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Abstract

Motivation: String and de Bruijn graphs are two graph models used by most genome assemblers.

At present, none of the existing assemblers clearly outperforms the others across all datasets. We

found that although a string graph can make use of entire reads for resolving repeats, de Bruijn

graphs can naturally assemble through regions that are error-prone due to sequencing bias.

Results: We developed a novel assembler called StriDe that has advantages of both string and de

Bruijn graphs. First, the reads are decomposed adaptively only in error-prone regions. Second,

each paired-end read is extended into a long read directly using an FM-index. The decomposed

and extended reads are used to build an assembly graph. In addition, several essential components

of an assembler were designed or improved. The resulting assembler was fully parallelized, tested

and compared with state-of-the-art assemblers using benchmark datasets. The results indicate that

contiguity of StriDe is comparable with top assemblers on both short-read and long-read datasets,

and the assembly accuracy is high in comparison with the others.

Availability and implementation: https://github.com/ythuang0522/StriDe

Contact: ythuang@cs.ccu.edu.tw

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Although next- and third-generation sequencing technologies have

been widely used to sequence and assemble genomes of many species

in the biosphere (Haussler et al., 2009; Metzker, 2010), many

assembled genomes are still fragmented due to complex repetitive

structure (Phillippy et al., 2008). A fragmented assembled genome

often introduces extra complexity into downstream processing, e.g.

estimation of gene family size and comparative analysis. Recently,

several evaluation projects (e.g. GAGE, GAGE-b and Assemblathon

1/2) have been conducted to assess the accuracy, contiguity and

speed of state-of-the-art assemblers (Bradnam et al., 2013; Earl

et al., 2011; Magoc et al., 2013; Salzberg et al., 2012). None of the

existing assemblers clearly outperforms all the others across all

benchmarks.

The overlap-layout-consensus (OLC) and de Bruijn graphs are

two models used by most assemblers. These two models represent

the overlapping relation between reads in different ways. The OLC-

based assemblers, including MIRA, Newbler and Celera assemblers,

first identify all pairs of overlapping reads and construct a graph

with vertices representing reads and with edges denoting two over-

lapping reads (Miller et al., 2008). Next, the genome sequence is

assembled by figuring out a feasible layout of reads from the graph.

The OLC-based methods make good use of the entire read length

for resolving repeats and chimeras; this approach is beneficial for

sequencing platforms generating long reads (e.g. Sanger sequencing,

Roche 454 and Pacific Biosciences). These assemblers, however, are

computationally inefficient at assembling a massive amount of short

reads because of the time-consuming overlap computation.

Nowadays, de Bruijn graph assemblers, including Velvet,

SOAPdenovo, ABySS and ALLPATHS, are the preferred choice for

most sequencing projects (Butler et al., 2008; Luo et al., 2012;

Simpson et al., 2009; Zerbino and Birney, 2008). These assemblers

break each read into fixed-size k-mers, which do not require the

overlap computation, and a graph is directly constructed where each

vertex is a k-mer and each edge indicates two adjacent k-mers
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overlapping by k – 1 letters. The construction of a de Bruijn graph is

much more efficient. Nonetheless, the graph structure is more com-

plex owing to repeats larger than k-mer. Recently, a paired de

Bruijn graph assembler (SPAdes) overcame this limitation by build-

ing a graph by means of paired k-mers from paired-end reads

(Bankevich et al., 2012).

Aside from these two graph models, there is a variant (called

string graph) that is similar to the OLC graph without transitive

edges (Myers, 2005). The construction of a string graph from reads

can be computed in linear time using an FM-index (Ferragina and

Manzini, 2000; Simpson and Durbin, 2010). The first such assem-

bler, called the String Graph Assembler (SGA), is capable of assem-

bling mammalian-size genomes, but its contiguity is not better than

that of de Bruijn graph assemblers according to several benchmark

tests. The string graph shares many properties with the OLC and de

Bruijn graphs, but their equivalence in terms of real sequencing data

remains a subject of debate (Simpson and Durbin, 2012). We found

that the major difference lies in the ability to assemble through re-

gions that are error-prone due to sequencing bias (e.g. high-GC re-

gions; see Supplementary Fig. S1; Schirmer et al., 2015). This article

presents a novel assembler called StriDe, which adaptively decom-

poses reads within error-prone regions and extends paired-end reads

into long reads using an FM-index. In addition, an improved error

correction algorithm, overlap computation, specialized layout algo-

rithms and full parallelization were implemented to make the assem-

bler more practical.

