
Vol. 30 no. 22 2014, pages 3274–3275
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu541

Sequence analysis Advance Access publication August 8, 2014

Fast construction of FM-index for long sequence reads
Heng Li
Medical Population Genetics Program, Broad Institute, 75 Ames Street, Cambridge, MA 02142, USA
Associate Editor: Michael Brudno

ABSTRACT

Summary: We present a new method to incrementally construct the

FM-index for both short and long sequence reads, up to the size of a

genome. It is the first algorithm that can build the index while implicitly

sorting the sequences in the reverse (complement) lexicographical

order without a separate sorting step. The implementation is among

the fastest for indexing short reads and the only one that practically

works for reads of averaged kilobases in length.

Availability and implementation: https://github.com/lh3/ropebwt2

Contact: hengli@broadinstitute.org

Received on June 2, 2014; revised on July 15, 2014; accepted on

August 4, 2014

1 INTRODUCTION

FM-index plays an important role in DNA sequence alignment,

de novo assembly (Simpson and Durbin, 2012) and compression

(Cox et al., 2012). Fast and lightweight construction of FM-

index for a large dataset is the key to these applications.

In this context, a few algorithms (Bauer et al., 2013; Liu et al.,

2014) have been developed that substantially outperform earlier

algorithms. However, they are only efficient for short reads.

A fast and practical algorithm for long sequence reads is still

lacking. This work aims to fill this gap.

2 METHODS

Let S=fA;C;G;T;Ng be the alphabet of DNA with a lexicographical

order A5C5G5T5N. Each element in S is called a symbol and a se-

quence of symbols called a string over S. Given a string P, jPj is its length

and P½i� the symbol at position i. A sentinel $ is smaller than all the other

symbols. For simplicity, we let P½�1�=P½jPj�=$. We also introduce ~P as

the reverse of P and P as the reverse complement of P.

Given a list of strings over S, ðPiÞ0�i5m, let T=P0$0 . . .Pm– 1$m– 1

with $05 � � �5$m�15A5C5G5T5N. The suffix array of T is an inte-

ger array S such that S(i), 0 � i5jTj, is the starting position of the i-th

smallest suffix in the collection T. The Burrows-Wheeler Transform, or

BWT, of T can be computed as B½i�=T½SðiÞ � 1�. For the description of

the algorithm, we segment B into B=B$BABCBGBTBN, where Ba½i�=B½i

+CðaÞ� with CðaÞ=jfj : T½j�5agj being the array of accumulative counts.

By the definition of suffix array and BWT, Ba consists of all the symbols

with their next symbol in T being a.

The above defines BWT for an ordered list of strings. We next seek to

define BWT for an unordered set of strings C by imposing an arbitrary

sorting order on C. We say list ðPiÞi is in the reverse lexicographical order

or RLO, if ~Pi � ~Pj for any i5j; say it is in the reverse-complement lex-

icographical order or RCLO, if Pi � Pj for any i5j. The RLO-BWT of C,

denoted by BRLOðCÞ, is constructed by sorting strings in C in RLO and

then applying the procedure in the previous paragraph on the sorted

list. RCLO-BWT BRCLOðCÞ can be constructed in a similar way.

In BRCLOðfPigi [fPjgjÞ, the k-th smallest sequence is the reverse comple-

ment of the k-th sequence in the FM-index. This property removes the

necessity of keeping an extra array to link the rank and the position of a

sequence in the FM-index, and thus helps to reduce the memory of some

FM-index–based algorithms (Simpson and Durbin, 2012). For short

reads, RLO/RCLO-BWT is also more compressible (Cox et al., 2012).

As a preparation, we further define two string operations: rankðc; k;BÞ

and insertðc; k;BÞ, where rankðc; k;BÞ=jfi5k : B½i�=cgj gives the

number of symbols c before the position k in B, and insertðc; k;BÞ inserts

symbol c after k symbols in B with all the symbols after position k shifted

to make room for c. We implemented the two operations by representing

each Bc in a B+-tree in memory, where a leaf keeps a run-length encoded

string and an internal node keeps the count of each symbol in the leaves

descended from the node.

