
Resource

Efficient de novo assembly of large genomes
using compressed data structures
Jared T. Simpson and Richard Durbin1

Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom

De novo genome sequence assembly is important both to generate new sequence assemblies for previously uncharac-
terized genomes and to identify the genome sequence of individuals in a reference-unbiased way. We present memory
efficient data structures and algorithms for assembly using the FM-index derived from the compressed Burrows-Wheeler
transform, and a new assembler based on these called SGA (String Graph Assembler). We describe algorithms to error-
correct, assemble, and scaffold large sets of sequence data. SGA uses the overlap-based string graph model of assembly,
unlike most de novo assemblers that rely on de Bruijn graphs, and is simply parallelizable. We demonstrate the error
correction and assembly performance of SGA on 1.2 billion sequence reads from a human genome, which we are able to
assemble using 54 GB of memory. The resulting contigs are highly accurate and contiguous, while covering 95% of the
reference genome (excluding contigs <200 bp in length). Because of the low memory requirements and parallelization
without requiring inter-process communication, SGA provides the first practical assembler to our knowledge for
a mammalian-sized genome on a low-end computing cluster.

[Supplemental material is available for this article.]

The cost of DNA sequencing continues to fall rapidly, faster than

Moore’s law for computing costs (Stein 2010). To keep pace with

the increasing availability of sequence data, ever more efficient

analysis algorithms are needed. This is of particular importance

when performing de novo assembly of large genomes where data

sets can be up to hundreds of gigabases in size. As de novo assembly

typically requires performing queries over the entire set of se-

quence reads, very large data sets present a practical problem for

the developers and users of assembly software. Currently avail-

able assemblers require either a single computer with very large

amounts of memory—typically in the hundreds of gigabytes (Li

et al. 2010b; Gnerre et al. 2011)—or a large distributed cluster of

tightly coupled computers (Simpson et al. 2009; Boisvert et al.

2010). Recently Conway and Bromage (2011) described a method

of encoding a de Bruijn graph using sparse bitmaps, and showed

how this could be used in principle for genome sequence assembly

in reduced memory.

We have pursued an alternative approach by developing al-

gorithms that operate over a compressed representation of the full

set of sequence reads. By using compressed data structures, we

exploit the redundancy present in the collection of sequence reads

to substantially lower the amount of memory required to perform

de novo assembly. Previously, we described a space and time effi-

cient algorithm (Simpson and Durbin 2010) to construct an as-

sembly string graph (Myers 2005) from an FM-index (full-text

minute-space index, Ferragina and Manzini 2000). Here we present

a practical implementation including new and extended algo-

rithms which perform queries over a compressed FM-index to er-

ror-correct, assemble, and scaffold large sets of sequence reads. We

have implemented these algorithms in a new assembler called SGA

(String Graph Assembler).

Most short read assemblers rely on the de Bruijn graph model

of sequence assembly, which requires breaking the reads into

k-mers (Pevzner et al. 2001). By breaking up the reads, genomic re-

peats of length greater than k will be collapsed in a de Bruijn graph.

Typically, de Bruijn graph assemblers attempt to recover the in-

formation lost from breaking up the reads, and attempt to resolve

small repeats, using complicated read threading algorithms. SGA

avoids this problem by using the string graph model of assembly.

The string graph model keeps all reads intact and creates a graph

from overlaps between reads (see Methods). SGA is one of the first

assemblers to implement a string graph approach for assembling

short reads and the first assembler to exploit a compressed index

of a set of sequence reads. It is our view that compression based

sequence analysis algorithms will become increasingly important

as the number (and size) of full genome sequence data sets con-

tinues to grow. Because the most time-consuming parts of our al-

gorithm are parallelizable without the need for inter-process com-

munication, and our memory requirements for a human genome

are under 64 GB per node, SGA now provides a practical assembler

for a mammalian-sized genome on a low-end computing cluster.

Results

Algorithm overview

The SGA algorithm is based on performing queries over an FM-

index constructed from a set of sequence reads. The SGA pipeline

begins by preprocessing the sequence reads to filter or trim reads

with multiple low-quality or ambiguous base calls. The FM-index is

constructed from the filtered set of reads and base-calling errors are

detected and corrected using k-mer frequencies. The corrected

reads are re-indexed then duplicated sequences are removed,

remaining low-quality sequences are filtered out, and a string

graph is built. Contigs are assembled from the string graph and

constructed into scaffolds if paired-end or mate-pair data are

available. Figure 1 depicts the flow of data through the SGA pipe-

line. Further details are given in the Methods section below and in

the Supplemental Material.

1Corresponding author.
E-mail rd@sanger.ac.uk.
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.126953.111.
Freely available online through the Genome Research Open Access option.

22:549–556 � 2012 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/12; www.genome.org Genome Research 549
www.genome.org

mailto:rd@sanger.ac.uk

To demonstrate the performance of SGA and its ability to scale

to large genomes we have performed error correction and assembly

across a range of genome sizes, from bacteria to mammalian. In the

following sections, we focus on the assembly of contigs and scaf-

folds from a single library of high quality short-range paired-end

reads. We note however that in doing so we are not addressing the

ability to build very large scaffolds using additional long range mate-

pair data.

Assembly performance assessment

To assess the performance of SGA we performed assemblies of the

nematode Caenorhabditis elegans using SGA and three other as-

semblers. The Velvet assembler (Zerbino and Birney 2008) was one

of the first de Bruijn graph-based assemblers for short reads and has

become a standard tool for assembling small- to medium-sized

genomes. The ABySS assembler (Simpson et al. 2009) was devel-

oped to handle large genomes by distributing a de Bruijn graph

across a cluster of computers. SOAPdenovo

is also based on the de Bruijn graph and

designed to assemble large genomes (Li

et al. 2010a,b).

