APPLICATIONS NOTE ™" %% jossmommmetcasiussi

Sequence analysis

Advance Access publication August 8, 2014

Fast construction of FM-index for long sequence reads

Heng Li

Medical Population Genetics Program, Broad Institute, 75 Ames Street, Cambridge, MA 02142, USA

Associate Editor: Michael Brudno

ABSTRACT

Summary: We present a new method to incrementally construct the
FM-index for both short and long sequence reads, up to the size of a
genome. It is the first algorithm that can build the index while implicitly
sorting the sequences in the reverse (complement) lexicographical
order without a separate sorting step. The implementation is among
the fastest for indexing short reads and the only one that practically
works for reads of averaged kilobases in length.

Availability and implementation: https://github.com/Ih3/ropebwt2
Contact: hengli@broadinstitute.org

Received on June 2, 2014; revised on July 15, 2014; accepted on
August 4, 2014

1 INTRODUCTION

FM-index plays an important role in DNA sequence alignment,
de novo assembly (Simpson and Durbin, 2012) and compression
(Cox et al., 2012). Fast and lightweight construction of FM-
index for a large dataset is the key to these applications.
In this context, a few algorithms (Bauer ef al., 2013; Liu et al.,
2014) have been developed that substantially outperform earlier
algorithms. However, they are only efficient for short reads.
A fast and practical algorithm for long sequence reads is still
lacking. This work aims to fill this gap.

2 METHODS

Let 3={A,C,G, T,N} be the alphabet of DNA with a lexicographical
order A<C<G<T<N. Each element in 3, is called a symbol and a se-
quence of symbols called a string over X.. Given a string P, | P| is its length
and P[7] the symbol at position i. A sentinel $ is smaller than all the other
symbols. For simplicity, we let P[—1]= P[|P|]=$. We also introduce P as
the reverse of P and P as the reverse complement of P.

Given a list of strings over X, (P let T= Po$o... Py 18-
with §p < - -+ <8§,,-1 <KA<C<G<T<N. The suffix array of T is an inte-
ger array S such that S(i), 0 < i<|T], is the starting position of the i-th
smallest suffix in the collection 7. The Burrows-Wheeler Transform, or
BWT, of T can be computed as B[i]= T[S(i) — 1]. For the description of
the algorithm, we segment B into B= Bs By Bc Bz Br By, where B,[i]= B[i
+ C(a)] with C(a)={j : T[j]<a}| being the array of accumulative counts.
By the definition of suffix array and BWT, B, consists of all the symbols
with their next symbol in 7 being a.

The above defines BWT for an ordered list of strings. We next seek to
define BWT for an unordered set of strings C by imposing an arbitrary
sorting order on C. We say list (P;); is in the reverse lexicographical order
or RLO, if P; < f’j for any i<j; say it is in the reverse-complement lex-
icographical order or RCLO, if P; < P; for any i <. The RLO-BWT of C,
denoted by BRLO(C), is constructed by sorting strings in C in RLO and
then applying the procedure in the previous paragraph on the sorted
list. RCLO-BWT BRCLO(C) can be constructed in a similar way.

In BRCLO((P}, U {1_?,}[), the k-th smallest sequence is the reverse comple-
ment of the k-th sequence in the FM-index. This property removes the
necessity of keeping an extra array to link the rank and the position of a
sequence in the FM-index, and thus helps to reduce the memory of some
FM-index-based algorithms (Simpson and Durbin, 2012). For short
reads, RLO/RCLO-BWT is also more compressible (Cox et al., 2012).

As a preparation, we further define two string operations: rank(c, k; B)
and insert(c, k; B), where rank(c, k; B)=|{i<k : Bli]=c}| gives the
number of symbols ¢ before the position k in B, and insert(c, k; B) inserts
symbol ¢ after £ symbols in B with all the symbols after position k shifted
to make room for ¢. We implemented the two operations by representing
each B.in a B+ -tree in memory, where a leaf keeps a run-length encoded
string and an internal node keeps the count of each symbol in the leaves
descended from the node.