2 Method

We would like to emphasize two major features of this assembler be-

fore presenting the details (see Fig. 1). First, the original reads are

adaptively decomposed into overlapping subreads within error-

prone regions, in which the correct subreads (collected from differ-

ent reads) can still be assembled (i.e. just as in a de Bruijn graph).

Second, the paired-end reads are extended into long reads using an

FM-index, which can resolve repeats longer than read length. In

summary, the input reads are converted into short (overlapping)

subreads, original reads, or extended long reads (Fig. 2). Therefore,

a string graph that is constructed from these variable-length reads

implicitly integrates de Bruijn and string graphs for assembly

through error-prone and repetitive regions. Efficient construction of

this assembly graph requires an FM-index built from variable-length

reads; this problem was recently solved by Li’s ropebwt2 algorithm

(Li, 2014). The StriDe assembler uses Li’s ropebwt2 for FM-index

construction (see Supplementary Methods, Section 1.1). Below, we

present the main ideas behind the major components of this

assembler (see Supplementary Fig. S2). The other components and

details can be found in Supplementary Methods.

2.1 Correction of errors by frequency turbulence
Conventional methods for identification of errors usually select a k-

mer frequency cutoff depending on the underlying k-mer frequency

spectrum, which is largely affected by repeats and the sequencing

bias (see Supplementary Fig. 3). We found that the frequency differ-

ences between two adjacent k-mers are much smaller and are stable

regardless of repetitive and low-coverage regions (e.g. for>98% of

the regions, the frequency difference is less than 10). On the other

hand, the large frequency differences are mainly due to sequencing

errors (see Fig. 3(a)). Suppose an error occurs at the ðiþ kÞth pos-

ition. The frequency difference between the ith and iþ1th k-mer

drops significantly because the rightmost base of the ðiþ 1Þth k-mer

represents the error base. In addition, the frequency difference be-

tween the ðiþ kÞ- and ðiþ kþ 1Þth k-mer increases significantly be-

cause the leftmost base of the ðiþ kþ 1Þth k-mer just left the error

base. As a consequence, the error base is identified if any two adja-

cent k-mer frequencies differ by more than t (default: 10), which

aims to match the expected error rate of Illumina platforms (see

Supplementary Method, Section 1.2).

After identifying the exact position of the error, we first try to re-

place the error with alternative alleles A, T, C, G and see whether

the frequency turbulence is eliminated. On the other hand, indel

errors and clustered errors cannot be corrected this way. In this case,

an overlap correction algorithm is performed via alignment of over-

lapping reads using a conventional seed-and-extend approach

(Fig. 3(b)). The seeds are selected from regions flanking the errors,

Fig. 1. Illustration of adaptive decomposition and extension of paired-end

reads by the StriDe assembler across error-prone and repetitive regions.

Note that the decomposed subreads still overlap with each other, and the cor-

rect subreads (collected from different reads) can still be assembled

Fig. 2. An example of a read length distribution of the StriDe assembler. The

left-hand group is composed of variable-length subreads decomposed from

error-prone regions. The right-hand group is composed of variable-length

reads extended from paired-end reads, and its size roughly equals the insert

size. Only a few unchanged reads are neither decomposed nor extended

Fig. 3. (a) The k-mer frequency drops when the rightmost base reaches the

error and increases after leaving the error; (b) The k-mer seeds are selected

from the regions flanking the low-frequency region and are used for identify-

ing potentially overlapping reads
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and banded dynamic programming is used to compute the exact

overlap alignment (see Supplementary Method, Section 1.2). Note

that in high-GC regions, the high density of sequencing errors still

cannot be corrected by either method. The reads within these re-

gions will be decomposed into subreads.

2.2 Extension of Paired-end reads by FM-index walk
The paired-end reads are extended inward into long reads by search-

ing for feasible overlapping sequences between two ends. We con-

sider the FM-index (constructed from all reads) as multiple

(implicit) de Bruijn graphs of various k-mers. Given a paired-end

read, the algorithm (called the FM-index walk) is aimed at finding

feasible {A, T, C, G}-extensions from the first end to the other end

by updating the suffix array (SA) intervals (Fig. 4). The major ad-

vantage of this approach is that each one-base extension becomes a

simple update of an existing SA interval, which can be completed in

O(1) time. The details of this algorithm are described below.