C. elegans provides a good real-world

test case for assembly algorithms because

it has a complete and accurate reference

sequence (C. elegans Sequencing Consor-

tium 1998), it propagates as a hermaph-

rodite so the genome of an individual (or

strain) is homozygous and essentially free

of SNPs and structural variants, and the

genome is a reasonable size for evaluation

(100 Mbp). We downloaded C. elegans se-

quence reads (strain N2) from the NCBI

SRA (accession SRX026594). The data set

consists of 33.8M read pairs sequenced

using the Illumina Genome Analyzer II.

The mean DNA fragment size is 250 bp from which reads of length

100 bp were taken from both ends of the fragment. To reduce the

impact of differences between the sequenced individual and the

reference sequence, we called a new consensus sequence for the C.

elegans reference genome (build WS222, www.wormbase.org) based

on alignments of the reads to the reference (see Supplemental

Methods).

As sequence assemblers are often sensitive to the input pa-

rameters, we performed multiple assembly runs with each assem-

bler. The de Bruijn graph assemblers were run for all odd k-mer sizes

between 51 and 73 (inclusive). The k-mer size providing the largest

scaffold N50 was selected for further analysis (67 for ABySS, 61 for

Velvet, 59 for SOAPdenovo). Similarly, for SGA the k-mer size used

for error correction and the minimum overlap parameter for assem-

bly were selected to provide the largest scaffold N50 (k = 41 for error

correction, t = 75 for the minimum overlap). We also performed a

SOAPdenovo assembly using the GapCloser program after scaf-

folding. GapCloser was able to fill in many gaps within scaffolds,

which increased the contig N50 and genome coverage. However,

these increases came at the cost of substantially lowered accuracy.

In the following analysis, we use the SOAPdenovo assembly

without using GapCloser. A comparison of the SOAPdenovo as-

sembly before and after running GapCloser is presented in the

Supplemental Material.

We broke the assembled scaffolds into their constituent contigs

by splitting each scaffold whenever a run of ‘‘N’’ bases was found.

We filtered the contig set by removing short contigs (<200 bp in

length). The remaining contigs were aligned to the consensus-cor-

rected reference genome using BWA-SW (Li and Durbin 2010) with

default parameters. We considered a number of different assessment

criteria, which are described below and summarized in Table 1.

Substring coverage

For the first assessment, we sampled strings from the consen-

sus sequence and tested whether they were exactly present in the

contigs. We sampled 10,000 strings of length from 50 bp up to

5000 bp. This assessment combines three measures; the contigs

must be accurate (as exact matches are required), complete (as the

string must be present in the contig), and contiguous (as strings

broken between multiple contigs will not be found). Figure 2 plots

the proportion of strings found in the contigs as a function of the

string length. All assemblers perform well for short strings (50 to

100 bp). For longer string lengths, SGA outperforms the other three

assemblers.

Figure 1. High-level diagram of the SGA assembly pipeline. The as-
sembly has three main stages: error correction, contig assembly, and
scaffolding. The error correction stage starts by building an FM-index for
the reads (sga index) then performing error correction (sga correct). The
assembly stage takes the corrected reads as input, re-indexes them,
removes duplicate and low-quality reads, then constructs contigs. The
scaffolding stage realigns the original reads to the contigs using BWA,
constructs a scaffold graph using the alignments, and outputs a final set of
scaffolds in FASTA format. For clarity, minor steps of the pipeline have
been omitted from the diagram.

Table 1. Assembly statistics for C. elegans data set

SGA Velvet ABySS SOAPdenovo

Scaffold N50 size 26.3 kbp 31.3 kbp 23.8 kbp 31.1 kbp
Aligned contig N50 size 16.8 kbp 13.6 kbp 18.4 kbp 16.0 kbp
Mean aligned contig size 4.9 kbp 5.3 kbp 6.0 kbp 5.6 kbp
Sum aligned contig size 96.8 Mbp 95.2 Mbp 98.3 Mbp 95.4 Mbp
Reference bases covered 96.2 Mbp 94.8 Mbp 95.9 Mbp 95.1 Mbp
Reference bases covered

by contigs $1 kb
93.0 Mbp 92.1 Mbp 93.9 Mbp 92.3 Mbp

Mismatch rate at all
assembled bases

1 per 21,545 bp 1 per 8786 bp 1 per 5577 bp 1 per 26,585 bp

Mismatch rate at bases
covered by all assemblies

1 per 82,573 bp 1 per 18,012 bp 1 per 8209 bp 1 per 81,025 bp

Contigs with split/bad
alignment (sum size)

458 (4.4 Mbp) 787 (7.2 Mbp) 638 (9.1 Mbp) 483 (4.4 Mbp)

Total CPU time 41 h 2 h 5 h 13 h
Max memory usage 4.5 GB 23.0 GB 14.1 GB 38.8 GB

550 Genome Research
www.genome.org

Simpson and Durbin

http://www.wormbase.org

Assembly contiguity

We assessed the contiguity of the assemblies by calculating the

contig alignment length N50. By analyzing the contig alignment

lengths, as opposed to the length of contigs themselves, we ac-

count for misassembled contigs that can inflate the assembly sta-

tistics. For SGA, contig alignments 16.8 kbp and greater covered

50% of the reference genome (50 Mbp). ABySS, SOAPdenovo, and

Velvet had contig alignment N50s of 18.4 kbp, 16.0 kbp, and 13.6

kbp, respectively.

Assembly completeness

The contigs assembled by SGA covered 95.9% of the reference ge-

nome. The ABySS assembly covered 95.6%, Velvet covered 94.5%,

and SOAPdenovo covered 94.8%. Supplemental Figure 1 plots the

reference genome coverage as a function of minimum contig align-

ment length.

Assembly accuracy

We assessed both the structural accuracy and the per-base mis-

match rate of the contigs. First, we categorized the contig align-

ments into three groups. The first group (‘‘full-length’’) contains

contigs that had a single alignment to the reference containing at

least 95% of the contig length. The second group (‘‘split’’) con-

tained contigs that had two alignments to the same chromosome

in close proximity (<10,000 bp). These split contigs may either

contain local assembly errors, or structural variation (for example

a large insertion or deletion) with respect to the reference. All

remaining alignments (‘‘bad’’) were partially aligned (<95% of the

contig aligned to the reference), aligned to multiple chromosomes,

aligned in greater than two pieces, or did not align to the reference

at all. For all assemblies a substantial proportion of the contigs was

found to match the Escherichia coli genome. As C. elegans eat E. coli,

this is an expected contaminant and one might suspect other

bacterial sequences to also be present. For this reason contigs that

did not align to the C. elegans reference were not included in this

analysis.