Algorithm 1 appends a string to an existing index by inserting each of
its symbol from the end of P. It was first described by Chan ez al. (2004).
Algorithm 2 constructs RLO/RCLO-BWT in a similar manner to
Algorithm 1 except that it inserts P[i] to [/, u), the suffix array interval
of P’s suffix starting at i + 1, and that BWT symbols in this interval are
already sorted. This process implicitly applies a radix sort from the end of
P, sorting it into the existing strings in the BWT in RLO/RCLO. Note
that if we change line 1 to “/ < u < |{i : B[i]]=3$}|”, Algorithm 2 will be
turned into Algorithm 1. Recall that the BCR algorithm (Bauer ez al.,
2013) is, to some extent, the multi-string version of Algorithm 1.
Following similar reasoning, we can extend Algorithm 2 so as to insert
multiple strings at the same time, which gives Algorithm 3. We use an
array A(j) to keep the state of the j-th sequence after inserting its d-long
suffix. At line 2, A(j).c is the previously inserted symbol and [A())./, A(j)
.u) is the interval to which the new symbol is inserted. In implemen-
tation, we may speed up the sorting mode by inserting multiple symbols
at line 3.

When B is represented by a balanced tree structure, the time complex-
ity of all three algorithms is O(nlog n), where n is the total number of
symbols in the input. However, we will see later that for short strings,
Algorithm 3 is substantially faster than the first two algorithms, due to
the locality of memory accesses, the possibility of cached B +-tree update
and the parallelization of the ‘for’ loop at line 1. These techniques are
more effective for a larger batch of shorter strings.

Disregarding RLO/RCLO, Algorithm 3 is similar to BCR except that
BCR keeps B in monolithic arrays. As a result, the time complexity
of BCR is O(nl), where / is the maximum length of reads, not scaling
well to /.

Algorithm 1: Append one string

Input: A string P and an existing BWT B for T
Output: BWT for 7 P$

Function INSERTIO 1 (B, P) begin
c 8k« |{i: B[i] = $}|
fori < |P| —1to—1do

\; insert(P[i], k; Bc)

k < rank(P[i], k; Be) + 3o <. {7 : Balj] = P}
¢+ Pli]
return B

3274

© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

Downl oaded from https://academn c. oup. coni bi oi nformati cs/article-abstract/30/22/ 3274/ 2391324
by NATI ONAL SUN YAT- SEN UNI VERSI TY user
on 02 February 2018

https://github.com/lh3/ropebwt2
mailto:hengli@broadinstitute.org
,

Fast construction of FM-index

Algorithm 2: Insert one string to RLO/RCLO-BWT

Input: BRLO(C) (or BRCLO((€)) and a string P
Output: BRLO(C U {P}) (or BRCLO(C U {P}))

Function INSERTRLO1(B, P, is_comp) begin
v | Rw) « [0,14i < Bl = $}))
fori < |P|— 1to—1do
| [l,u) <~ INSERTAUX(B, P[i], 1, u, P[i + 1], is_comp)
L return B
Function INSERTAUX(B, ¢/, , u, c, is_.comp) begin
k<1
if is_comp is true and ¢’ # “N” then
fora =%orc <a< “N”do
L L k<« k+ [rank(a,u; B.) — rank(a, l; Bc)]

else
for$ <a<c do
L k < k + [rank(a, u; Bc) — rank(a, ; B.)]

" < rank(c’,l; Be); v’ « rank(c’, u; Be)
insert(c’, k; Be)

mo<— Za<c |{] : Ba[j] = C,}l
return [/ + m,u’ +m)

Algorithm 3: Insert multiple strings

Input: Existing BWT B and a list of strings { Py, } .

Output: Updated BWT B with strings inserted in the specified order
Function INSERTMULTI(B, { Py } 1., is-sorted, is_comp) begin
for 0 < j < [{Py}x|do

A(j)-c < 81 A(j) i« j

if is_sorted is true then

L [AG)-L AG)-u) = [0, [{i = Bli] = $}])

else
| AG).L <+ A@)u < {i: Bli] =8} +j
d<+0
while |A| # 0 do
1 Stable sort array A by A(+).c
2 for 0 < j < |A|do

¢ A(j).c; A(j)-c < Pagy).illPagy.il —1—d]
[A(5)-1, A®G)u)

3 «INSERTAUX(B, A(j).c, A(4).l, A(j).u, c, is_comp)
Remove A(5) if A(j).c=$
| d<d+1
L return B