The entire search space from first end (source) to second end

(destination) is maintained by a search tree, with each tree node

storing two SA intervals (for forward/reverse strands) of any feasible

extension. Initially (see Fig. 4), the forward/reverse SA intervals of

the source k-mer (e.g. ATC) are computed using the backward-

search algorithm (Ferragina and Manzini, 2000). Subsequently, we

recursively extend the implicit sequences for all possible {A,T,C,G}-

extensions by updating the SA intervals of leaves using the back-

ward-search algorithm (see Supplementary Method, Section 1.3),

until the arrival at the destination k-mer (e.g. AAC). Note that the

destination k-mer is also a suffix of any feasibly extended sequence

(e.g. GCAAC). This notion implies that the SA interval of any feas-

ibly extended sequence is included within that of the destination

k-mer (e.g. ½772; 796� � ½682;886�). Because the SA interval of des-

tination k-mer can be computed in advance, the arrival at the destin-

ation for each newly extended sequence can be checked within O(1)

time. The search process aborts if the search depth exceeds the max-

imum insert size, or the number of extensions exceeds the maximum

leaf number (default: 32).

Note that each update of the SA interval increases the implicit se-

quence as well as the implicit overlap between two reads. The impli-

cit sequence and overlap will eventually exceed the maximum read

length of the input reads, thus yielding no feasible extensions.

Therefore, whenever none of the leaf nodes can be extended, we

have to double-check whether the implicit sequence and overlap are

too big. This task can be done by refining the SA interval that

exactly corresponds to the k-mer suffix extracted from each leaf se-

quence. If any feasible SA interval is found after the refinement, we

continue the extension using the new SA intervals. Otherwise, the

entire search process is aborted because no feasible extensions can

be found even though we shrunk the implicit sequence/overlap.

The refinement of SA intervals when the implicit sequence/over-

lap exceeds read length takes extra O(k) time, whereas the remain-

ing extensions take O(1) time. Because the read length is generally

much greater than the k-mer size (e.g. 250-bp/300-bp reads are com-

mon in Illumina systems), the O(k) refinement cost can be amortized

into the majority of O(1) extensions in the entire searching process.

Therefore, the overall amortized cost of this algorithm is O(IL),

where I is the search depth (corresponding to insert size) and L is the

maximum number of leaves allowed. MaSurCa and ABySS imple-

mented similar de Bruijn walks using hashtable and bloom-filter

(Supplementary Fig. S4; Simpson et al., 2009; Zimin et al., 2013).

The implicit overlap of de Bruijn walks is fixed to the k-mer size. On

the other hand, the implicit overlap of FM-index walks is dynamic

and can be larger than k, which is able to walk through repeats

larger than k.

2.3 Adaptive read decomposition in Error-prone regions
The paired-end reads that failed to be extended into long reads are

often prone to errors due to the sequencing bias (e.g. high-GC re-

gions), which is common on the Illumina platforms. We decompose

these reads into smaller overlapping subreads at each potential error

base. Therefore, the corrected subreads (collected from different

reads) can still be assembled at the final graph layout stage (Fig. 5

and Supplementary Fig. S5). The details are described below.

The decomposition algorithm identifies the breakpoints of sub-

reads by checking all pairs of adjacent k-mers of a read (e.g. k¼9 in

Fig. 5). For each pair of adjacent k-mers, a breakpoint is identified if

any of them contain alternative overlaps with other k-mers.

Consider the example shown in Figure 5. The only correct k-mer in

R3 is also present in R2 and thus has two possible overlapping paths

to the left (and to the right). Therefore, this k-mer subread is decom-

posed from R3 in order to ensure flexibility at the final graph layout

stages, where erroneous subreads (in black boxes) are usually dead

ends and can be easily detected/removed. The decomposed subreads

must retain the overlap (k – 1) bp with adjacent subreads in the ori-

ginal read because the correct layout of subreads is still uncertain at

this stage. This algorithm may falsely decompose reads within differ-

ent repeat copies, because such ambiguous k-mer overlap paths are

encountered often due to independent mutations in each repeat

copy. Therefore, we set an additional requirement that the k-mer

frequencies for any breakpoint must be lower than a threshold (� 3

by default) because these error-prone regions are mainly due to the

sequencing bias, where the sequencing coverage is relatively lower.