For the first measure of assembly accuracy, we counted the

number and total size of contigs with split or bad alignments. The

accuracy of the SGA and SOAPdenovo contigs was similar—458

contigs for SGA (totaling 4.4 Mbp) and 483 contigs for SOAPdenovo

(4.4 Mbp) had split or bad alignments. Velvet and ABySS had 787

contigs (7.2 Mbp) and 638 contigs (9.1 Mbp) with split or bad

alignments, respectively.

For the second accuracy assessment, we calculated the rate at

which aligned contig bases did not match the reference. In this

assessment, we used the fully aligned contigs only. We evaluated

each assembly at all reference positions covered by its contigs, and

also at the subset of positions that were covered by all assemblies.

The latter case provides a fairer basis for comparison, removing the

effect of differences of coverage of repetitive or complex sequence

between the four assemblies. The results are summarized in Table

1. Again, the accuracy of the SGA and SOAPdenovo assemblies was

comparable, and both were more accurate than Velvet and ABySS.

The mismatch rate of the SGA assembly at reference positions

assembled by all four programs was ;1 mismatch per 83 kbp.

SOAPdenovo, Velvet, and ABySS had error rates at shared positions

of 1 per 81 kbp, 1 per 18 kbp, and 1 per 8 kbp, respectively.

Computational requirements

Of the four assemblers, SGA used the least memory (4.5 GB vs. 14.1

GB, 23.0 GB and 38.8 GB for ABySS, Velvet and SOAPdenovo, re-

spectively). The de Bruijn graph assemblers were considerably

more computationally efficient, however, as the SGA assembly re-

quired approximately eight times more CPU hours than ABySS, 20

times more than Velvet, and three times more than SOAPdenovo.

This speed difference is largely due to the time required to build

the FM-index. However, we can reuse one FM-index for multiple

runs of SGA, for instance to try different error correction or assem-

bly parameters, whereas the de Bruijn table for ABySS, Velvet, and

SOAPdenovo must be recalculated for each choice of k.

Whole human genome assembly

As a second demonstration, we assessed the ability of SGA to scale

to very large data sets by assembling a human genome. We down-

loaded 2.5 billion reads (252 Gbp of sequence) for a member of the

CEU HapMap population (identifier NA12878) sequenced by the

Broad Institute (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/

working/20101201_cg_NA12878/NA12878.hiseq.wgs.bwa.raw.bam).

The reads are 101 bp in length from a paired-end insert library of

380 bp mean separation. As the total sequence depth is 843, we

chose to only assemble half the data to reflect typical coverage

depths seen for human shotgun sequence data sets.

We constructed an FM-index for subsets of 20 million reads at

a time, then iteratively merged the sub-indices in pairs to obtain a

single FM-index for the entire data set. We ran the error correction

process using a cluster of computers. Each process used the full FM-

index to correct 20 million reads. An FM-index was constructed for

the corrected reads, duplicate and low-quality reads were removed,

and nonbranching chains of reads were merged together. A string

graph was constructed from the merged sequences using a mini-

mum overlap parameter of 77. We realigned the reads to the resulting

contig set using BWA (Li and Durbin 2009) and constructed scaffolds.

In total, the assembly took 1427 CPU hours across 140 wall

clock hours, just under 6 d. The most compute intensive stages

were error-correcting the reads and building the FM-index of the

corrected reads, which each required 355 CPU hours. However,

these stages were distributed across a cluster of computers by

Figure 2. Reference string coverage analysis for the C. elegans N2 as-
sembly. For string lengths from 50 bp up to 5000 bp, 10,000 strings were
sampled from the consensus-corrected C. elegans reference genome. The
proportion of the strings found in the SGA, Velvet, ABySS, and SOAPdenovo
assemblies is plotted.

Genome assembly using compressed data structures

Genome Research 551
www.genome.org

simply splitting the input data, substantially reducing the elapsed

(wall clock) time. We ran 123 indexing/merging processes and 63

correction processes; the elapsed time for these stages was 32 and

1 h, respectively. The post-correction read filtering stage—where

duplicate and low-quality reads are discarded—was the memory

high-water mark, requiring 54 GB of memory. Complete details of

the running time and memory usage for each stage of the assembly

can be found in Supplemental Table 1.

We also assembled the data with SOAPdenovo (Li et al. 2010b).

We first error-corrected the reads using the SOAPdenovo error cor-

rection tool then performed three assemblies, with k-mer sizes 55,

61, and 67. The 61-mer assembly had the largest scaffold and

contig N50 and was used for the subsequent analysis. The 61-mer

SOAPdenovo assembly (including error correction) required 479

CPU hours across 121 wall clock hours. The maximum amount of

memory used was 118 GB. As with the C. elegans assembly, we did not

use the SOAPdenovo GapCloser.

We evaluated the assemblies in terms of contiguity, com-

pleteness and accuracy. As in the C. elegans analysis, we broke the

assembled scaffolds into their constituent contigs, filtered out

contigs <200 bp in length, then aligned the remaining contigs to

the human reference genome (build GRC 37) using BWA-SW (Li

and Durbin 2010).

The SGA contig alignments cover 2.69 Gbp of the human

reference autosomes and chromosome X (95.0% of the non-‘‘N’’

portions of these chromosomes). The SOAPdenovo contigs cover

2.65 Gbp of the human reference (93.6%). The SGA contig align-

ment N50 is 9.4 kbp and the SOAPdenovo contig alignment N50 is

6.6 kbp. The corresponding raw contig N50s are 9.9 kbp and 7.2

kbp. Figure 3 plots the amount of the reference genome covered by

each assembly as a function of the minimum contig alignment

length. Across all contig alignment lengths, the SGA assembly

covered more of the reference genome than SOAPdenovo. In con-

trast, SOAPdenovo gave larger scaffolds (N50 length of 34.8 kbp

compared with 25.1 kbp for SGA), though the single short insert

library for this data set limits the ability to build larger scaffolds.

