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Abstract. Finding similar time series is an important task in multime-
dia retrieval, including motion gesture recognition, speech recognition, or
classification of hand-written letters. These applications typically require
the similarity (or distance) measure to be robust against outliers and
time warps. Time warps occur if two time series follow the same path
in space, but need specific time adjustments. A common distance mea-
sure respecting time warps is the dynamic time warping (DTW) function.
The edit distance with real penalties (ERP) and the dog-keeper distance
(DK) are variations of DTW satisfying the triangle inequality. In this paper
we propose a novel extension of the DK distance called windowed dog-
keeper distance (WDK). It operates on sliding windows, which makes it
robust against outliers. It also satisfies the triangle inequality from the
DK distance. We experimentally compare our measure to the existing
ones and discuss the conditions under which it shows an optimal clas-
sification accuracy. Our evaluation also contributes a comparison of DK

and DTW. For our experiments, we use well-known data sets such as the
cylinder-bell-funnel data set and data sets from the UCI Machine Learn-
ing Repository.
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1 Introduction

Many applications require to find similar time series to a given pattern. One com-
mon application of finding similar time series is multimedia retrieval, including
motion gesture recognition, speech recognition, and classification of handwritten
letters. All these tasks have in common that the time series of same classes (e.g.,
same spoken words or same gestures) follow the same path in space, but have
some temporal displacements. Another example is tracking the GPS coordinates
of two cars driving the same route from A to B. Although we want these time
series to be recognized as being similar, driving style, traffic lights, and traf-
fic jams might result in large temporal differences. Distance functions such as
dynamic time warping (DTW) [11], edit distance with real penalties (ERP) [4], and
the dog-keeper distance (DK) [6] respect this semantic requirement.
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Another requirement for similarity functions is their computational perfor-
mance since it is common to compare a sample time series to a large set of time
series. To improve performance we might improve the computation time of one
time series comparison or we might reduce the number of comparisons. Assum-
ing that SETH [3] holds, Bringmann and Künnemann proved that there is no
algorithm computing the exact value of DTW in less than quadratic time [3].
Similar results were proven for the DK distance [2] and the edit distance [1]. How-
ever, we are usually not interested in the exact distance values, but in the set
of the nearest neighbours. A common approach for pruning elements as possible
candidates are lower bounds to the distance function.

Keogh and Ratanamahatana exhaustively compared nine different time series
distance functions including DTW and ERP on 38 time series data sets coming from
different domains [5]. They also compared eight different time series representa-
tions including Discrete Fourier Transformation (DFT) and Symbolic Aggregate
approXimation (SAX) [10]. In their work, they investigated contradictory claims
about the effectiveness of different time series distance functions and representa-
tions. Their first major insight is that there is little difference in the effectiveness
between different time series representations excluding some rare cases. They
say there is no clear winner for the choice of the time series distance function,
although elastic distance functions, such as DTW, ERP, LCSS, or EDR are more
accurate, especially on small data sets.

To the best of our knowledge, DTW has not been compared to the DK distance.
If DTW is the time warping equivalent to the L1-norm, then the DK distance is
the equivalent to the L∞-norm and thereby more sensitive to noise or outliers
within time series. On the other hand, we could observe a speed-up by an order
of magnitude in our experimental evaluation. Why does the DK distance perform
much better although the algorithm is quite similar to that of DTW? Can we
improve the robustness of the DK distance?

The first contribution of our paper is the windowed DK distance (WDK), which
is a modification of the DK distance to satisfy the triangle inequality. We evaluate
the performance of the four time warping distance functions DTW, ERP, DK, and
WDK by comparing the results of k-nearest neighbour classifiers on four different
multimedia time series data sets coming from different domains. The second
contribution is that we also investigate the reason for the low computation time
of the DK and WDK distance functions.

The rest of this paper is structured as follows. Section 2 introduces basic
terms and notations and reviews the time series distance functions DTW, ERP,
and DK. Section 3 defines the WDK distance function and provides an algorithm
for its computation. Section 4 evaluates these four distance functions on four
multimedia time series data sets. Section 5 concludes the paper.

