X| such that
for all k € X, SP[k] stores the leftmost occurrence of character & in the string S[(i + 1)...n]forany 1 <i <n.
Fori =n, SPlk] = null forall k € X.

Definition 3 Given a string S of length n, the (next position) array N P is an array of integers of size n. For all
1 <i < n, NPJi] stores the smallest integer j where i < j < n such that S[i] = S[j]. If SP[i] is the rightmost
occurrence in S, then, N P[i] = null.

We start with i = n and at each step i is decreased by 1. Let p = S[i]. If SP[p]is ‘null’ then we assign N P[i] =
null. Otherwise (i.e., if SP[p] is not ‘null’), we assign N P[i] = S P[p] before updating S P[p] = i. The process
will continue until the starting position of the string is reached, i.e.,i = 1. The array N P will be used for the function
NEXT_ MATCH() in Algorithm 1. Suppose for a given string S we have computed the N P array. Now if S[i] = a
then N P[i] denotes the position of next occurrence of a. An example of the constructing of N P is given in Example 3.

Example 3 Let us consider the string S = abcbac. Son = 6 and |X| = 3. Table 1 shows the steps of constructing
the N P array. The iteration begins at i = 6 and ends at i = 1. The third column of Table 1 reports the values of
N P[i] for 1 <i < 6. The fourth, fifth and sixth columns denote the values of SP[a], SP[b] and S P[c] after the
update at that iteration.

In Algorithm 1 we maintain a queue C of states. In each step we dequeue a state [i1, ji] from C and try to find
next states of the dequeued state. Here i1 and j; denotes the positions of S; and S = S IR . The initial state is [0,0].
For each character s € ¥ we find the next occurrences i> and j3 in S; and S3. The function NEXT_ MATCH()
returns these next positions. Now if i < n — j3 + 1 then we will create a new state [i>, n — j3 + 1] and enqueue
this state in C. We also need to find the edge cost between these two states. If i1 < n — j; + 1, then the cost will
be 2 otherwise the cost will be 1.

! Notably, in some sense one could say that PSA recognizes half of a palindrome.
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Table 1 Construction of the array N P

i p = Sli] N Pli] SPla] SP[b] SPlc]
6 c null null null 6
5 a null 5 null 6
5 b null 5 4 6
3 c 6 5 4 3
2 b 4 5 2 3
1 a 5 1 2 3

Algorithm 1 PSA Construction
input: S;:input string, S : REVERSE(S)),n: LENGTH(S)
output: PSA M = (0, >, 6,0, qo, F)

1: begin

2: qo < [0,0]

3: 0 < {[0,01}

4: F < {qo0}

5:C <« NEW — QUEUE()

6: ENQUEUE(C,[0,0])

7: while not EMPTY(C) do

8: [i1, 1] < DEQUEUE(C)

9: foralls € ¥ do

10: ip < NEXT_MATCH(Sy,1iy,s)
11: Jj3a < NEXT_MATCH(S2, ji1,5)
12: jo<—n—j3+1

13: if i < jp then

14: 3(lir, j1l, s) < lia, jol

15: if [i2, jo] ¢ O then

16: ENQUEUE(C, iz, j2])
17: 0 < QUliz, jo]

18: F < QUliy, j2]

19: end if

20: if ir < j» then

21: o([i1, j1l, s, [i2, j2]) <2
22: else

23: a (it il s, [ia, jol) < 1
24: end if

25: end if

26: end for

27: end while

28: end

2.2 Analysis

The preprocessing step requires O (n) time since it is a loop which iterates over the string and in each step constant
time is needed. As the PSA is derived from subsequence automata of two strings [6,9], the running time for
Algorithm 1 to compute a PSA of two strings is O (n + R|X|) [9], where R is the number of states and X is the
set of characters. Clearly, R is less than the total number of matches between the two strings (each match does not
always produce a valid state). In the worst case, R = O (n?). Hence the worst case running time for Algorithm 1
is O(n2|Z)).

3 An Application of PSA: Computing an LCPS

The longest common subsequence (LCS) problem for two strings is to find a common subsequence in both the
strings, having the maximum possible length. In the longest common palindromic subsequence (LCPS) problem,
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the computed longest common subsequence must also be a palindrome. In what follows, for the sake of convenience
we will assume that the given two strings, X and Y, are of equal length, n. But our result can be easily extended to
handle two strings of different length.