The overall assembly accuracy for both SGA and SOAPdenovo

was high; 94.5% of SGA contigs (totaling 2.64 Gbp) had full-length

alignments to the reference genome, 1.1% (68 Mbp) had split

alignments, and 4.3% (50 Mbp) had low-quality alignments or did

not align at all; 96.8% of the SOAPdenovo contigs had a full-length

alignment to the reference (totaling 2.60 Gbp), 1.0% had split

alignments (53 Mbp), and 2.2% (33 Mbp) had low-quality align-

ments or did not align to the reference at all. This is consistent with

the SGA assembly being a little larger, covering a little more of the

reference but also containing a little more additional material.

We also calculated the per-base mismatch rate of the contigs

using the same methodology as the C. elegans assembly. In this

case, we used the human reference genome combined with SNP

calls produced by the Broad Institute in the same individual from

the same data set by a mapping rather than assembly based ap-

proach (Depristo et al. 2011). We only counted mismatches at

positions that did not match the reference and did not match

a Broad SNP call. We also calculated the mismatch rate at the subset

of positions assembled by both SGA and SOAPdenovo. As both

SNP calling and assembly can be confused by genomic repeats and

segmental duplications, we also calculated the per-base accuracy at

positions of the reference that are not masked by RepeatMasker

(http://www.repeatmasker.org) and not annotated as segmental

duplications (1.3 Gbp of the reference genome remains after this

filter). Both assemblies were highly accurate. The mismatch rate for

SGA over all covered positions of the reference was 1 per 3574 bp.

For SOAPdenovo, the mismatch rate was 1 per 4285 bp. If we only

consider reference positions covered by a contig from both as-

semblies, the mismatch rates are 1 in 4325 bp for SGA and 1 per

5041 bp for SOAPdenovo. When restricting the analysis to posi-

tions not masked by RepeatMasker and not annotated as seg-

mental duplications, the mismatch rate is 1 per 52,464 bp for SGA

and 1 per 51,125 for SOAPdenovo. At positions assembled by both

programs and not masked as repeats or segmental duplications, the

mismatch rates are 1 per 59,884 bp and 1 per 60,511 bp, for SGA

and SOAPdenovo, respectively.

We note that both the contig mismatches and the mapping-

based SNP calls will contain false-positive variants due to mapping

errors between the contig or read sequences and the reference.

These false positives will have an opposing effect; if the contig

sequence is misaligned to the reference, we may count a mismatch

in the assembly that is not truly present. This will cause the error

rate in the assembly to be overestimated. It is also possible that

false positives from misalignments in the mapping-based call set

may overlap errors in the assembly. This would lead to an under-

estimate of the assembly error rate. As we cannot assess the mag-

nitude of these effects, it is difficult to accurately estimate the true

base-level error rate in the assemblies. However, if we conserva-

tively consider all remaining mismatches to be assembly errors, it

would indicate the per-base accuracy of the SGA and SOAPdenovo

assemblies are very similar and better than 1 error in 50 kbp in

nonrepetitive regions. The accuracy of SGA is supported by an

independent assessment of our assembler’s performed during the

Assemblathon competition (see Discussion).

Error correction performance

The SGA error corrector is a standalone component of the assembly

pipeline. We evaluated the error corrector on publicly available

sequence data for E. coli K12 MG1655. As the reference genome for

this strain is completely sequenced, we compared the error cor-

rected reads with the reference genome to assess the performance

Figure 3. The amount of the human reference genome covered by
a contig as a function of the minimum contig alignment length. For each
length L on the x-axis, contig alignments less than L bp in length were
filtered out and the amount of the reference genome covered by the
remaining alignments was calculated.

Simpson and Durbin

552 Genome Research
www.genome.org

http://www.repeatmasker.org

of the error correction algorithm. We constructed two read sets of

203 and 503 by randomly sampling from a data set of 14.2 million

read pairs with read length 100 bp downloaded from the European

Nucleotide Archive (accession ERA000206). For comparison we

also ran the recently published error correction software Quake

(Kelley et al. 2010) and HiTEC (Ilie et al. 2011). Like SGA, Quake is

based on k-mer frequency analysis. HiTEC uses a suffix array to

compute substrings of the reads that support each base call at

a given position. As both SGA and Quake have multiple input

parameters, most importantly the k-mer length, we ran multiple

trials of these programs. Details of the parameters used are pro-

vided in the Supplemental Methods. HiTEC does not require

parameter tuning, hence a single run was performed for each

data set.

We evaluated the error correction performance in terms of

yield (the number of bases aligned to the reference genome after

correction), error rate after correction both in the reads and in as-

sembled contigs made from the reads, and the assembly N50 of the

corrected reads. We also evaluated the computational requirements

of the three algorithms. The results are presented in Tables 2 and 3.

Of the three programs, SGA and HiTEC had the largest assembly

N50 after correction (17.1 kbp and 48.8 kbp for SGA, 15.2 kbp and

42.0 kbp for HiTEC for the 203 and 503 data sets, respectively).

Quake had the lowest post-correction error rate in the reads and

the highest number of perfect reads; however, the assembly N50

was significantly lower than the other two programs. For all three

programs, the mismatch rate of the assembled contigs was much

lower than that of the corrected reads. For the 503 data set, the

mismatch rate of the contigs for the SGA-corrected data set was

1 per 328 kbp (1 per 208 kbp for Quake, 1 per 138 kbp for HiTEC).

These differences are likely due to how uncorrectable reads are

handled by the three programs. SGA and HiTEC report all reads,

even if the reads contained errors that could not be corrected.

Quake trims the end of a read if it detects an uncorrectable error. By

trimming the reads, Quake is able to discard erroneous portions of

reads that the other two programs kept. However, this trimming

appears to remove effective coverage of some regions of the ge-

nome, which thereby lowered the assembly N50. SGA gives the

best overall performance when evaluated in terms of assembly

properties.

