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1. Introduction

In this paper, we study some problems on permutations and sequences. A sequence is an ordered list of n arbitrary
numbers (or elements). A permutation (of length n) is a special kind of sequence where the elements are from [1..n].
Throughout this paper, we use the following convention. We use A = (a1, . . . ,an) to denote a sequence A, where the n
elements/numbers are put inside the first brackets in order. On the other hand, a permutation A of [1..n] is denoted by
A = 〈ai, . . . ,an〉 where angle brackets are used instead of first brackets.

Given a permutation A = 〈a1, . . . ,an〉 of [1..n], an increasing subsequence (IS) of A is a subsequence (a j1 ,a j2 , . . . ,a j� )

such that j1 < j2 < · · · < j� and a j1 < a j2 < · · · < a j� . A longest increasing subsequence (LIS) of a permutation A is an IS of A
having the maximum length. The goal of the LIS problem is to compute an LIS of A. Given two sequences (not necessarily
permutations) A = (a1, . . . ,an) and B = (b1,b2, . . . ,bm), a common subsequence (CS) refers to a subsequence common to
both of the sequences. The longest common subsequence (LCS) of A and B is a common subsequence of them having the
maximum length. The goal of the LCS problem is to compute an LCS given two sequences A and B .

The Longest Increasing Subsequence (LIS) and Longest Common Subsequence (LCS) problems are both classical problems
in computer science. The LIS problem was first tackled by Robinson [11] more than seventy years ago. Schensted [13] and
Knuth [9] gave an O (n log n) time algorithm to solve the problem. Bespamyatnikh and Segal [1] gave improved algorithms
to solve the LIS problem that run in O (n log log n) time. Very recently, Crochemore and Porat [5] presented an O (n log log k)

time algorithm for the problem assuming a RAM model, where k is the size of the output.
By using a simple dynamic programming technique, the LCS problem for two sequences of n elements can be solved in

O (n2) time. The only o(n2) results known so far are those by Masek and Paterson [10] and Crochemore et al. [4], that run in
O (n2/ log n) and O (hn2/ log n) time respectively. For the latter work, h � 1 refers to the entropy of the input sequence. Hunt
and Szymanski [7] proposed an O (R log n + n) time algorithm for the LCS problem, where R is the number of ordered pairs

✩ Authors’ names are in the alphabetic order of their last names. This research work was part of the undergraduate thesis of Moosa and Zohora under
the supervision of Rahman.

* Corresponding author.
E-mail address: sohel.kcl@gmail.com (M.S. Rahman).

1 Partially supported by a Commonwealth Fellowship and an ACU Titular Fellowship.
1570-8667/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jda.2012.12.005

http://dx.doi.org/10.1016/j.jda.2012.12.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:sohel.kcl@gmail.com
http://dx.doi.org/10.1016/j.jda.2012.12.005
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jda.2012.12.005&domain=pdf
User
螢光標示

User
螢光標示

User
螢光標示

User
螢光標示



J.M. Moosa et al. / Journal of Discrete Algorithms 20 (2013) 12–20 13
of positions where the two input sequences match. Recently, Rahman and Iliopoulos presented an improved LCS algorithm
which runs in O (R log log n + n) time [8]. Although R = O (n2), there are large number of applications for which R ∼ n [7].

A combination of LCS and LIS gives us another interesting problem, namely, the Longest Common Increasing Subsequence
(LCIS) problem. In LCIS, the goal is to compute a longest common subsequence that is also an increasing sequence. The LCIS
problem has not been studied until recently when Yang et al. [14] proposed an algorithm having time and space complexity
O (n2) to construct an LCIS of two sequences A = (a1, . . . ,an) and B = (b1, . . . ,bn). Subsequently, Sakai [12] proposed a
space-efficient algorithm for the LCIS problem, which takes O (n2) time and O (n) space. Brodal et al. [2] gave a faster
algorithm which runs in O (n� log logσ + Sort) time and O (n) space, where σ is the size of the alphabet, and Sort is the
time to sort each input sequence. Chan et al. [3] proposed an efficient algorithm to find an LCIS of two sequences in
O (min(R log �,n� + R) log log n + Sort) time.