Despite a plethora of work on problems related to palindromes concerning a single sequence, to the best of
our knowledge, there has not been any work on the LCPS problem until very recently, when Chowdhury et al. [4]
introduced two algorithms to solve the LCPS problem with time complexity O(n*) and O (R?log? nloglogn),
respectively. Here, the set of all ordered pairs of matches between the two strings is denoted by M and |M| = R.
Readers are kindly noted regarding the subtle difference of the two parameters R and R (see Sect. 2.2 for a definition
of the latter).

In this section we discuss how to use PSA to compute an LCPS of two given strings. Our idea is to compute an
automata called common palindromic subsequence automata (CPSA) as defined below.

Definition 4 [Common palindromic subsequence automata (CPSA)] Given two strings, a common palindromic
subsequence automata (CPSA) accepts all common palindromic subsequences of the given strings. In other words
if M| and M are the PSA of the given two strings, then the CPSA of them is the intersection of M and M.

We use L(M) to denote the language accepted by the finite automaton M. Then, £(M) can seen as a set of words
such that for each of these words there exists a sequence of transitions from the initial state to a final state. We use
the MaxLen() function that given a language returns one of the largest words of that language. Now we borrowed
the concept of a Max Length Automaton from [18] which is defined below.

Definition 5 Given an acyclic deterministic finite automaton M = (Q, X, §, qo, F), the Max Length Automaton
is a finite automaton My; = (Q, X, §, qo, F) such that L(My;) = MaxLen(L(M)).

Now in the LCPS problem, given two strings S; and S our task is to find the longest common palindromic
subsequence (LCPS). Now we have the following lemma.

Lemma 2 7o find the longest common palindromic subsequence (LCPS) of two strings S and Sy we need to
compute the Max Length Automaton of the intersection of the PSA of S and S3.

Proof Since the PSA of S| and S, can generate all the palindromic sub-sequences of S| and S;, their intersection
automata can generate all the palindromic common sub-sequences of S; and S>. So, the Max Length Automata will
give us the LCPS of S and S5. O

So we have the following simple algorithm to compute an LCPS.

Step 1: Compute the PSA M| of S

Step 2: Compute the PSA M; of S

Step 3: Compute the CPSA M3 by intersecting M| and M»
Step 4: Compute the Max Length Automaton My of M3

Notably, in Step 3, we use the algorithm presented in [18,22] with a slight modification. Example 4 shows the
construction of a CPSA. The algorithm for constructing CPSA is formally presented in Algorithm 2.

In this algorithm two automata M| and M, are given as input. We need to find the intersection M of these two
automata. Each state of M is comprised by one of the states of M and M,. We maintain a queue of states C which
keeps the states of M. If the first states of M and M, are qé and qg respectively then the first state of M is [qé, qg].
So at first we put this state inside C. Now we run a loop on C. At each step we dequeue a state from C, finds the
next possible states of it and enqueue them inside C. The loop continues until the queue is empty. Let in a step
we dequeue a state [¢', g?]. For each character s in ¥ we try to find the next states of ¢! and ¢ in M and M,
respectively. Let those states are p! and p? respectively. Then we get a new state [p!, p?] for M. We also need the
transition cost from [qé, qg] to [ pl, pz]. If the transition cost between ql to pl and q2 to p2 are the same then we
assign the same transition cost. otherwise we assign 1 as the transition cost. Finally we check whether the newly
created state is already in C or not. If it is not in C then we enqueue this state in C.



Palindromic Subsequence Automata and Longest Common Palindromic Subsequence

Algorithm 2 Algorithm for Construction of CPSA

input: PSA M, = (0!, 21,81, 01, g}, F1), My = (0%, 22,682,062, 42, F?)
output: CPSA M = (Q, %, 8, 0, qo, F), LIM) = L(M) N L(M>)
1: begin

2: Q < {lg5. 431}

3: F < {qo}

4: C <~ NEW — QUEUE()

5: ENQUEUE(C, (g4, ¢3))

6: while not EMPTY(C) do

7. Iq',q*1 <~ DEQUEUE(C)

8: foralls € X do

9 [ph P21 < 18", 5). 8%(g% 9)]

10: 8(q'. q%.5) < [p'. p*]

11: ifa(ql,s,pl)za(qz,s,pz) then
12: o(q'.q*. 5. [p". p*) < o(q'.s. p")
13: else

14: o(q".q’1.s.[p". p?D) < 1

15: end if

16: if [p', p?1 ¢ O then

17: ENQUEUE(C,[p', p*]