SGA required substantially less memory than the other two

programs (2.5 times less than Quake and nine times less than

HiTEC on the 203 data set). Notably, the memory usage for SGA

was the same on the 203 and 503 data set as the memory high-

water mark in both runs was building the Burrows-Wheeler trans-

form for subsets of 100,000 reads, which were then merged into the

final FM-index (see Distributed Construction of the FM-Index in the

Methods).

Discussion

Genome assembly remains one of the most difficult computa-

tional problems in genomics. As DNA sequencing throughput has

risen, it has increased again in importance in recent years. Numerous

large-scale projects are under way to sequence unexplored genomes

across a wide range of species (Genome 10K Community of Scien-

tists 2009). Accurate and complete assembly of human genomes is

still a problem that holds great interest as people begin to focus on

individual differences. It has been recently demonstrated that with

careful selection and assembly of large-insert mate-pair libraries

highly contiguous and complete assemblies of mammalian genomes

can be generated (Li et al. 2010a; Gnerre et al. 2011). However, a

primary algorithmic challenge of assembly, the amount of memory

required, has remained. It is this problem in particular that we have

addressed in this paper. We have demonstrated that a full assembler

can be developed using a compressed representation of the sequence

reads and that a human genome can be assembled in under 64 GB

of memory. This is an important milestone as it may now make it

possible to assemble large genomes using commodity computing

services like Amazon EC2.

We have compared SGA with three established de novo as-

semblers: ABySS, Velvet, and SOAPdenovo. The performance of

SGA has also been validated in a complementary comparison by

a recent collaborative de novo assembly assessment project, the

Assemblathon, organized by UC Santa Cruz and UC Davis. The

organizers publically released simulated paired-end and mate-pair

reads from a 112 Mbp diploid genome generated by simulated

evolution. In this assessment, SGA had the largest scaffold path

N50 (a measure of scaffold length, corrected for assembly errors),

the lowest number of substitution errors, and the second lowest

number of structural errors (Earl et al. 2011). Overall, SGA placed

third out of 17 groups, behind ALLPATHS-LG and SOAPdenovo (Li

et al. 2010b; Gnerre et al. 2011). While the Assemblathon results

are encouraging, they also help to identify areas in which we can

improve. For example, the SGA scaffold lengths were comparable

to the leading assemblies; however, the contig lengths in this

comparison were shorter. This is likely due to our conservative

post-scaffolding gap resolution procedure, an area in which we can

improve.

Although the primary output of SGA is a haploid sequence,

it also keeps track of all variant sequences present in the string

graph that were removed during contig generation, together

with the corresponding sequence that was retained. It is there-

fore possible to call heterozygous positions in a diploid genome,

including both single nucleotide variants and insertions and

deletions.

There are a number of other future avenues to pursue. Use of an

FM-index rather than a hash table could

allow dynamic selection of the k-mer pa-

rameter in error correction and the overlap

threshold in sequence assembly, without

recalculation of new indices. New se-

quencing technology is becoming avail-

able that promises longer read lengths

(Korlach et al. 2010). Incorporating long

read data with higher-coverage short reads

is particularly well suited to the string

graph model of assembly as the long reads

do not need to be broken into k-mers. The

compute time of SGA is largely dependent

on the time required to construct a BWT

Table 2. Error correction summary for E. coli 203 data set

Uncorrected SGA Quake HiTEC

Total bases 92.8 Mbp 92.8 Mbp 84.9 Mbp 92.8 Mbp
Aligned bases 83.4 Mbp 86.8 Mbp 82.3 Mbp 88.7 Mbp
Error rate 1 per 147 bp 1 per 1777 bp 1 per 7522 bp 1 per 1505 bp
Perfect reads 553,886 848,370 880,478 865,001
Assembly N50 — 17.1 kbp 9.6 kbp 15.2 kbp
Contig mismatch rate — 1 per 188 kbp 1 per 111 kbp 1 per 21 kbp
Total CPU time — 511 sec 368 sec 644 sec
Max memory use — 206 MB 527 MB 1845 MB
Parameters — k = 17 k = 16, c = 1 —

Genome assembly using compressed data structures

Genome Research 553
www.genome.org

from a large collection of strings. By incorporating recent advances

in this area (Bauer et al. 2011), we could substantially reduce the

running time of our program. Finally, our compression-based anal-

ysis methods have applications outside traditional genome assem-

bly. In particular the analysis of metagenomics data is a potential

application of our algorithms as the data sets routinely reach hun-

dreds of gigabases in size and reference genomes are typically not

available for a substantial fraction of the species sequenced.

Methods

Overview
We previously described an algorithm to construct an assembly
string graph (Myers 2005) for a set of error-free sequence reads
using the FM-index (Simpson and Durbin 2010). Here, we expand
upon this work and describe algorithms to correct base calling er-
rors, remove duplicate sequences and construct contigs and scaf-
folds for real sequencing data. SGA is implemented as a modular
pipeline, which allows it to be easily extended as improved algo-
rithms are developed or sequencing technology changes. In this
section we present the algorithmic principles of SGA, which are
further described in the Supplemental Material.

Definitions and notation

Let X be a string of symbols a1,. . .,al from an alphabet S. The length
of string X is denoted by |X|. A substring of X is denoted by X[i,j]
where 1 # i # j # |X|. A substring of the form X[1, i] is a prefix of X
and a substring X[k, |X|] is a suffix of X. We use X to denote the
reverse complement of a string.

Let R be an indexed set of strings (or sequence reads) where
Ri denotes the i-th string in the collection. For convenience, we
consider each string in R to be terminated with a unique symbol $i,
where $i < $j iff i < j. The suffix array of R is defined as SAR[i] = (j, k)
iff Rj[k, |Rj|] is the i-th lexicographically lowest suffix in R. The
Burrows-Wheeler transform (Burrows and Wheeler 1994) of R can
be defined in terms of the suffix array as follows. Let SAR[i] = (j, k)
be an element of the suffix array. The corresponding element of the
BWT of R is:

BR i½ �= Rj k�1½ �
$

�
if k > 1
if k = 1

:

FM-index fundamentals

The FM-index is a data structure developed by Ferragina and
Manzini (2000) to allow efficient searching of a compressed rep-
resentation of a text, T. The FM-index is built from the Burrows-
Wheeler transform of T by defining two auxiliary data structures.