2 Preliminaries and Concepts

This section introduces basic notations and concepts used in this paper.
It is hard to find an open access proof for the triangle inequality of the DK

distance in modern mathematical language. Therefore we provide a new proof in
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this section that shows this well known fact again. This also proves the triangle
inequality for the WDK distance proposed in this paper.

Basic Notation: With N, R, R�c we denote the set of non-negative integers, the
set of reals, and the set of all reals � c, for some c ∈ R, respectively. An m × n
matrix is denoted by A = (ai,j). Given a matrix A, Ai,j denotes the element in
the i-th row and j-th column.

By R
k, for k ∈ N, we denote the set of all vectors of length k. For a vector

v ∈ R
k we write vi for the entry at position i.

For mappings f : A −→ B and g : B −→ C, we denote the image of f as
f(A) := {f(x) | x ∈ A} and g ◦ f : x �→ g(f(x)) the concatenation of g and
f . Furthermore, inf f and sup f are the infimum and the supremum of f(A)
respectively.

Norms and Metric Spaces: By ‖·‖p, for p ∈ R�1, we denote the well known

Lp-norm on R
k; i.e., ‖v‖p =

(∑k
i=1 |vi|p

)1/p for all v ∈ R
k.

Recall that a pseudo metric space (M, d) consists of a set M and a distance
function d : M × M −→ R�0 satisfying the following axioms:

∀ x, y ∈ M : d(x, y) = d(y, x).
∀ x, y, z ∈ M : d(x, z) � d(x, y) + d(y, z).

A metric space is a pseudo metric space which also satisfies ∀ x, y ∈ M :
d(x, y) = 0 ⇐⇒ x = y. Note that if ‖·‖ is an arbitrary vector norm and
d(·, ·) is defined as d(u, v) := ‖u − v‖, then (Rk, d) is a metric space. By dp, for
p ∈ R�1, we denote the usual Lp-distance, i.e., the particular distance function
with dp(x, y) = ‖x − y‖p.

Time Series: A time series T of length � over a metric space M is a sequence
T = (t1, · · · , t�) with ti ∈ M for 1 � i � �. We denote Tail(T ) := (t2, · · · , tn) as
the time series when removing first element. In the rest of the paper, we consider
M = R

k for some k ∈ N. We denote time series with the letters S, T , and R.

Time Series Distances: The algorithms for the computation of DTW, ERP, and
DK are very similar. They differ in how they handle a time warping step and
whether they take the maximum along a warping path or sum up these values.
DTW and ERP sums the values up while the DK distance takes the maximum.

For a formal definition, let S = (s1, · · · , sm) and T = (t1, · · · , tn) be two
time series, gap a globally constant element (0 as proposed by [4]), and d(s, t)
a distance function for the elements of the time series. The well known distance
function DTW is defined as follows.

DTW(S, ()) = ∞ DTW((), T ) = ∞ DTW((s), (t)) = d(s, t)

DTW(S, T ) = min

⎧
⎪⎨

⎪⎩

d(s1, t1) + DTW(Tail(S), Tail(T ))
d(s1, t1) + DTW(S, Tail(T ))
d(s1, t1) + DTW(Tail(S), T )



130 J.P. Bachmann and J.-C. Freytag

ERP differs from DTW by including gap elements to the time series on warping
steps.

ERP(S, ()) = ∞ ERP((), T ) = ∞ ERP((s), (t)) = d(s, t)

ERP(S, T ) = min

⎧
⎪⎨

⎪⎩

d(s1, t1) + DTW(Tail(S), Tail(T ))
d(s1, gap) + DTW(S, Tail(T ))
d(gap, t1) + DTW(Tail(S), T )

The DK distance is similar to DTW and differs by taking the maximum distance
along a warping path instead of the sum.