18: Q < QU {lp'. p1}

19: F < {[p". p*1}

20: end if

21:  end for

22: end while

23: end

Fig. 2 A PSA for string “abba”

Fig. 3 A PSA for string “abca”

Example 4 Let S| = abba and S> = abca be two strings. Figures 2 and 3 represent the PSA’s of S and $>
respectively. The CPSA is shown in Fig.4. From that CPSA we can get four common palindromic subsequences
of S1 and S, namely a, b, aa and aba based on the paths and costs. The LCPS of S; and S5 is aba.
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b,1

a72 b‘l

Fig. 4 A CPSA for string “abba” and “abca”

3.1 Analysis

Let the length of input strings be n and the total number of states in M; and M»> be R and R, respectively. Also
let the alphabet is . Now from the analysis of Algorithm 1 in Sect.2.2 we know that the number of states in
M and M, are respectively O (R]X]) and O(R2|X|). So, the time complexity of constructing M3 (presented in
Algorithm 2) will be O(R1R>|%|) [18]. The time complexity of constructing M4 will also be O(RR2|X|). We
can traverse through one of the longest paths of M4 and the accepting string will be an LCPS of the given two strings.
As the length of LCPS is at most n so finding an LCPS in M4 needs only O (n) times. Thus the total complexity
of computing an LCPS is O(n + R1|Z| 4+ n + R2|Z| + R1R2|Z]). As R and R» can be at most O (n?) each so
worst case the running time is O (n*|Z|)

3.2 Comparison of the Algorithms

As has been mentioned above, to the best of our knowledge the only work in the literature that presents algorithm
to compute LCPS is the very recent work of Chowdhury et al. [4]. In [4] two algorithms were provided. The
first algorithm, referred to as CHIR-1 henceforth, runs in 0(n4) time and the second one, referred to as CHIR-2
henceforth, runs in O(R?log? nloglogn) time where R is the number of matches. In this section we present a
theoretical comparison of the running time of our algorithm with CHIR-1 and CHIR-2.

Since R| = O(n?)and Ry = O (n?), the running time of Algorithm 2 becomes O (n* | 2]) in the worst case, which
is not better than that CHIR-1 presented in [4]. But in cases where we have R = O(n) and Ry = O (n), it exhibits
a very good performance. In such cases the running time reduces to O (n?|X|). Even for R| = Ry = 0(n'?)
this algorithm performs better (O (n3|Z[)) than CHIR-1. Algorithm 2 also performs better than CHIR-2 in some
of the cases. Clearly R > R and R > R, and in most cases |X| < log? nloglogn. And if ¥ is constant then our
algorithm always outperforms CHIR-2.

It may be noted here that our algorithms to compute LCPS are input sensitive algorithms and exhibit better
performance than the algorithms in the literature for certain special types of input. Such input sensitive algorithms
have received significant attention in the literature especially for the problem of computing longest common subse-
quences and variants. To the best of our knowledge the first attempt to provide such an input sensitive algorithm dates
back to 1977 when Hunt and Szymanski presented an O ((R +n) log n) algorithm for the classic LCS problem [13].
They also cited applications, where R ~ n and thereby claimed that for these applications the algorithm would run
in O (nlogn) time. Since then, a significant number of such input sensitive algorithms for the classic LCS problem
and variants thereof have been published in the literature (e.g., [4,15-17]). To this end our algorithm can be seen
as a new addition to this repertoire of algorithms. Finally, the Palindromic Subsequence Automaton seems to be of
independent interest and may be found to be useful in different other problems in Stringology.

4 Experiments

In addition to a theoretical analysis presented, in this paper we have made an effort to experimentally analyse the
performance of PSA and CPSA. Both the running time and space complexity of the algorithms presented here
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Table 2 Number of states in PSA

n || =4 || =8 2] =12 |Z] =16 |Z] =20 |2 =24 |Z] =28
100 715 494 384 322 282 255 232
250 4582 3061 2275 1831 1546 1350 1198
500 18,588 12,148 8962 7111 5903 5083 4486
850 53,707 35,150 25,723 20,353 16,776 14,356 12,551
1000 74,401 48,645 35,478 28,008 23,167 19,720 17,261
1200 107,539 69,964 51,211 40,257 33,194 28,248 24,669
1500 167,600 109,669 79,886 62,637 51,792 43,929 38,378
5000 1,873,262 1,214,192 79,886 691,858 567,412 481,795 419,028
10,000 7,489,599 4,862,742 3,529,004 2,762,079 2,263,614 1,922,768 1,669,577
108
1.2 |
1L —o— PSA states i

§) —a— Theoretical bound

Ay

£ 08} =

§

<

% 0.6

Bt

15)

g o4f .