Recently Elmasry [6] introduced the concept of an Almost Increasing Subsequence (AIS). Given a constant c > 0, a sequence
y1, y2, . . . , yk is said to be almost increasing if and only if ∀i yi > maxi−1

j=1 y j − c. Elmasry used this concept to propose the
problem of finding a Longest Almost Increasing Subsequence (LAIS) as an interesting and perhaps more practically useful
variant of the LIS problem. In LAIS problem, given an extra parameter c as part of the input, instead of a longest increasing
subsequence, the goal is to find a longest almost increasing subsequence. Elmasry [6] in fact showed how to efficiently
construct an LAIS in O (n log k) time, where k is the length of the output.

In this paper, we introduce the notion of a Longest Common Almost Increasing Subsequence (LCAIS) which can be seen as
a natural extension of both LAIS and LCIS problems. Given two permutations A = 〈a1,a2, . . . ,an〉 and B = 〈b1,b2, . . . ,bn〉 of
[1..n] and a constant c > 0, a Common Almost Increasing Subsequence (CAIS) is a common subsequence Y = (y1, y2, . . . , ym)

of A and B such that ∀i yi > maxi−1
j=1 y j − c. A longest common almost increasing subsequence (LCAIS) of A and B is a CAIS

having the maximum length. Interestingly, an LCAIS can be seen as an LCS that can be converted to an increasing sequence
by possibly adding a value, that is at most a fixed constant (c), to each of the elements.

Apart from being interesting from a theoretical point of view, the LCAIS problem seems to have practical motivations
as well. The motivation of LCAIS follows naturally from that of LAIS. So, we first present the following discussion on the
motivation of LAIS, which is borrowed from [6]. Consider the process of monitoring the performance of an activity. We say
that the activity is well performing once it is well performing in comparison with a large number of accredited historical
snapshots where it was as well performing when deploying the same criteria. Picking the largest number of points when the
activity is strictly performing better among such previously selected points is too restricted and unfair. The notion needs to
be relaxed to reflect a good progress without necessarily being the best selected so far. Clearly this scenario also motivates
the problem of LCAIS when we plan to compare the similarity of two related activities based on their historical snapshots.
Additionally, we can always cite the presence of noise as a motivation of LCAIS as a relaxed version of LCIS. In this paper,
we present an efficient algorithm for computing an LCAIS. In particular, we first present an algorithm to solve the LCAIS
problem that runs in O (n3) time and space. Then we show how to implement the algorithm to achieve O (n(n + c2)) time
and O (n2) space complexity.

The rest of the paper is organized as follows. In Section 2 we discuss our LCAIS algorithm after presenting some defini-
tions and notions required to describe our algorithm. Section 3 states and proves some important lemmas and theorems to
establish the correctness as well as the claimed time and space complexity of our algorithm. Finally we briefly conclude in
Section 4.

2. An LCAIS algorithm

In this section, we present our algorithm to solve the LCAIS problem. In what follows the following notions/definitions
will be useful.

Definition 2.1 (Compatible). Given a fixed integer c, y is said to be compatible with x if and only if y > x or y > x − c. In
the latter case, i.e., y > x − c, we say y is compatible with x considering c. Otherwise, we say that y is incompatible with x.

Definition 2.2 (Compatibility check). A compatibility check between an element x and a sequence S = (s1, s2, . . . , sp) is the
procedure of checking whether x is compatible with si , 1 � i � p.

Definition 2.3 (length(X)). Given a sequence X , we use length(X) to denote the length of X .

Definition 2.4 (match(i, j)). Given two sequences A = (a1,a2, . . . ,ai, . . . ,am) and B = (b1,b2, . . . ,b j, . . . ,bn), we say that
match(i, j) = ai(= b j) iff ai = b j where 1 � i � m, 1 � j � n.

Now, we are ready to describe our algorithm. Suppose that A = 〈a1,a2, . . . ,an〉 and B = 〈b1,b2, . . . ,bn〉 are two per-
mutations of [1..n]. We maintain an array Li

j[k], 1 � i, j,k � n as follows: we set Li
j[k] = ai if there is a CAIS between

(a1,a2, . . . ,ai) and (b1,b2, . . . ,b j) having length k ending at ai such that ai is the smallest such number and there exists
no CAIS between A and B ending at ai but having length greater than k.
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In order to keep the backtracking information, we use two more variables as follows: we use L_indexi
j[k] (1 � i, j,k � n)

to record the index pair (i, j) such that Li
j[k] = ai = b j . We also make use of a linked-list named predlist , associated with

each match ai , to keep track of the previous members of the CAIS having the maximum length k ending at ai .
Given two permutations A, B and a constant c, our algorithm runs in three main steps, namely, initialization (Step 1),

main computation (Step 2) and construction (Step 3). In what follows, we describe these three steps elaborately.