Fig. 4. Illustration of the FM-index walk within a paired-end read. The implicit/

initial k-mer size is 3 and shown only for illustration purposes. Each tree node

internally stores forward and reverse suffix array (SA) intervals. The solid

lines represent successful extensions of the existing SA interval and creation

of new leaf nodes, where the dashed lines represent infeasible SA intervals:

no new nodes are created

Fig. 5. Illustration of decomposition across four reads (R1–R4). The error is

boldfaced, and error subreads are shown in black boxes, which are often tips

in the graph. Correct subreads are thus overlapped and can be assembled at

a later stage
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The worst result of the algorithm is decomposition of each read

into (RL � kþ 1) k-mers, where the RL is read length; this situation

is equivalent to a de Bruijn graph. In reality, only the reads within

error-prone regions tend to be decomposed into short subreads,

whereas the majority of reads still retain the contiguous information

of entire sequences.

2.4 Overlap computation with SA-interval pruning
The string graph is composed of vertices and edges, where each ver-

tex stands for a (decomposed or extended) read and each edge repre-

sents an overlap between two reads. The overlap computation is the

most time-consuming step during graph generation. The exact over-

lap with respect to any read can be computed in linear time using an

FM-index (Simpson and Durbin, 2010). Nonetheless, to assemble a

genome in error-prone regions in our algorithm, the error-prone

reads are decomposed into shorter subreads with a ðk� 1Þ-mer

overlap. The minimum overlap length has to be reduced to ðk� 1Þ
in order to maintain the connectivity among the subreads. This

small-overlap requirement leads to a huge amount of edges in the

graph owing to repeats � ðk� 1Þ-mer; this situation greatly affects

the disk/memory usage and reduces the efficiency.

We introduced a pruning procedure into the overlap algorithm

to reduce the number of false edges due to decomposed subreads.

We found that if a long-extended read (e.g. 200 bp) possesses both a

large and small overlap with other reads (e.g. overlaps of 160 and

30 bp), the small overlap can be usually discarded. These small-over-

lap edges are often transitive (i.e. replaceable by other larger-overlap

edges) or form small repeats, which are not informative at the final

graph layout stage. Therefore, if the length difference between the

largest overlap and any smaller overlap is greater than a threshold

Lgap (default: half of read length), the smaller overlap is discarded

(Fig. 6). In addition, because the sequencing coverage is limited, the

influence of small repeats can be controlled by retaining the largest

Lmax overlaps only, where Lmax equals sequencing coverage. This

pruning procedure can effectively skip many repeat edges, while re-

taining the edges between decomposed subreads. In the implementa-

tion, multiple string graphs are concurrently constructed using the

overlap-computation algorithm. The race conditions are resolved

and described in Supplementary Method (Section 1.5).

2.5 Graph layout algorithms
The layout algorithms are designed to identify unique paths of verti-

ces in the graph for maximization of the assembly contiguity and ac-

curacy. The major challenge at this stage is distinguishing true

overlapping edges from chimeric/random edges for vertices with two

or more ambiguous edges. Three features were selected from the

OLC/string graphs for edge classification: overlap lengths, overlap

ratio (overlap length normalized to read length) and overlap ratio

differences on the same edge (Supplementary Fig. S7). Each feature

requires determination of a reasonable cutoff (e.g. removal of edges

with overlap length less than 80 bp). Because the sequencing quality

varies a lot across different datasets, these cutoffs have to be adap-

tively determined. In the text below, we present the major novelties

of our layout algorithms, i.e. the simple-path statistic in conjunction

with the three features. Other details (e.g. the conventional bubble/

tip removal) are described in Supplementary Methods (Section 1.6).

2.5.1 Construction of the Simple-path statistic

In most OLC/string graph assemblers, vertices along the same simple

paths are contracted to reduce the graph size; this approach throws

away valuable information about these features, especially within

the initial simple paths. In fact, the assembled sequences on the ini-

tial simple paths are usually correct (due to a lack of repeats/chi-

meras/errors). Therefore, the statistics on these features that are

collected from initial simple paths form an empirical distribution for

subsequent determination of a cutoff (Supplementary Fig. S7). For

instance, if 95% of overlap lengths on the initial simple paths are

greater than 80 bp, we can estimate that the removal of edges with

an overlap less than 80 bp may yield a 5% error rate. Although any

cutoff still faces a tradeoff, we can at least make decisions with stat-

istical confidence using the simple-path statistic. The current imple-

mentation is designed to maintain (at least) 95% confidence for

each cutoff.