DK(S, ()) = ∞ DK((), T ) = ∞ DK((s), (t)) = d(s, t)

DK(S, T ) = min

⎧
⎪⎨

⎪⎩

max {d(s1, t1), DK(Tail(S), Tail(T ))}
max {d(s1, t1), DK(S, Tail(T ))}
max {d(s1, t1), DK(Tail(S), T )}

Note that ERP and DK satisfy the triangle inequality and therefore are metric
distance functions [4,7]. See Fig. 1 for sketches of the behaviour of these distance
functions.

Fig. 1. Example time series with example warping paths sketching the behaviour of DTW
(left), DK (center), and ERP (right). Distances between states are marked with solid lines
while the circled and squared time series are connected using dashed lines. DTW sums up
the distances along the warping path (all solid lines). DK is the largest distance along
the warping path (longest solid line). ERP sums up the distances along the warping path
(all solid lines). However, when warping (second circle from the left and third square
from the right), states are compared to the gap element (empty square).

Algorithm 1 shows a pseudo code for computing the DK distance between
two time series similar to the algorithm proposed by Eiter and Mannila [6].
We extended the algorithm considering a threshold as third parameter for early
abandoning. The idea of early abandoning works the same in all algorithms
for the mentioned time series distance functions. After computing the next row
(or column) of the matrix D, the minimum value in that row is a lower bound
for the final distance value. If that value already exceeds the threshold, the
algorithm stops and returns the lower bound.

Dog-Keeper is a Metric: Satisfying the triangle inequality might be an oppor-
tunity for indexing the data using metric index structures. In the following we



Dynamic Time Warping and the (Windowed) Dog-Keeper Distance 131

Algorithm 1. Pseudo Code for the Dog-Keeper Distance with Early Abandoning

1 Input: S = (s1, · · · , s�), T = (t1, · · · , tm), τ
2 Output: Lower bound for the dog-keeper distance
3

4 D1,1 = d(s1, t1)
5 if D1,1 � τ
6 return D1,1

7 for i in 2, · · · , �
8 Di,1 = max {Di−1,1, d(si, t1)}
9 for j in 2, · · · ,m

10 ε = ∞
11 for i in 1, · · · , �
12 pred = min {Di−1,j ,Di,j−1,Di−1,j−1}
13 Di,j = max {d(si, tj), pred}
14 ε = min {ε,Di,j}
15 if ε � τ
16 return ε
17 return D�,m

want to provide a new proof in modern mathematical language that shows that
the dog-keeper distance satisfies the triangle inequality. Therefore, we prove the
triangle inequality for th Fréchet distance. Since the dog-keeper distance is the
discrete special case of the Fréchet distance, the proof also holds for the dog-
keeper distance.

Let M := R
k be the space of states, d : M × M −→ R�0 be a metric on all

states. We denote the set of all (piecewise continous) curves over [0, 1] ⊂ R by

T := {f : [0, 1] −→ M}

and the set of all time warps over [0,1] by

Σ := {σ : [0, 1] −→ [0, 1]} ,

where all τ ∈ Σ are continuous, strictly monotonically increasing, and inf τ = 0,
sup τ = 1. For f, g ∈ T , let δ∞(f, g) := maxx∈[0,1] d(f(x), g(x)) be the maximum
distance of f and g.

Definition 1 (Fréchet Distance). Let f, g ∈ T be two curves over [0, 1]. The
Fréchet distance DK of f and g is defined as

DK(f, g) := inf
σ,τ∈Σ

δ∞(f ◦ σ, g ◦ τ)

Using this notation we prove the following theorem.

Theorem 1. The Fréchet distance DK satisfies the triangle inequality, i.e.,

∀f, g, h ∈ T : DK(f, h) � DK(f, g) + DK(g, h).
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To prove the triangle inequality, we first prove the following lemma showing
that the δ∞ distance does not change when applying the same temporal adjust-
ment to both curves. The second lemma then reduces the search to all warping
functions applied to one time series only.

Lemma 1. Let f, g ∈ T be two arbitrary curves and σ ∈ Σ be an arbitrary time
warp. Then, the following equation holds:

δ∞(f, g) = δ∞(f ◦ σ, g ◦ σ)

Proof. Consider the mapping

θ : [0, 1] −→ R�0

x �−→ d(f(x), g(x)).