3 RESULTS AND DISCUSSION

We implemented the algorithm in ropeBWT2 and evaluated its
performance together with BEETL (http://bit.ly/beetiGH), the
original on-disk implementation of BCR and BCRext,
ropeBWT-BCR (https://github.com/lh3/ropebwt), an in-
memory reimplementation of BCR by us, and NVBio (http://
bit.ly/nvbioio), a GPU-based algorithm inspired by CX1 (Liu
et al., 2014). Table 1 shows that for ~100 bp reads, ropeBWT2
has comparable performance to others. For the ~875bp Venter
dataset, NVBio aborted due to insufficient memory under vari-
ous settings. We did not apply BCR because it is not designed for

Table 1. Performance of BWT construction

Data® Algorithm RCLO Real CPU% RAM® Comments
(GB)
worm nvbio - 316s 138 12.9 See note®
worm ropebwt-ber — 480s 223 22 -btORf
worm Algorithm 3 Yes 506s 250 10.5 -brRm10g
worm Algorithm 3 No 647s 249 11.8 -bRm10g
worm beetl-ber - 965s 259 1.8 RAM disk?
worm beetl-ber - 2092s 122 1.8 Network®
worm Algorithm 1 — 5125s 100 2.5 -bRm0
worm beetl-berext — 5900s 48 0.1 Network®
12878 ropebwt-ber — 33h 210 39.3 -btORf
12878 nvbio - 41h 471 638 See note'
12878 Algorithm 3 Yes 5.0h 261 34.0 -brRm10g
12878 Algorithm 3 No S.1h 248 60.9 -bRm10g
12878 beetl-ber - 11.2h 131 31.6 Network®
Venter Algorithm 3 Yes 1.4h 274 222 -brRm10g
Venter Algorithm 3 No 1.5h 274 22.8 -bRm10g
mol Algorithm 3 No 6.8h 285 20.0 -bRm10g

“Datasets—worm: 66M x 100bp Caenorhabditis elegans reads from SRR065390;
12878: 1206M x 101 bp human reads for sample NA 12878 (Depristo et al., 2011).
Venter: 32M x 875bp (in average) human reads by Sanger sequencing (Levy et al.
2007; http://bit.ly/levy2007); mol: 23M x 4026bp (in average) human reads by
Tllumina’s Moleculo sequencing (http://bit.ly/mol12878).

"Hardware—CPU: 48 cores of Xeon E5-2697v2 at 2.70 GHz; GPU: one Nvidia
Tesla K40; RAM: 128 GB; Storage: Isilon 1Q 72000x and X400 over network.
CPU time, wall-clock time and peak memory are measured by GNU time.

“Run with option *-R -cpu-mem 4096 -gpu-mem 4096’. NVBio uses more CPU and
GPU RAM than the specified.

9dResults and temporary files created on in-RAM virtual disk ‘/dev/shm’.

“Results and temporary files created on Isilon’s network file system.

fRun with option *-R -cpu-mem 48000 -gpu-mem 4096,

long reads of unequal lengths. Only ropeBWT2 works with this
data set and the even longer moleculo reads.

Funding: NHGRI U54HGO003037; NIH GM100233.

Conflict of Interest. none declared.

REFERENCES

Bauer,M.J. et al. (2013) Lightweight algorithms for constructing and inverting the
BWT of string collections. Theor. Comput. Sci., 483, 134-148.

Chan,H.-L. et al. (2004) Compressed index for a dynamic collection of texts. In:
Sahinalp,S.C. Muthukrishnan,S. and Dogrusoz,U. (eds) CPM, Volume 3109 of
Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp. 445-456.

Cox,A.J. et al. (2012) Large-scale compression of genomic sequence databases with
the burrows-wheeler transform. Bioinformatics, 28, 1415-1419.

Depristo,M.A. et al. (2011) A framework for variation discovery and genotyping
using next-generation DNA sequencing data. Nat. Genet., 43, 491-498.

Levy,S. et al. (2007) The diploid genome sequence of an individual human. PLoS
Biol., 5, e254.

Liu,C.-M. et al. (2014) GPU-accelerated BWT construction for large collection of
short reads. arXiv:1401.7457.

Simpson,J.T. and Durbin,R. (2012) Efficient de novo assembly of large genomes
using compressed data structures. Genome Res., 22, 549-556.

3275

Downl oaded from https://academn c. oup. coni bi oi nformati cs/article-abstract/30/22/ 3274/ 2391324
by NATI ONAL SUN YAT- SEN UNI VERSI TY user
on 02 February 2018

http://bit.ly/beetlGH
https://github.com/lh3/ropebwt
http://bit.ly/nvbioio
http://bit.ly/nvbioio
r
http://bit.ly/levy2007
http://bit.ly/mol12878