2.5.2 Removal of apparent chimeric vertices

The graph structure surrounding the majority of chimeric vertices is

usually complicated owing to small repeats within a chimera; these

repeats cannot be easily removed by the conventional tip/bubble re-

moval algorithms (Supplementary Fig. S9). Nevertheless, we noticed

three features of chimeras in the graph. First, chimeric vertices have

relatively shorter overlap length connecting to their neighbors be-

cause the chimeric read is composed of two distant DNA fragments,

and the overlap cannot be greater than that of nonchimeric reads.

Second, after tip/bubble removal and graph contraction, most verti-

ces on simple paths are merged into larger vertices (i.e. longer se-

quences). On the other hand, due to the complex graph structure

surrounding the chimeric vertices, they usually do not merge with

others and remain as small vertices. Third, the k-mer frequency at

the chimeric vertices is also relatively lower due to infeasible k-mers

across the chimeric junction. Therefore, in conjunction with the

simple-path statistic, the small (default: �read length) and low-

frequency vertices (default: � 3) with short overlap length

(default:>95% confidence) to their neighbors are removed (Fig. 7).

Fig. 6. Collection and pruning of a suffix array (SA) interval list during overlap

computation. In this example, only the top five SA indices (set by Lmax) are re-

tained, which are from the top two SA intervals ([10,12] and [8,9]). That is,

only the overlap to reads D, E, F, G and H are retained

Fig. 7. Simple path statistic of overlap lengths collected from the V :cholerae

dataset. The small and low-frequency vertices with short overlap are appar-

ent chimeras
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The tips/bubble removal algorithms can then be re-applied to further

simplify the graph (Supplementary Fig. S8).

2.5.3 Removal of edges with low overlap ratios

Because the input reads were decomposed or extended, the overlap

length alone is insufficient for distinguishing true overlapping edges.

Instead of removing the entire vertex, we gradually remove less-

confident edges using the simple-path statistic of overlap ratios. For

the example shown in (Fig. 8), overlap ratios of more than 95% of

simple-path edges are greater than 0.8 in the dataset of

A:hydrophila. Consequently, by requiring the overlap ratio greater

than 0.8, we have 95% confidence that the removal of these unreli-

able edges is safe. After this removal operation, the complexity of

the graph structure around the chimeric vertices can be further

reduced and may turn into simple tips or bubbles. The algorithms of

tip/bubble removal can be applied to simplify the graph.

2.5.4 Removal of edges with large overlap differences

We found that the overlap ratio can still be biased to the size of a

vertex because two vertex sizes flanking each edge may differ sub-

stantially (e.g. a decomposed subread and an extended long read). In

other words, the overlap ratios that were computed using either ver-

tex may be quite different although both of them are on the same

edge. Again, during the analysis of the initial simple-path edges, we

found that the two overlap ratios on the same edge are quite small,

regardless of the size of the vertex. Therefore, a third feature, called

overlap-ratio difference, is used to distinguish true overlapping

edges (Fig. 9). For instance, the overlap differences in more than

95% of simple-path edges are less than 0.2. Similarly, we can re-

move more unreliable edges and break down the complex graph

structure into tips and bubbles. Finally, the tip/bubble removal algo-

rithms are invoked again to further simplify the graph.

3 Results

The new assembler (StriDe) was tested using GAGE-B benchmark

datasets Magoc et al. (2013). GAGE-B provides 12 datasets of gen-

ome sequencing of different bacteria using Illumina HiSeq and

MiSeq platforms. StriDe was compared with seven other well-

known assemblers: ABySS (v1.9.0), CABOG (6.0), MaSurCa

(v3.1.3), SOAPdenovo (v2.04), SGA (v0.10.13), SPAdes (v3.5.0)

and Velvet (v1.2.08). The QUality ASessment Tool (QUAST) was

used to compute and compare various assembly metrics (e.g. N50

and misassembly; Gurevich et al., 2013). The parameters k (k-mer

size) and T (min. k-mer frequency) used by StriDe are fixed to 31

and 3 across all GAGE-b experiments, respectively.