Then,

δ∞(f, g) = sup (θ([0, 1])) , and
δ∞(f ◦ σ, g ◦ σ) = sup (θ ◦ σ([0, 1]))

Since θ([0,1]) = θ(σ([0, 1])), the desired equation δ∞(f, g) = δ∞(f ◦ σ, g ◦ σ)
follows. �

Lemma 2. Let f, g ∈ T be two arbitrary curves. Then the following equation
holds:

DK(f, g) = inf
σ∈Σ

δ∞(f, g ◦ σ)

Proof. Consider two sequences (σi)i∈N and (τi)i∈N with σi, τi ∈ Σ for i ∈ N, such
that

δ∞(f ◦ σi, g ◦ τi)
i→∞−−−−−−−→ DK(f, g).

Since each σi is invertable, Lemma 1 can be applied on δ∞(f ◦ σi, g ◦ τi) with
σ−1

i , i.e. we obtain

δ∞(f, g ◦ τi ◦ σ−1
i ) = δ∞(f ◦ σi ◦ σ−1

i , g ◦ τi ◦ σ−1
i )

= δ∞(f ◦ σi, g ◦ τi)
i→∞−−−−−−−→ DK(f, g).

Thus, we have a sequence (θi)i∈N := (τi ◦ σ−1
i )i∈N with θi ∈ Σ for i ∈ N, such

that δ∞(f, g ◦ θi)
i→∞−−−−→ DK(f, g).

On the other hand,

inf
σ,τ∈Σ

δ∞(f ◦ σ, g ◦ τ) � inf
θ∈Σ

δ∞(f, g ◦ θ).

Hence, DK(f, g) = infθ∈Σ δ∞(f, g ◦ θ). �
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Proof (Proof of Theorem 1). Consider some arbitrary but fixed f, g, h ∈ T . Since
DK(f, g) = infσ∈Σ δ(f, g ◦ σ) (Lemma 2), an infinite sequence (σi)i∈N

exists with
σi ∈ Σ for all i ∈ N, such that

δ∞(f, g ◦ σi)
i→∞−−−−−−−→ DK(f, g).

Analogously, a sequence (τ ′
i)i∈N

with τ ′
i ∈ Σ for all i ∈ N exists, such that

δ∞(g, h ◦ τ ′
i)

i→∞−−−−−−−→ DK(g, h).

Considering the sequence (τi)i∈N
with τi = τ ′

i ◦ σi ∈ Σ and using Lemma 1, we
obtain

δ∞(g ◦ σi, h ◦ τi) = δ∞(g, h ◦ τ ′
i)

i→∞−−−−−−−→ DK(g, h).

Recall that (T , δ∞) is a metric space, thus the triangle inequality holds for each
i ∈ N:

δ∞(f, h ◦ τi) � δ∞(f, g ◦ σi) + δ∞(g ◦ σi, h ◦ τi)

Since DK(f, h) = infτ∈Σ δ∞(f, h ◦ τ), we obtain the triangle inequality:

DK(f, h) � lim
i→∞

δ∞(f, h ◦ τi) � DK(f, g) + DK(g, h) �

3 Windowed Dog-Keeper Distance

If there is one outlier in a time series, then this outlier dominates the DK distance,
i.e. it dominates the maximum along a path through the matrix in Algorithm 1.
Hence, the DK distance is not robust against outliers. In the case of DTW or ERP,
the error of the outlier is relatively small compared to the sum of all small errors.
One of our contributions is the windowed dog-keeper distance described below.

By comparing sliding windows with the L1-norm instead of single elements,
the same behaviour is possible for the DK distance. If there is an outlier within one
time series, the error will not dominate the sum of distances within two sliding
windows. For a formal definition, consider the sequence of sliding windows as a
new time series.