Step 1: Initialization

Initialization is done by assigning infinity to Li
j[k] for 1 � i, j,k � n indicating that there is no LCAIS initially.

Step 2: Main computation process

The main computation is done in a row major order. At the beginning of the computation of Row i, Li
j[k] is initialized to

Li−1
j [k]. Until a match is found in Row i, no operation is done.

Now suppose we have a match at Column j, i.e., ai = b j . We have to find out the previous integers in the CAIS ending
at the match ai = b j . Now we find the largest k′ such that k′ < i and Li

j[k′] − c < ai . If such a k′ does not exist, we

set Li
j[1] = ai , which means that there is a CAIS of length one containing only element ai = b j . Otherwise, we compute

predlist(ai) according to the following cases. Notably, for the sake of a better understanding, we identify the cases with an
example presented later in Section 2.2.

Case 1. [Li
j[k′] < ai .] In this case, we first initialize predlist(ai) to predlist(Li

j[k′]) and then append Li
j[k′] to predlist(ai).

Then, Li
j[k′ + 1] is set to ai . Additionally, for all j < j′ � n, if ai < Li

j′ [k′ + 1], we set Li
j′ [k′ + 1] = ai . Finally, we set

L_indexi
j′ [k′ + 1] = (i, j). This case occurs in match(3,3) in the example of Section 2.2.

Case 2. [Li
j[k′] > ai but Li

j[k′] − c < ai .] In this case we perform a Compatibility Check between ai and predlist(Li
j[k′]). De-

pending on the result we have two different sub-cases as described below.
Case 2.1. [ai is compatible with all the elements of predlist(Li

j[k′]).] In this case, we do the same as Case 1. Please refer
to match(5,4), match(7,7), match(8,6), match(11,9) and match(12,10) in the example of Section 2.2.

Case 2.2. [ai is incompatible with some of the elements of predlist(Li
j[k′]).] Suppose there are N > 0 such elements. So,

we skip N such elements from predlist(Li
j[k′]). Now, we can prove that N � c − 1 (please refer to Lemma 3.1

in the following section). Suppose �′ denotes the length of the LCAIS ending at ai (= b j) according to our
computation in Case 2. Let a′ be the ending character of predlist(ai). Recall that Li

j[k′] keeps track of a CAIS

having length k′ and predlist(Li
j[k′]) has length k′ − 1. Then, we have �′ = ((k′ − 1) − N) + 1 = k′ − N . At this

point we need a Length Verification step as argued below.
It is possible that while checking a sequence having length, say k′′ , where ((k′ − 1)− N) � k′′ � k′ − 1, none of
the elements of predlist(Li

j[k′′]) are required to be skipped during the Compatibility Check. So this Compatibility

Check might give us a longer CAIS. Also even if N ′ elements are skipped from predlist(Li
j[k′′]), the resultant

length of CAIS ending at ai still could be greater than �′ if N ′ < N .
So the Length Verification step is executed as follows. Here the idea is to check N sequences with length k′′
such that ((k′ − 1) − N) � k′′ < k′ − 1 (the fact that checking only k′′-length sequences is enough is proved
in Lemma 3.3 in a later section). During each iteration of this check, if we find Li

j[k′′] = a′′ , where a′′ − c <

ai , we perform Compatibility Check between ai and predlist(a′′). Let S1 be the sequence returned after the
Compatibility Check. Say �′′ = length(S1) + 1. Now we have the following cases. The correctness of the steps
executed in the following cases are proved later in Lemmas 3.2 and 3.5.
Case 2.2.1. [�′ < �′′ .] So S1 will make a longer sequence, i.e., length of CAIS ending at ai can be greater than �′ .