3.1 Percentages of extended and decomposed reads
The two major features of the StriDe assembler are the decompos-

ition and extension of paired-end reads prior to assembly. Figure 10

shows a comparison of the percentages of extended, decomposed, or

unchanged reads in the 12 datasets. The median ratios of extended,

decomposed and unchanged reads are 52%, 13% and 25%, respect-

ively. An individual ratio varies a lot depending on the sequencing

quality of different datasets. The extended ratio can be more than

70% for high-quality sequencing (e.g. A:hydrophila HiSeq). The

majority of reads are extended to the length of the expected insert

size (i.e. 200–600 bp), and StriDe can take advantage of long reads,

just as OLC/string graph assemblers can. On the other hand, the

decomposed ratio can be as high as 90% for low-quality sequencing

(e.g. R:sphaeroides MiSeq). This observation implies that most reads

are decomposed into short subreads, and StriDe will act like de

Bruijn graph assemblers. In general, the MiSeq datasets are of lower

quality and are frequently decomposed in comparison with HiSeq

datasets. Note that even in a single dataset, the sequencing quality

still varies substantially across the entire genome because of the

sequencing bias. The adaptive decomposition or extension of reads

by StriDe is robust in the face of such quality variance within or be-

tween datasets.

3.2 Assembly results of Short-read datasets
StriDe was compared with the seven assemblers using eight short-

read datasets in GAGE-b. Table 1 lists the N50 values of eight

short-read datasets (� 100 bp) assembled by all the assemblers. The

results indicate that the StriDe assembler outperforms most assem-

blers in terms of contiguity. In general, MaSurCa, SPAdes and

StriDe usually output the largest assembly across all datasets. The

number of misassemblies, indel rates and other accuracy metrics areFig. 8. The simple-path statistic of overlap ratios collected from the

A.hydrophila dataset in GAGE-b. We can thus remove edges with low overlap

ratios and reapply bubble/tip removal algorithms to further simplify the

graph

Fig. 9. Simple path statistic of overlap differences collected from the A:hydro

phila dataset. Chimeric edges have large differences of overlap ratios and

tend to be removed

Fig. 10. The percentages of extended, decomposed and unchanged reads

across the 12 datasets. The percentages of decomposed reads can be as high

as 90% and as low as 10% owing to various sequencing quality
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listed in Table 2 and Supplementary Tables S4–S15. Note that only

a subset of species is available with reference genomes. The results

indicated that most assemblers (including StriDe) control misassem-

bly (misassembled contigs) quite well, except for CABOG, MaSurCa

and SOAPdenovo, which are slightly worse than the others. In terms

of smaller assembly errors (e.g. mismatches/indels), the accuracy of

most assemblers is high in general (Supplementary Tables S4–S15).

Although ABySS, CABOG, MaSurCa and SOAPdenovo are slightly

worse on a few datasets (e.g. Vibrio cholerae HiSeq), the accuracy

does not differ much.

3.3 Assembly results of long-read datasets
The GAGE-B also provides four datasets of long reads (� 250 bp)

from the Illumina MiSeq platform. We compared StriDe with the

other assemblers on these datasets. Table 1 lists the N50 values of

each bacterial genome assembled by different methods. The results

indicate that SPAdes and StriDe outperform the others across the

four datasets. The Bacillus cereus dataset is from a longer library of

600 bp, and both SPAdes and StriDe perform quite well on this data-

set. This observation meets our expectations because StriDe gener-

ates longer reads from paired-end reads, and SPAdes constructs a

paired de Bruijn graph from paired-end reads. Both methods make

good use of the long library for resolving larger repeats. On the

other hand, SGA and CABOG are OLC/string graph assemblers but

do not perform better than StriDe over these long reads and perform

even worse than de Bruijn assemblers. This result is mainly due to

lower sequencing quality of long reads on the MiSeq platform,

where a greater number of error-prone reads is generated.

Consequently, the read decomposition of StriDe greatly facilitates

the assembly of error-prone reads.

3.4 Computation resource
All the experiments were conducted on a Dell R816 server with 48

cores and 256 GB of RAM. The running time (including FM-index

construction, error correction and overlap computation) was ap-

proximately 20–40 min for completion of the assembly of each

GAGE-B dataset. The memory consumption ranged from 1 to

2 GB across 12 datasets, due to compression of the FM-index and

assembly graph (see Supplementary Methods, Section 1.1). The

extra disk usage is much lower than that of input reads. The con-

structed FM-indices range from 27 to 237 MB, and graph sizes

from 6 to 40 MB.