Definition 2 (Windowed Time Series). Let n ∈ N be an arbitrary window
size and T = (t1, . . . , t�) be an arbitrary time series. The k-th n-window of T is
the subsequence

Tn
k = (tk, . . . , tk+n−1)

The n-windowed time series of T is the sequence

Tn =
(
Tn

1 , . . . , Tn
k+n−1

)
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Comparing two time series now is based on comparing windows. Here we
might use the advantage of the L1-metric to improve the robustness against
outliers.

Definition 3 (Window Distance). Consider two n-windows P = (p1, · · · , pn)
and Q = (q1, · · · , qn). Then

d(P,Q) =
n∑

i=1

d(pi, qi)

We now define the windowed dog-keeper distance (WDK).

Definition 4 (Windowed Dog-Keeper Distance). Let S and T be two time
series and n be an arbitrary window size. The n-windowed dog-keeper distance
(n-WDK) of S and T is the dog-keeper distance of their n-windowed time series,
i.e.

WDKn(S, T ) := DK(Sn, Tn)

If it is clear from the context, we omit the parameter n.

Corollary 1. The windowed distance is a metric.

Note that the 1-WDK distance is equivalent to the DK distance, thus n-WDK can
be seen a generalization of the DK distance.

The WDK distance is more robust against outliers as the experiments show.
However, it comes with a price. The distance measure is less robust against local
time warping, since the time series can drift apart within one window. Hence, the
window size is a tuning parameter to choose between robustness against outliers
and robustness against time warps. The larger the window size is, the more we
gain robustness against outliers. With shrinking window size we increase the
robustness against strong time warps.

Computation: When computing the WDK distance the naive way, there is a lot
of redundancy. For example, computing the 2-window distances d(S1, T 1) =
d(s1, t1) + d(s2, t2) and d(S2, T 2) = d(s2, t2) + d(s3, t3) each includes computing
d(s2, t2). The first improvement of the WDK algorithm caches these values.

The second improvement optimizes the computation of the sum of the dis-
tance values along an n-window by first computing integral matrices. For time
series S and T of length m and n respectively, the integral matrix

∫
(S, T ) is

defined as
∫

(S, T )i,j =

{∑i−1
k=0 d (si−k, tj−k) if i � j

∑j−1
k=0 d (si−k, tj−k) else

(1)

where
∫

(S, T )i,j is the entry in the i-th row and the j-th column. Less formally,
we sum up the values of the matrix (d(si, tj)) along diagonals. The n-window
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distance d(Tn
i , Sn

j ) is computed as a difference of two matrices:

d(Tn
i−n+1, S

n
j−n+1) =

{∫
(S, T )i,j −

∫
(S, T )i−n,j−n if i, j � n

∫
(S, T )i,j else

(2)

Finally, the Fréchet distance is computed based on the window distance. Algo-
rithm 2 represents the algorithm in pseudo code. Line 5 to 11 compute the
integral matrix, line 14 to 16 compute the window distances. For time series of
length � and m, these sections have complexity O(� · n). The rest of the code
computes the Fréchet Distance similarly to Algorithm 1 but on the window dis-
tances thus the overall complexity is O(� · n). Furthermore, the complexity does
not depend on the window size.

Example 1. Consider the following example: S = (1, 2, 1, 5, 6), T = (2, 1, 6, 5, 6).
When computing the 3-WDK distance function, the matrices in Algorithm will
contain the following elements if they did not stop because of early abandoning:

I =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 1 0 5 4 5
0 0 2 4 8 8
0 1 0 7 8 13
0 3 5 1 7 9
0 4 8 5 2 7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

W =

⎛

⎝
7 8 13
1 6 9
5 2 5

⎞

⎠ D =

⎛

⎝
7 8 13
7 7 9
7 7 7

⎞

⎠

Thus, the 3-WDK distance of S and T is 7.