=

Z 0.2} -

0 M
0 0.2 0.4 0.6 0. 1 12

Length of Strings 104

Fig. 5 Comparison among number of states of PSA with the theoretical upper bound

depend on the number of states of PSA and CPSA. So in our experiments we investigate how the number of states
increases in practice with the increase of n and X for both PSA and CPSA. The experiments were conducted on a
laptop with 8GB RAM, second Generation Core i7 Processor and 750GB of hard drive. The codes were written in
Java. We have conducted experiments on both real data and randomly generated sequences. The complete source
code and the data used are available at http://goo.gl/NNmQc6.

4.1 Random Data

For random Data, the strings have been generated randomly based on a given alphabet, ¥. For PSA the length of the
string, n varies among 100, 250, 500, 850, 1000, 1200, 1500, 5000 and 10,000. The alphabet size | X| varies among
4,8, 12, 16, 20, 24 and 28. For each combination of n and ||, we have generated 50 strings and have calculated
(and reported) the average number of states of the PSA. These are presented in Table 2. It can be seen from Table 2
that by increasing n the number of states in PSA naturally increases. However this increase is not really as much
as suggested by the theoretical analysis. For example when n = 10,000 and |X| = 4 the number of states of PSA
should be in the range of 100,000,000 whereas in practice, it is only 7,489,599. Figure 5 compares the total number
of states of PSA for different n and || with the theoretical upper bound, i.e., n”. Increasing |%| decreases the
number of states of PSA as is evident in Table 2 as well as in Fig. 6 which compares the total number of states where
| 2| increases from 4 to 28 for n = 10,000.

Now, let us focus our attention to CPSA. As before our goal is to check how the number of states in CPSA
changes with the change in n and |X|. While conducting the experiments the lengths of the two strings have been
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N
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Table 3 Number of states in CPSA

n S| =4 =/ =8 =] =12 =] =16 =] =20 =] =24 |Z| =28
30 127 61 39 27 24 19 16
40 426 165 88 58 46 38 32
50 1027 385 199 125 92 70 58
62 2604 895 441 276 186 147 106
80 8525 2799 1304 720 482 334 245
100 24,634 7786 3299 1705 1122 788 564
120 58,311 17,239 7137 3786 2350 1574 1212
150 170,738 46,648 19,237 10,026 3957 4033 2782
170 277,262 84,245 33,298 17,043 9995 6463 4567
200 673,053 150,374 68,762 36,851 20,198 11,937 9730

kept equal. The length of the string, n varies among 30, 40, 50, 62, 80, 100, 120, 150, 170, 200. The alphabet size
| 2| varies among 4, 8, 12, 16, 20, 24. For each combination of n and |X| we have generated 50 strings and have
calculated (and reported) the average number of states in the CPSA. The results are given in Table 3. As is evident
from Table 3 the number of states in CPSA is far less than n?, the theoretical worst case bound. It is even less than
the square of the number of states in PSA (see Table2). For example when n = 200 and |X| = 4, the number of
states of CPSA should be in the range of 200000000 where in practice it is only 673053. So despite a theoretical
worst case bound of O(n?) for PSA and O (n*) for CPSA, practically the states never reach that limit (and hence
the time requirement as well is much low in practice). Figures 7 and 8 compares the total number of states of CPSA
for different n and | = | with the theoretical upper bound, i.e., n*. Increasing | = | decreases the number of states of
CPSA as is evident in Table 3 as well as in Fig.9 which compares the total number of states where |X| increases
from 4 to 28 for n = 200.