4 Conclusion

This article presents a novel assembler (StriDe) with advantages

from string and de Bruijn graphs. Many essential components of

an assembler were developed or improved. An initial test over vari-

ous Illumina short-/long-read datasets showed that StriDe can as-

semble through error-prone and repetitive regions using

decomposed and extended reads, respectively. The entire imple-

mentation is largely inherited from two open-source projects: Li’s

ropebwt2 and Simpson’s SGA. The proposed assembler is still

lacking a scaffolding module although third-party scaffolding pro-

grams can be incorporated.
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Table 1. Assembly contiguity (N50 in kb) of eight short-read (HiSeq) and four long-read (MiSeq) datasets from GAGE-b

Assembler Platform ABySS CABOG MaSuRCa SOAPdenovo SGA SPAdes Velvet StriDe

Aeromonas hydrophila HiSeq 237.7 278.4 838.5 243.9 67.1 237.6 184.4 827.8

Bacillus cereus VD118 HiSeq 41.6 61.1 75.2 57.9 20.5 78.6 38.9 90.6

Bacteroides fragilis HiSeq 116.3 94.2 99.7 116.1 45.0 127.4 125.2 151.5

Mycobacterium abscessus HiSeq 128.5 78.2 147.4 147.2 28.7 278.4 60.3 298.0

Rhodobacter sphaeroides HiSeq 115.8 11.2 36.4 10.5 4.8 173.3 13.1 175.1

Staphylococcus aureus HiSeq 99.2 102.8 228.9 146.3 39.9 148.1 122.5 222.2

Vibrio cholerae HiSeq 172.6 48.8 167.9 106.5 23.8 344.0 39.5 356.0

Xanthomonas axonopodis HiSeq 74.1 105.8 115.7 74.2 48.9 117.2 83.0 113.0

Bacillus cereus ATCC MiSeq 139.1 150.5 270.1 246.3 18.9 311.1 24.5 340.7

Mycobacterium abscessus MiSeq 68.5 8.3 18.2 113.3 26.5 343.8 41.5 233.6

Rhodobacter sphaeroides MiSeq 21.4 30.5 130.6 33.5 9.2 132.2 24.2 130.5

Vibrio cholerae MiSeq 60.3 32.5 46.3 106.5 46.2 356.1 67.1 344.1

Table 2. The number of misassemblies by each assembler on short-read (HiSeq) or long-read (MiSeq) datasets

Assembler Platform ABySS CABOG MaSuRCa SGA SOAPdenovo SPAdes Velvet StriDe

B.cereus VD118* HiSeq 1 (140.14) 0 (281.24) 3 (235.23) 0 (97.50) 1 (127.95) 1 (115.88) 0 (108.65) 1 (115.44)

M.abscessus HiSeq 3 (0.98) 7 (5.81) 7 (3.58) 1 (0.43) 9 (0.67) 5 (0.48) 4 (0.74) 5 (0.43)

R.sphaeroides HiSeq 9 (5.37) 4 (1.55) 5 (2.13) 1 (0.30) 2 (1.94) 2 (1.19) 2 (0.31) 3 (0.70)

V.cholerae HiSeq 3 (3.98) 20 (6.84) 16 (6.00) 3 (2.60) 21 (3.67) 7 (3.03) 5 (3.37) 3 (2.85)

B.cereus ATCC MiSeq 6 (4.60) 4 (2.37) 8 (2.13) 5 (2.60) 2 (2.13) 0 (2.72) 3 (2.64) 1 (2.16)

M.abscessus MiSeq 2 (0.44) 122 (0.74) 70 (0.47) 7 (0.33) 5 (0.69) 6 (0.40) 72 (0.56) 5 (0.49)

R.sphaeroides MiSeq 12 (4.71) 6 (0.46) 12 (1.56) 2 (0.40) 1 (0.40) 3 (1.20) 2 (0.62) 3 (0.39)

V.cholerae MiSeq 2 (2.64) 17 (3.35) 24 (3.47) 3 (2.75) 16 (3.25) 8 (2.83) 14 (2.80) 5 (2.69)

The misassembled-indel rate (per 100 kb) is shown in parentheses. A complete set of metrics is provided in Supplementary Tables S4–S15. Only a few species

are available with the reference of the same strain.

*The reference genome of B.cereus VD118 is not available and was replaced with that of B.cereus ATCC.
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