4 Experimental Evaluation

We evaluate the performance of the time series distance functions DTW, ERP,
DK, and WDK on four data sets. Our first choice is the well-known cylinder-bell-
funnel data set (CBF) as an example of noisy data. The other three data sets
come from the UCI Machine Learning Repository [9]. We chose the following
labeled multidimensional multimedia data sets: the Character Trajectories sata
set (CT), the Spoken Arabic Digit data set (SAD), and the Australian Sign
Language signs (High Quality) data set (ASL) [8].

Data Preparation: We prepared the data sets by normalizing them individually.
The CT data set consists of three-dimensional time series holding the derivative
of the trajectory and the pressure of the pen. We first integrated the deriva-
tive to retrieve the actual pen coordinates. The resulting time series have been
normalized using the L2-norm.

The Spoken Arabic Digits data set has been normalized using the L1-norm.
Furthermore, we removed the 23 shortest time series to assure that each time
series has a length of at least 20 elements, such that we can evaluate the WDK
distance for window sizes up to 20.

The ASL data set consists of 22-dimensional time series, 11 dimensions for
each hand holding position, rotation and five finger bend information. We nor-
malized the position information of the hands using the L2 norm.
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Algorithm 2. Pseudo Code for the n-Windowed Dog-Keeper Distance

1 Input: S = (s1, · · · , s�), T = (t1, · · · , tm), τ
2 Output: Lower bound for the dog-keeper distance
3

4 // compute integral matrix Ii,j =
∫

(S, T )i,j as in Equation (1)
5 for i in 0, · · · , �
6 Ii,0 = 0
7 for j in 1, · · · ,m
8 I0,j = 0
9 for i in 1, · · · , �

10 for j in 1, · · · ,m
11 Ii,j = Ii−1,j−1 + d(si, tj)
12

13 // compute the n−window distances Wi,j = d(Tn
i , Sn

j ) as in Equation (2)
14 for i in n + 1, · · · , � + 1
15 for j in n + 1, · · · ,m + 1
16 Wi−n,j−n = Ii−1,j−1 − Ii−n−1,j−n−1

17

18 // compute the DK distance as in Algorithm 1.
19 D1,1 = W1,1

20 if D1,1 � τ
21 return D1,1

22 for i in 2, · · · , � − n + 1
23 Di,1 = max {Di−1,1,Wi,1}
24 for j in 2, · · · ,m − n + 1
25 ε = ∞
26 for i in 1, · · · , � − n + 1
27 pred = min {Di−1,j ,Di,j−1,Di−1,j−1}
28 Di,j = max {Wi,i, pred}
29 ε = min {ε,Di,j}
30 if ε � τ
31 return ε
32 return D�−n+1,m−n+1

Retrieval Correctness: We use the data sets to evaluate the quality of the dis-
tance functions experimentally. Since we have chosen labeled time series, we can
evaluate the correctness using a k-nearest neighbour classifier. We specifically
ran a Leave-One-Out cross-validation on each data set. In order to evaluate the
discriminability of the distance functions we ran the tests for different k from 1
to values larger than the class size.

Figure 2 shows that DTW has almost best retrieval results on the noisy CBF
data set. ERP decreases in quality with increasing k. For small k, all distance
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Fig. 2. Classification Accuracy on the CBF (top left), CT (top right), SAD (bottom
left) and ASL (bottom right) data sets.

functions provide similar quality. We did not expect the WDK distance to perform
well on that data set since it is very noisy (cf. Fig. 3).

In contrast to the CBF data set, Fig. 2 shows that the retrieval results
decrease linearly with increasing k on the CT data set. Although there is nearly
no difference in retrieval quality for small k, there is a clear tendency for large k.
DTW and ERP have identical behaviour, while the DK is way behind. This exper-
iment also shows that WDK improves the DK distance. Figure 3 shows two repre-
sentational examples from the data set. We could not find any outliers in the
data set and there is little need for warping. On the other hand, the distance
between two points along the characters differ on long parts of the path, thus
there are windows with a large distance to each other. This could be the reason
for the good performance of DTW and ERP but the bad performance of DK and
WDK.

Figure 2 shows the results for the SAD data set. The results are similar to
those on the CT data set. The WDK distance improves the DK distance but loses
against DTW and ERP.