Let C(a) be the number of occurrences in
Tof symbols lexicographically lower than
symbol a. Let Occ(a,i) be the number of
occurrences of a in the substring BT[1,i].
Ferragina and Manzini showed that, with
these two structures, the number of oc-
currences of a pattern W in T can be
found in O(|W|) time using an iterative
pattern-growth procedure. The locations
of W in T can be found in O(|W| + n) time
where n is the number of occurrences.
These procedures, and our method for
performing inexact overlap matches
between reads using a seed-and-extend

strategy, are described in the supplement.
The Burrows-Wheeler transform is a permutation of the origi-

nal text. As the BWT sorts repeated substrings into contiguous in-
tervals, the string BT contains runs of repeated symbols. This allows
efficient compression of BT using run-length encoding. This com-
pression strategy is particularly effective for high-coverage sequenc-
ing data as the lengths of runs in BT are dependent on the depth of
coverage. The SGA implementation of the FM-index encodes a
<symbol, run> pair using a single byte to encode runs of up to 32
symbols. On average, five to eight symbols are stored per byte for
high coverage (>203) 100 bp read data, depending on the error rate
of the reads.

Graph-based assembly

Graph-based assembly algorithms model the assembly problem as
a set of strings (as vertices) and their relationship to each other (as
edges). The problem of reconstructing the source genome can be
cast in terms of finding a walk through the graph. An overlap graph
is formed from a set of reads R by finding all pairwise overlaps of
length at least t between members of R. We say that two reads X
and Yoverlap when a suffix of X matches a prefix of Yor vice versa.
In this case, we place a bidirected SP-edge (suffix/prefix) into the
overlap graph linking X and Y. If a prefix of X matches a reverse-
complemented prefix of Y, we place a PP-edge in the graph. Edges
of type SS are defined similarly.

The string graph can be derived from the overlap graph by
first removing duplicate reads (distinct elements of R with the same
or reverse-complemented sequence) and contained reads (elements
in R that are a substring of some element in R or their reverse
complements), then removing transitive edges from the graph. We
say that an edge X!Z is transitive if the graph contains the edges
X!Y and Y!Z and the directions of the edges are compatible
(X!Y and X!Z must both represent suffix [or prefix] overlaps for
X and so on). Informally, the edge X!Z is transitive if the path
X!Y!Z ‘‘spells’’ the same string as X!Z. We call the non-
transitive edges of the overlap graph irreducible and the subgraph
containing only the irreducible edges the string graph. Our pre-
vious work described an algorithm for directly constructing the
string graph without the need to explicitly construct the full
overlap graph. This was achieved by developing a function to com-
pute the set of irreducible overlaps for a given read using the FM-
index. We refer to Simpson and Durbin (2010) for further details.

Distributed construction of the FM-index for large read sets

We begin with the construction of the FM-index for the complete
set of reads. A naive algorithm would first build a suffix array of R
from which BR is easily computed. The full suffix array requires
nlog(n) bits of memory where n is the total number of bases in the
read set. For a human genome sequenced to 303 coverage, this

Table 3. Error correction summary for the E. coli 503 data set

Uncorrected SGA Quake HiTEC

Total bases 231.8 Mbp 231.8 Mbp 212.3 Mbp 231.8 Mbp
Aligned bases 208.5 Mbp 216.4 Mbp 205.8 Mbp 221.8 Mbp
Error rate 1 per 148 bp 1 per 1411 bp 1 per 28,174 bp 1 per 1538 bp
Perfect reads 1,386,148 2,099,410 2,221,460 2,164,055
Assembly N50 — 48.8 kbp 26.1 kbp 42.0 kbp
Contig mismatch rate — 1 per 328 kbp 1 per 208 kbp 1 per 138 kbp
Total CPU time — 1470 sec 669 sec 1738 sec
Max memory use — 208 MB 585 MB 4339 MB
Parameters — k = 17 k = 15, c = 4 —

Simpson and Durbin

554 Genome Research
www.genome.org

would require over 400 GB of memory, a prohibitively large
amount. To address this, we have implemented a distributed
construction algorithm that builds an FM-index for each subset of
R, R1,R2,..Rm. We then iteratively merge pairs of the intermediate
indices together using a BWT merging algorithm (Ferragina et al.
2010) until a single index of the entire data set is obtained. As the
space occupancy of the FM-index is typically less than an order of
magnitude smaller than that of a suffix array, this indexing strategy
allows us to efficiently build the FM-index for very large sequence
collections. This construction strategy can be easily parallelized as
the construction of the FM-index for each read subset, and most
merging operations, can be computed independently.

Error correction algorithm

Real sequencing data contains base calling errors. SGA error cor-
rection is currently designed to handle substitution errors, which
are the dominant error mode in the Illumina sequencing platform
(Bentley et al. 2008). We have implemented two error correction
methods. The first is a k-mer frequency-based corrector, which has
been successfully used in other sequence assemblers (Pevzner et al.
2001; Li et al. 2010b). In our implementation, the k-mer frequen-
cies are not stored in a lookup or hash table but rather directly
calculated from the FM-index. This has the advantage of using less
memory and allowing greater flexibility in the parameter choices
as the FM-index can support any value of k unlike a hash table,
which must be reconstructed for each choice of k.