Hence we set predlist(ai) = S1.
For an example of this case, let there are two sequences A = (7,15,14,3,2,13,6,8,11) and
B = (7,15,14,13,6,8,3,11). We align A with the vertical axis and B with the horizontal axis.
As we proceed, match(6,4) gives us a CAIS (7,15,14,13) and match(8,6) gives a CAIS (7,6,8). So,
L8[3] is set to 8 and L8[4] is set to 13. Hence, for match(9,8) = 11, CAIS (7,15,14,13) is consid-
ered as a candidate predlist of match(9,8) because L8[4] = 13 − c < 11. So for match(9,8) we set
temp_predlist = (7,15,14,13) and then a c − 1 loop is run on it to see if any element needs be
discarded. Clearly, here, 15 and 14 will be discarded and length of temp_predlist = (7,13) will be 2
now. So the algorithm now searches for a better sequence (Line 17 in the subroutine LAIS_Insert).
As a result LAIS_Insert returns (7,6,8) as temp_predlist, which is of length 3. Since the latter is
better, finally our algorithm sets predlist(11) = (7,6,8) and we get a CAIS (7,6,8,11).

Case 2.2.2. [�′ > �′′ .] In this case predlist(ai) will remain as before.
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Case 2.2.3. [�′ = �′′ & a′′ < a′ .] In this case we set predlist(ai) = S1. Match(9,8) of the example in Section 2.2
illustrates this case.

Case 2.2.4. [�′ = �′′ & a′′ > a′ .] In this case predlist(ai) whose last element is a′ will remain unchanged.
Computation of predlist(ai) is complete now. Let �′′′ be the length of the finally selected CAIS ending at ai .
So we set Li

j[�′′′] = ai . We also set L_indexi
j[�′′′] = (i, j). Finally for all j < j′ � n, if ai < Li

j′ [�′′′] we set

Li
j′ [�′′′] = ai . Additionally we set L_indexi

j′ [�′′′] = (i, j).

Step 3: Constructing an LCAIS

In this step, we construct an LCAIS. Let � be the largest length such that Lm
n [�] �= ∞, where n and m represent the final

column and final row respectively in the matrix. This means that there exists a sequence having length � which is the
highest possible length. Now we just need to recover the ending character of that sequence. Recall that this is stored in
L_indexm

n [�]. Suppose that L_indexm
n [�] = (x1, y1). Now suppose ax1 = by1 = a. We initialize an empty list S to predlist(a).

We now simply append a to S . Then we return S as an LCAIS.

2.1. Non-permutation

While describing our algorithm we have assumed that the input sequences are permutations. However it is easy to
realize that in our algorithm we only need that the input sequences do not have any repeated elements. So the input
sequences need not be permutations and they even can be of different lengths. In fact our algorithm relies only on the
matched elements. As long as we have distinct matches, the algorithm would work correctly. More formally, we only need
to ensure that if match(i1, j1) = α = match(i2, j2), then i1 = i2 and j1 = j2. In that sense, our algorithm will work for a
class of non-permutation sequences as well. And, in fact, the illustrative example in Section 2.2 has been presented on two
sequences that are not really permutations.

Notably, it seems that using a balanced tree like structure we may be able to exploit some more properties of permuta-
tions and get a faster algorithm for them. But unfortunately such an algorithm still eludes us. The same fate applies for the
case when the inputs are general sequences instead of permutations.

2.2. An illustrative example

In this section, we provide an example to illustrate how our algorithm works. Let the inputs be A = (20,7,15,1,14,3,6,

13,11,18,10,9), B = (7,12,15,14,21,13,6,11,10,9) and c = 3. Clearly, m = 12 and n = 10, where m,n are the lengths of
the sequences A and B respectively. Also note that, following the discussions of Section 2.1, in this example we have con-
sidered two sequences that are non-permutations. In particular both A and B are arbitrary sequences having no repetitions.
For each match, values of L, L_index and predlist are shown below:

1. For match(2,1) = 7, our algorithm has predlist = null. It sets L1[1] through L10[1] to 7 and L_index1[1] through
L_index10[1] to (2,1). Constructed CAIS for this match is (7).

2. For match(3,3) = 15, the algorithm gets L3[1] = 7 < 15. So it sets predlist(15) = (7). Then it sets L3[2] through L10[2]
to 15 and L_index3[2] through L_index10[2] to (3,3). So CAIS for this match is (7,15).

3. For match(5,4) = 14, our algorithm gets L4[2] = 15 − c < 14. So it runs a c − 1 loop on the predlist(15) to see if anyone
needs to be discarded. Since none needs be discarded, it sets predlist(14) = (7,15). It also sets L4[3] through L10[3] to
14 and L_index4[3] through L_index10[3] to (5,4). Here constructed CAIS is (7,15,14).