Most interesting results for the WDK distance can be found in the ASL data
set, shown in Fig. 2. Since both distance functions DTW and ERP drop to around
90% correctness, 10-WDK is nearly 95%. Another interesting observation here is
that both “sum natured” functions DTW and ERP are increasing in correctness
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Fig. 3. Examples from the cylinder-bell-funnel (left) and the Character Trajectories
(right) data sets.

with increasing k while both “max natured” functions DK and WDK decrease. We
have not found a reasonable explanation yet, thus it remains future work.

Parameter Tuning: A disadvantage of the WDK distance is that it has a parameter
(the window size) as we need to calibrate it for each data set. However, in all
but the CBF data set, taking a window size of 25% of the mean time series
length provided best results. For certain applications, the best parameter could
be evaluated on a sample of the data set beforehand.

Figure 4 shows that the window size adjusts a trade-off as we expected. There
is an optimal value and the classification Accuracy decreases monotone with
diverging window size.

Computation Time: Table 1 shows the relative computation times with DTW as
the base line for the 1-nearest neighbour classifier. Although the algorithms of all
distance functions are quite similar the DK and WDK distance functions ran faster

Fig. 4. Classification Accuracy on the CBF (left) and the Australian Sign Language
(right) data sets for WDK with different window sizes.
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by more than an order of magnitude. These differences can not be explained by
implementation details. The only plausible explanation is the early abandoning.

Since DTW and ERP sum up the errors along the warping path, the probability
for later abandoning increases. On the other hand, the DK distance takes the
maximum value along the best warping path and therefore aborts computation
most likely during the first step. We call the number of columns we need to
compute before the computation can be aborted the point of early abandoning.
The only exception is a value of 0 which means that the first elements of the
time series are compared only.

Table 1. Computation time in relation to the computation time of DTW

DTW ERP DK WDK

CBF 1 0.89 0.23 0.13

Spoken digits 1 1.2 0.06 0.04

Signs 1 1.24 0.05 0.08

Character 1 1.39 0.13 0.06

Table 2 shows measurements of the number of comparisons which are aborted
immediately after comparing the first elements of the time series on the ASL
data set. It shows that 94.9% and 99.6% of the computations of the DK and WDK
distance abort immediately, resp. The mean point of early abandoning for DTW
and ERP is more than 10, which means that in most cases more than 10 columns
of the matrix are filled.

Table 2. Point of early abandoning.

DTW ERP DK WDK

Immediate 0% 0% 94.9% 99.6%

Mean 10.8 13.3 0.39 0.21

5 Conclusion and Future Work

In this paper we compared the performance of different time warping distance
functions on multimedia time series data sets. We have chosen data sets for
motion gesture recognition, speech recognition, and classification of handwrit-
ten letters. This work extends existing evaluations by comparing the dog-keeper
distance against DTW and ERP on these data sets. Although DTW has the best clas-
sification results on most data sets, we could show that the dog-keeper distance
has nearly same results. For 1-nearest neighbour classification, the error rate of
the dog-keeper distance was no more than 3% worse.
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We also observed a significant difference in computation time. Our investi-
gation showed that the reason is the very early abandoning.

We also improved the dog-keeper distance by comparing sliding windows
instead of single elements. Our experimental evaluation shows that this mod-
ification did increase the classification correctness of the dog-keeper distance.
On the Australian Sign Language data set (ASL), it even outperforms the other
distance functions in retrieval quality. Furthermore, it inherited the property of
early abandoning from the dog-keeper distance and even improved these values.
On the Australian Sign Language data set, 99.6% of the comparisons already
stopped after comparing the first elements of the time series. Hence, it seems
there is no need for any further optimization using lower bounds.

It remains future work to investigate and compare to these functions with the
Sakoe Chiba band [11] applied. We expect nearly the same behaviour from the
dog-keeper and windowed dog-keeper distances. However, there are lower bounds
to DTW with a Sakoe Chiba band applied which drastically improve retrieval
times.
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