The k-mer correction algorithm begins by classifying each
base call in a given sequence read as trusted or untrusted based on
k-mer frequencies. If position i is covered by a k-mer that is seen in
R at least c times, it is marked as trusted. For the positions that are
not trusted, we test if an alternative base call yields a k-mer cov-
ering the position that is seen more than c times. If no valid cor-
rection exists, or multiple valid corrections are possible, the base is
left unchanged and the error correction for the read terminates. If
a single correction is possible, the correction is accepted and the
procedure continues until all positions are trusted. The minimum
coverage parameter c is conservatively chosen to avoid collapsing
SNPs (if the genome is diploid) or distinct copies of a repeat. This
parameter can either be manually provided or automatically se-
lected by SGA by finding a trough in the k-mer frequency histogram.

The second correction method implemented in SGA is based
on inexact overlaps between reads. A description of this method
can be found in the Supplemental Material. The k-mer based cor-
rector is considerably faster than the overlap-based corrector (ap-
proximately two times faster on the 203 E. coli data set presented
in the results) and is the default method of correction in SGA. Both
correction methods have an option to use sequence base quality of
the read being corrected to vary the coverage threshold c required
to support a base call.

Read filtering

To construct the string graph we require a subset of R consisting of
unique reads. We achieve this by removing exact contained and
duplicate reads. To compute this subset, we use the FM-index to
calculate full-length matches for each read in R. If a read Ri has
a full-length match (including reverse complements) to some
other read Rj we keep Ri iff i < j, otherwise Ri is discarded. Once the
unique subset U of R has been calculated, we do not need to re-
compute the FM-index of U from scratch. The BWT of U can be
derived from the FM-index of R by marking the positions in BR that
correspond to reads that were discarded and exporting the un-
marked positions as BU (Sirén 2009).

Some reads remain uncorrected after error correction. To pre-
vent these sequences from impacting the assembly, we remove
sequences with unique k-mers. By default, this filter requires all 27-
mers in a read to be seen at least twice.

Read merging and assembly algorithm

After correction and filtering, the vast majority of the remaining
reads do not contain errors. We could directly apply our string
graph construction algorithm to these. However, the resulting
graph would have a vertex for every read and therefore require
a substantial amount of memory when assembling very large ge-
nomes. The majority of reads in the initial graph are simply con-
nected (that is, without branching) to two other reads—one
matching a prefix of the read and one matching a suffix. This chain
of reads can be unambiguously merged to reduce the size of the
graph. We have developed an algorithm to locally construct the
assembly graph around each read. For each read, we find the pre-
decessor and successor vertices in the graph by querying the FM-
index for the irreducible edge set. If the read connects to its
neighbors without branching, we continue the search from the
neighboring reads. This search stops when a branch in the graph is
found. This procedure will discover all nonbranching chains in the
graph and allow the chain to be replaced by a single merged se-
quence. As the predecessor/successor queries only require the FM-
index, this merging step requires comparatively little memory
when compared to loading the full graph. Once we have per-
formed this merging step, we build an FM-index for the merged
sequences and use this FM-index to construct the full string graph.
We then perform the standard assembly graph post-processing
step of removing tips from the graph where a vertex only has a
connection in one direction (Chaisson and Pevzner 2008; Zerbino
and Birney 2008; Simpson et al. 2009; Li et al. 2010b).

To account for heterozygosity in a diploid genome, we have
developed an algorithm to find and catalog variation described by
the structure of the graph, similar to the ‘‘bubble-popping’’ ap-
proaches taken by de Bruijn graph assemblers. Let v be a vertex in
the graph which branches (the prefix or suffix of v has multiple
overlaps). Following each branch, we search outwards from v for
a set of walks, W, which meets the following conditions: (1) All
walks terminate at a common vertex u and (2) no vertex visited in
any walk between v and u has an edge to a vertex that is not present
in a walk in W. The first condition ensures that the walks describe
equivalent sequence in G—any assembly of G that visits v and u
must use one of the found walks. The second condition ensures
that the induced subgraph of G described by the walks is self-
contained—we can remove any walk in W without breaking any
walk in G\W. Once a set of walks meeting these conditions has
been found, we select one of the walks to remain in the graph. We
align the sequence described by the other walks to the sequence of
the selected walk and, if the sequence similarity is within tolerance
(by default 95%) in all cases, the nonselected walks are removed
from the graph. We retain the sequences of the removed walks in
a FASTA file to allow the variation present in the genome to be
analyzed after assembly.

Paired-end reads/scaffolding

The final stage of the assembly is to build scaffolds from the contigs
using paired-end or mate-pair data. Similar to other approaches to
scaffolding (Pop et al. 2004), our method is based on constructing
a graph of the relationships between contigs. We begin by realigning
the paired reads to the contigs using BWA. The copy number of each
contig in the source genome is estimated from the read alignments
using Myers’ A-statistic which approximates the log-odds ratio be-

Genome assembly using compressed data structures

Genome Research 555
www.genome.org

tween the contig being unique and a collapsed repeat (Myers 2005).
By default, we classify contigs with an A-statistic $20 as unique and
the remainder as repetitive. We construct a scaffold graph where
each unique contig is a vertex. Contigs linked with read pairs are
connected by a bidirected edge labeled with the estimated gap size
separating the contigs. Paths through this scaffold graph describe
layouts of the contigs into scaffolds.

Our scaffolder first removes ambiguous or likely erroneous
edges from the graph. For each contig in the graph with more than
one edge in a particular direction, we test whether the linked
contigs have an ordering that is consistent with each pairwise
distance estimate. An ordering of contigs C1,C2,. . .,Cn is called con-
sistent if no pair of contigs has an overlap (implied by their positions
in the layout) greater than a bases (a = 400 by default). If the contigs
cannot be consistently ordered, we break the graph by removing all
edges of the affected contigs.

Once the graph has been cleaned of inconsistent edges, we
find and isolate any directed cycles then compute the connected
components of the graph. For each connected component, we find
the terminal vertices of the component (vertices that have an edge
in only one direction) and find all paths between each pair of
terminal vertices. The path containing the largest amount of se-
quence is retained as the primary layout of the scaffold. We note
that, although each of the assemblies presented in this paper is
based on a single library, the SGA scaffolder supports multiple li-
braries of different sizes, as for example presented in the Assem-
blathon paper (Earl et al. 2011).