4.2 Real Data

We also have performed experiments on real data. Here we conduct two different sets of experiments. In the first
setup we have chosen ACIN-1 as a sample dataset [11]. ACIN-1 stands for apoptotic chromatin condensation inducer
1 and it is a protein-coding gene. The length of the sequence is 2170. Since this is DNA sequence, the alphabet size
is 4. For PSA the length of the string, n have been varied among 100, 250, 500, 850, 1000, 1200, 1500. For each
length we have chosen 50 random substrings from ACIN-1. To get a random substring from ACIN-1 we generated
a random number x less than the length of ACIN-1. Then for a length ¢ the random substring’s starting position
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will be x and ending position x + £ — 1. We have calculated (and reported) the average number of states in the
PSA for each length. Similarly for CPSA we have chosen the 50 random substrings for each length and calculated
(and reported) the average number of states in CPSA. But in this case the length has been varied among 30, 40, 50,
62, 80, 100, 120, 150, 170, 200. Figures 10 and 11 compare the real data and random data for the number of states
in PSA and CPSA respectively. From the figures it can be seen that number of states for both PSA and CPSA are
nearly same for real and random data and both are significantly lower than the theoretical upper bound. Finally we
perform experiments on some virus genomes. We use 30 virus genomes with length varying from 1378 to 10,035.
The virus genomes were chosen from [12]. Table4 shows the name, genome length and number of states of PSA
constructed on the virus genomes. For computing the states of CPSA we have chosen five virus genomes, taken
prefix of length 200 from each of them and computed CPSA between each possible pair of the prefixes. Table 5
shows the number of states in CPSA along with the virus pair. The number of states in CPSA is similar to the
random data and is much lower than the theoretical bound.
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Table 4 Number of states in PSA for virus genomes

Virus Length, n n? States in PSA
Anguilla anguilla circovirus 1378 1,898,884 153,973
Acartia tonsa copepod circovirus 1670 2,788,900 215,251
Barbel circovirus 1957 3,829,849 297,141
Beak and feather disease virus 1993 3,972,049 316,859
Avian gyrovirus2 2383 3,972,049 447,647
Ageratum yellow vein china virus 2739 7,502,121 617,824
Alternanthera yellow vein virus 2745 7,535,025 593,094
Ageratum enation virus 2746 7,540,516 576,621
Allamanda leaf curl virus 2755 7,590,025 598,499
Allamand leaf mottle distortion virus 2772 7,683,984 607,818
Bamini virus 2806 7,873,636 602,244
Axonopus compressus streak virus 2858 8,168,164 622,215
UR 2Sarcoma virus 3166 10,023,556 799,487
GroundS quirrel hepatitis virus 3311 10,962,721 876,096
Murine osteosarcoma virus 3811 14,523,721 1,153,241
Marine gokusho virus 4129 17,048,641 1,393,466
Snake parvovirus] 4432 19,642,624 1,553,385
Mouse parvovirusl 5144 26,460,736 2,195,204
Microvirus CA82 5514 30,404,196 2,454,311
Porcine parvovirus6 6148 37,797,904 2,981,385
Enterobacteria phagel2-2 6744 45,481,536 3,522,099
Ralstonia phage RSSO 7288 53,114,944 4,185,181
Vibrio phage V{12 7965 63,441,225 4,776,207
Aconitum latent virus 8657 74,943,649 5,609,309
Caprine arthritis-encephalitis virus 9189 84,437,721 7,366,134
Human endogenous retrovirus K113 9472 89,718,784 7,437,458
Bidens mottle virus 9741 94,887,081 7,452,907
Acyrthosiphon pisum virus 10,035 100,701,225 8,352,788
Table 5 Number of states in CPSA for virus genomes

Virus pair States in CPSA
Anguilla anguilla circovirus-acartia tonsa copepod circovirus 653,099
Anguilla anguilla circovirus-barbel circovirus 614,324
Anguilla anguilla circovirus-beak and feather disease virus 541,513
Anguilla anguilla circovirus-avian gyrovirus2 444,612
Acartia tonsa copepod circovirus-barbel circovirus 645,007
Acartia tonsa copepod circovirus-beak and feather disease virus 558,788
Acartia tonsa copepod circovirus-avian gyro virus2 518,258
Barbel circovirus-beak and feather disease virus 597,021
Barbel circovirus-avian gyrovirus2 454,043
Beak and feather disease virus-avian gyrovirus2 436,198

5 Conclusion

In this paper, we have introduced and presented PSA, a novel weighted finite automata that is a compact representa-
tion of all the palindromic subsequences of a string. The space complexity of our approach is better than that of [5].
Furthermore we use the PSA to solve the LCPS problem. In particular we present CPSA which is the intersection
automata of two PSA of two given strings. The time complexity of our algorithm to solve the LCPS problem is
On+R1|1Z|+n+R2|Z|+R1R2|1X|) where R| and R, are the number of states of the respective automaton. Our
algorithm also performs better than the algorithms presented in [4] for R; = R = n. We also present experimental
results which suggest that both PSA and CPSA perform very well in practice.
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