4. For match(7,7) = 6, similarly the algorithm sets predlist(6) = (7). Then it sets L7[2] through L10[2] to 6 and updates
L_index7[2] through L_index10[2] to (7,7). CAIS for this match is (7,6).

5. For match(8,6) = 13, the algorithm sets predlist(13) = (7,15,14). It sets L6[4] through L10[4] to 13 and updates
L_index6[4] through L_index10[4] to (8,6). Constructed CAIS for this match is (7,15,14,13).

6. For match(9,8) = 11, the algorithm gets L8[4] = 13 − c < 11. So it sets temp_predlist = (7,15,14,13) and runs a c − 1
loop on this list to see if anyone needs to be discarded. It then discards 15 and 14 and length of temp_predlist = (7,13)

is reduced to 2. So it goes to Line 17 in the subroutine LAIS_Insert and search for a better sequence. As a result it gets
(7,6) as temp_predlist which is better than (7,13).
So it sets predlist(11) = (7,6). Then it sets L8[3] to L10[3] = 11 and also updates L_index8[3] through L_index10[3] to
(9,8). Hence CAIS for this match is (7,6,11). This case is illustrated in Fig. 1.

7. For match(11,9) = 10, our algorithm sets predlist(10) = (7,6,11). It sets L9[4] through L10[4] to 10 and updates
L_index9[4] through L_index10[4] to (11,9). So CAIS for this match is (7,6,11,10).

8. For match(12,10) = 9, we get the longest sequence. The algorithm sets predlist(9) = (7,6,11,10). Then it sets L10[5] = 9
and updates L_index10[5] to (12,10). So constructed CAIS for this match is (7,6,11,10,9).

Note that, if we had not run the search for a better sequence at Line 17 of subroutine LAIS_Insert, then we would have
missed the sequence (7,6,11) and get the sequence (7,13,11) for match(9,8) = 11. As a result for match(11,9) = 10, we
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Fig. 1. Illustration for match(9,8).

would get (7,11,10) instead of getting the sequence of length 4 namely (7,6,11,10) which would have ultimately caused
the omission of the sequence of length 5, namely (7,6,11,10,9), as the final result.

3. Implementation and analysis

A straightforward implementation of our algorithm described in Section 2 would run in O (n3) time using O (n3) space
as discussed below. For each row (say, Row i), we search for a match which requires O (n) time. After finding a match ai ,
we create CAIS ending at that match. Compatibility Check can be done in i − 1 iterations and, in the Length Verification step,
i − 1 sequences are needed to be checked which will require O (n2) time. So the overall time complexity would be O (n3).
As Li

j[k] and L_indexi
j[k] are three-dimensional arrays, the space complexity would also be O (n3).

In the rest of this section, we discuss how we can achieve O (n(n + c2)) time and O (n2) space complexity for our
algorithm. We present a number of lemmas below to establish the improved time and space complexity.

Lemma 3.1. It is sufficient to run a c − 1 loop to perform the Compatibility Check in Case 2.

Proof. For a match α, our algorithm selects a CAIS of length k ending at α′ where α′ − c < α. Now, it is sufficient to
run a (c − 1) loop on predlist(α′) as follows. In the worst case, all the elements in the range [α′ + 1..α′ + c − 1](= [�..r])
exist in predlist(α′). Now, since both A and B are permutations (i.e., no elements are repeated) and since for any position
p′ < p′′ � p in a CAIS X = (x1, . . . , x′

p, . . . , xp′′, . . . , xp) we must have xp′ − c < xp′′ , all the elements in the range [�..r] must
occur in the rightmost c − 1 positions of predlist(α′). Now α can be incompatible with some of these (c − 1) elements. Here
if α′ = α + c and if all the elements between the range [�..r] appear in predlist(α′), then all of the last c − 1 elements of
predlist(α′) will be skipped. So it is enough to check the rightmost c − 1 elements of predlist(α′) by running a simple c − 1
loop. �
Lemma 3.2. Suppose S ′ = (s′

1, s′
2, . . . , s′

p) and S ′′ = (s′′
1, s′′

2, . . . , s′′
p) are two sequences such that |S ′| = |S ′′| = p and s′

p < s′′
p . Suppose

for an element ai both S ′ and S ′′ are valid as predlist(ai). Then we can safely assign predlist(ai) = S ′ .