The scaffolds are represented as an alternating list of contigs
and gaps—C1,g1,C2,g2,. . .,Cn. We attempt to fill in the gaps through
a two-stage process. Let Ci and Cj be two adjacent contigs separated
by a distance of gi. As Ci and Cj are vertices in the string graph we
previously constructed, we search the string graph for a walk
connecting these vertices with the constraint that the total walk
length can be no larger than |Ci| + |Cj| + gi + ui where ui allows for the
inexact distance estimate (by default three times the standard error
of the distance estimate). If a single walk is found to meet this
constraint, we replace Ci,gi,Cj in the scaffold by the walk string. If
no walk can be found connecting the vertices and gi is negative (the
contigs are predicted to overlap), we align the ends of Ci and Cj. If
the predicted overlap is confirmed to exist, the sequences of Ci and
Cj are merged. If the gap cannot be resolved, we simply fill the
sequence between Ci and Cj with gi ‘‘N’’ symbols.

Software availability

SGA is open source and freely available at https://github.com/jts/sga.

Acknowledgments
J.T.S. is supported by a Wellcome Trust Sanger Institute Research
Studentship. R.D. is funded by Wellcome Trust grant WT077192.
We thank Mark DePristo for access to the NA12878 data set.

References

Bauer MJ, Cox AJ, Rosone G. 2011. Lightweight BWT construction for very
large string collections. In Proceedings of the twenty-second annual
symposium, Combinatorial Pattern Matching, pp. 219–231. Springer-
Verlag, Berlin, Heidelberg.

Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown
CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, et al. 2008. Accurate whole

human genome sequencing using reversible terminator chemistry.
Nature 456: 53–59.

Boisvert S, Laviolette F, Corbeil J. 2010. Ray: simultaneous assembly of reads
from a mix of high-throughput sequencing technologies. J Comput Biol
17: 1519–1533.

Burrows M, Wheeler DJ. 1994. A block-sorting lossless data compression
algorithm. Digital SRC Research Report. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.37.6774.

C. elegans Sequencing Consortium. 1998. Genome sequence of the
nematode C. elegans: a platform for investigating biology. Science 282:
2012–2018.

Chaisson MJ, Pevzner PA. 2008. Short read fragment assembly of bacterial
genomes. Genome Res 18: 324–330.

Conway TC, Bromage AJ. 2011. Succinct data structures for assembling large
genomes. Bioinformatics 27: 479–486.

Depristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C,
Philippakis AA, Del Angel G, Rivas MA, Hanna M, et al. 2011. A
framework for variation discovery and genotyping using next-
generation DNA sequencing data. Nat Genet 43: 491–498.

Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, Yu HO, Buffalo V,
Zerbino DR, Diekhans M, et al. 2011. Genome Res 21: 2224–2241.

Ferragina P, Manzini G. 2000. Opportunistic data structures with
applications. In Proceedings of the 41st Annual Symposium on Foundations
of Computer Science, pp. 390–398. IEEE Computer Society, Washington,
DC. http://dx.doi.org/10.1109/SFCS.2000.892127.

Ferragina P, Gagie T, Manzini G. 2010. Lightweight data indexing and
compression in external memory. http://arxiv.org/abs/0909.4341.

Genome 10K Community of Scientists. 2009. Genome 10K: a proposal to
obtain whole-genome sequence for 10,000 vertebrate species. J Hered
100: 659–674.

Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe
T, Hall G, Shea TP, Sykes S, et al. 2011. High-quality draft assemblies of
mammalian genomes from massively parallel sequence data. Proc Natl
Acad Sci 108: 1513–1518.

Ilie L, Fazayeli F, Ilie S. 2011. HiTEC: accurate error correction in high-
throughput sequencing data. Bioinformatics 27: 295–302.

Kelley DR, Schatz MC, Salzberg SL. 2010. Quake: quality-aware detection
and correction of sequencing errors. Genome Biol 11: R116. doi: 10.1186/
gb-2010-11-11-r116.

Korlach J, Bjornson KP, Chaudhuri BP, Cicero RL, Flusberg BA, Gray JJ,
Holden D, Saxena R, Wegener J, Turner SW. 2010. Real-time DNA
sequencing from single polymerase molecules. Methods Enzymol 472:
431–455.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25: 1754–1760.

Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics 26: 589–595.

Li R, Fan W, Tian G, Zhu H, He L, Cai J, Huang Q , Cai Q , Li B, Bai Y, et al.
2010a. The sequence and de novo assembly of the giant panda genome.
Nature 463: 311–317.

Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K,
et al. 2010b. De novo assembly of human genomes with massively
parallel short read sequencing. Genome Res 20: 265–272.

Myers EW. 2005. The fragment assembly string graph. Bioinformatics (Suppl
2) 21: ii79–ii85.

Pevzner PA, Tang H, Waterman MS. 2001. An Eulerian path approach to
DNA fragment assembly. Proc Natl Acad Sci 98: 9748–9753.

Pop M, Kosack DS, Salzberg SL. 2004. Hierarchical scaffolding with Bambus.
Genome Res 14: 149–159.

Simpson JT, Durbin R. 2010. Efficient construction of an assembly string
graph using the FM-index. Bioinformatics 26: i367–i373.

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. 2009. ABySS:
a parallel assembler for short read sequence data. Genome Res 19: 1117–
1123.

Sirén J. 2009. Compressed suffix arrays for massive data. In SPIRE ’09,
Proceedings of the 16th International Symposium on String Processing and
Information Retrieval, pp. 63–74. Lecture Notes in Computer Science, Vol.
5721. Springer-Verlag, Berlin.

Stein LD. 2010. The case for cloud computing in genome informatics.
Genome Biol 11: 207. doi: 10.1186/gb-2010-11-5-207.

Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res 18: 821–829.

Received May 31, 2011; accepted in revised form December 5, 2011.

Simpson and Durbin

556 Genome Research
www.genome.org

https://github.com/jts/sga
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.6774
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.6774
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.6774
http://dx.doi.org/10.1109/SFCS.2000.892127
http://arxiv.org/abs/0909.4341