Proof. We can find a match ai+q in Row i + q, where q > 0, ai − c < ai+q , Li
j[k′] − c > ai+q . If the number of elements

skipped after the Compatibility Check between ai+q and S ′ (S ′′) is N ′ (N ′′) then N ′ � N ′′ . So we can safely consider S ′ . �
Lemma 3.3. It is sufficient to check sequences with length k′′ in the Length Verification step where ((k′ − 1) − N) � k′′ < k′ − 1.

Proof. Upper bound is found from the fact that, search for a sequence having length k′ will return the same sequence as be-
fore (Case 2). So k′′ must have length less than k′ − 1. Again k′′ � ((k′ − 1)− N), because search for a sequence having length
less than that will result in a CAIS having smaller length than �′ , where �′ = length(predlist(ai)) after Compatibility Check,
assuming ai is the current match. Sequence having length ((k′ − 1) − N) is also checked because element Li

j[((k′ − 1) − N)]
might be smaller than Li

j[k′] which follows from Lemma 3.2. �
Lemma 3.4. Length Verification step runs in O (c2) time.
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input : Two sequences, let A = 〈a1,a2, . . . ,ai, . . . ,am〉 and B = 〈b1,b2, . . . ,b j, . . .bn〉 , where m � n.
output: LCAIS

1 Initialization.
2 for j = 1 to m do
3 for i = 1 to n do
4 L j[i] = ∞;
5 end
6 end
7 Main program.

8 for i = 1 to m do
9 z = −1;

10 χ = −1;
11 if i − 1 > n then
12 p = n;
13 end
14 else
15 p = i − 1
16 end
17 for j = 1 to n do
18 if ai = b j then // the match case
19 χ = LAIS_Insert(L j, L_index,ai , p, i, j) ; // returns the insert position that means length of the

subsequence ending at ai = b j

20 z = j ; // save the index of column

21 end
22 else // the mismatch case
23 if χ �= −1 and L j−1[χ ] < L j[χ ] then
24 L j[χ ] = L j−1[χ ];
25 L_index j[χ ] = (i, z) ; // save the (row,column) position of ending character of sequence

having length χ
26 else χ = −1;
27 end
28 end
29 end
30 recover the LCAIS.
31 x = largest x such that Ln[x] is not ∞, if no such x then return null;
32 (y1, y2) = L_indexn[x];
33 let, a be the match(y1, y2);
34 then print a and predlist(a);

Algorithm 1: The LCAIS algorithm.

In the worst case, N = c − 1 (Lemma 3.1) where N is the number of elements skipped in Compatibility Check. So we need
to check c − 1 sequences at most. While checking each sequence we have to check compatibility between the current match
and the sequence. It follows that the Length Verification step requires O (c2) time.

Lemma 3.5. While constructing CAIS ending at α, preserving the CAIS with the maximum length is sufficient.

Proof. Let at match(i, j) = α, a sequence of length k ending at α be formed. Now, for this row (i.e., Row i) and column (i.e.,
Column j), if there is a sequence S having length � < k whose ending character α′ > α, then we do not need to update that
sequence S by replacing the ending element with α. This is because, if in future, for match α′′ our algorithm has to work
with the sequence ending at α, it will definitely pick the sequence having length k (and not less than k). If α′′ > α, then
the whole sequence will be merged with α′′ and will give a sequence of length k + 1. If α′′ > α − c, then the algorithm will
also pick the sequence having length k and then will run a c − 1 loop to discard incompatible elements. Hence the result
follows. �
Lemma 3.6. Maintaining L j and L_index j , 1 � j � n is sufficient instead of Li

j & L_indexi
j where 1 � i, j � n.

Proof. Although it seems that to keep the record of Li
j[k] we need a three-dimensional array in fact it is not necessary. As

we set Li
j[k] to Li−1

j [k] it is not required to keep records for all values of i. Rather, we run the loop in row major order and
keep records for each column. So the notation can safely be changed to L j[k]. So (according to Algorithm 1) for all 1 � i � n,
Li and L_indexi

j share the memory spaces of L j and L_index j . �
j
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1 LAIS_Insert(arrayL j , arrayL_index, match a, integer p, integer i′ , integer j ){
2 x = p ;
3 while x �= 0 do
4 if L j[x] < a then
5 � = x + 1; L_index j[�] = (i′, j);
6 set predlist(a) to (L j[x] + predlist(L j[x]));
7 return �

8 end
9 else

10 if L j[x] − c < a then
11 temp_predlist = newlist;
12 check&insert(a, L j[x], temp_predlist,∞);
13 predlist(a) = temp_predlist;

// Now check if any integer number has been skipped, if yes search if any better
sequence exists;

14 current_size = sizeof (temp_predlist);
15 if current_size < x then
16 skip = x − 1 − current_size;
17 for i = x − 1 to current_size do
18 temp_predlist = newlist;
19 if L j[i] < a then
20 set temp_predlist to (L j[i] + predlist(L j[i]));
21 best_l = pick_one(temp_predlist,predlist(a)); predlist(a) = best_l;
22 end
23 else if L j[i] − c < a then
24 check&insert(a, L j[x], temp_predlist,skip );
25 best_l = pick_one(temp_predlist,predlist(a));
26 predlist(a) = best_l;
27 end
28 skip − −; i − −;
29 end
30 � = sizeof (predlist(a)) + 1; L_index j[�] = (i′, j);
31 return �

32 end
33 else
34 � = x + 1; L_index j[�] = (i′, j);
35 return �

36 end
37 end
38 else
39 x − −;
40 end
41 end
42 end
43 L j[1] = a; predlist(a) = null;
44 return 1 ; }

Algorithm 2: Subroutine: LAIS_Insert.

Lemma 3.7. For a match α, predlist(α) needs O (n) space.

Proof. Variable predlist is used to keep the sequence formed by the corresponding match. So for the matches of one CAIS
we can keep only one predlist , i.e., for the last element of the CAIS. So each predlist would require O (n) space. �
Theorem 3.1. LCAIS can be solved in O (n(n + c2)) time using O (n2) space.

Proof. Since we have n columns, for each row (say, Row i) we search for a match which requires O (n) time. Suppose that
for Row i, we have a match ai at Column j. Then a search on L j[k], where 1 � k � i − 1 is performed until a compatible
element is found. If no such element is found then the algorithm will take at most n − 1 iterations when i = n. Otherwise, if
the algorithm finds L j[k] < ai , it stops there and make the CAIS ending at that match ai as described in Case 1 of Step 2. But
if L j[k] > ai and L j[k] − c < ai , then, at first the Compatibility Check is done which runs in O (c) time (Lemma 3.1). Then, the
Length Verification step is performed which requires O (c2) time (Lemma 3.4). So, the overall time complexity of constructing
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1 check&insert(a, candidate, temp_predlist, skip){ // c is the provided constant
2 insert candidate into the temp_predlist;
3 let, k = index of the last member of predlist(candidate);
4 for i = 1 to c − 1 do
5 q = kth member of predlist(candidate) ;
6 if q = null then
7 break;
8 end
9 else if q < a then

10 insert q into the temp_predlist;
11 break;
12 end
13 else if q − c < a then
14 insert q into the temp_predlist;
15 end
16 else
17 skip − −;
18 if skip � 0 then // more than allowed number of integer numbers have been skipped so it can

not be a better choice. So return null via temp_predlist
19 temp_predlist = null;
20 return;
21 end
22 end
23 k − −;
24 end
25 copy remaining integer numbers of predlist(candidate) to temp_predlist;
26 return }

Algorithm 3: Subroutine: check&insert.

1 pick_one(predlist, temp_predlist ){
2 if sizeof (predlist) > sizeof (temp_predlist) then
3 return predlist;
4 end
5 else if sizeof (predlist) < sizeof (temp_predlist) then
6 return temp_predlist;
7 end
8 else // both have the same length so break the tie using smallest ending number
9 if last_elem(predlist) < last_elem(temp_predlist) then

10 return predlist;
11 else return temp_predlist;
12 end
13 }

Algorithm 4: Subroutine: pick_one.

LCAIS will be O (n(n + c2)). Finally since we will need n predlists in the worst case, it follows from Lemmas 3.6 and 3.7 that
the algorithm uses O (n2) space.

We formally present our algorithm in Algorithms 1–4.

4. Conclusion

In this paper, we have introduced the LCAIS problem and presented an efficient algorithm to solve the problem. Our
algorithm for computing an LCAIS runs in O (n2) space, O (n(n + c2)) time. Note that, although we assumed the two input
sequences to be permutations, for our algorithm to work, we only require that the input sequences do not contain repeated
elements. However it might be interesting to consider the variant where this restriction is lifted. So, future research endeavor
could be directed towards this variant where the input sequences can be any general sequence.
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