Algorithm 1 appends a string to an existing index by inserting each of

its symbol from the end of P. It was first described by Chan et al. (2004).

Algorithm 2 constructs RLO/RCLO-BWT in a similar manner to

Algorithm 1 except that it inserts P½i� to ½l; uÞ, the suffix array interval

of P’s suffix starting at i+1, and that BWT symbols in this interval are

already sorted. This process implicitly applies a radix sort from the end of

P, sorting it into the existing strings in the BWT in RLO/RCLO. Note

that if we change line 1 to “l u jfi : B½i�=$gj”, Algorithm 2 will be

turned into Algorithm 1. Recall that the BCR algorithm (Bauer et al.,

2013) is, to some extent, the multi-string version of Algorithm 1.

Following similar reasoning, we can extend Algorithm 2 so as to insert

multiple strings at the same time, which gives Algorithm 3. We use an

array A(j) to keep the state of the j-th sequence after inserting its d-long

suffix. At line 2, AðjÞ:c is the previously inserted symbol and ½AðjÞ:l;AðjÞ

:uÞ is the interval to which the new symbol is inserted. In implemen-

tation, we may speed up the sorting mode by inserting multiple symbols

at line 3.

When B is represented by a balanced tree structure, the time complex-

ity of all three algorithms is Oðn log nÞ, where n is the total number of

symbols in the input. However, we will see later that for short strings,

Algorithm 3 is substantially faster than the first two algorithms, due to

the locality of memory accesses, the possibility of cached B+-tree update

and the parallelization of the ‘for’ loop at line 1. These techniques are

more effective for a larger batch of shorter strings.

Disregarding RLO/RCLO, Algorithm 3 is similar to BCR except that

BCR keeps B in monolithic arrays. As a result, the time complexity

of BCR is O(nl), where l is the maximum length of reads, not scaling

well to l.

3274 � The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/30/22/3274/2391324
by NATIONAL SUN YAT-SEN UNIVERSITY user
on 02 February 2018

https://github.com/lh3/ropebwt2
mailto:hengli@broadinstitute.org
,

3 RESULTS AND DISCUSSION

We implemented the algorithm in ropeBWT2 and evaluated its

performance together with BEETL (http://bit.ly/beetlGH), the
original on-disk implementation of BCR and BCRext,
ropeBWT-BCR (https://github.com/lh3/ropebwt), an in-

memory reimplementation of BCR by us, and NVBio (http://
bit.ly/nvbioio), a GPU-based algorithm inspired by CX1 (Liu
et al., 2014). Table 1 shows that for �100bp reads, ropeBWT2
has comparable performance to others. For the �875bp Venter

dataset, NVBio aborted due to insufficient memory under vari-
ous settings. We did not apply BCR because it is not designed for

long reads of unequal lengths. Only ropeBWT2 works with this

data set and the even longer moleculo reads.

Funding: NHGRI U54HG003037; NIH GM100233.

Conflict of Interest: none declared.

REFERENCES

Bauer,M.J. et al. (2013) Lightweight algorithms for constructing and inverting the

BWT of string collections. Theor. Comput. Sci., 483, 134–148.

Chan,H.-L. et al. (2004) Compressed index for a dynamic collection of texts. In:

Sahinalp,S.C. Muthukrishnan,S. and Dogrus€oz,U. (eds) CPM, Volume 3109 of

Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp. 445–456.

Cox,A.J. et al. (2012) Large-scale compression of genomic sequence databases with

the burrows-wheeler transform. Bioinformatics, 28, 1415–1419.

Depristo,M.A. et al. (2011) A framework for variation discovery and genotyping

using next-generation DNA sequencing data. Nat. Genet., 43, 491–498.

Levy,S. et al. (2007) The diploid genome sequence of an individual human. PLoS

Biol., 5, e254.

Liu,C.-M. et al. (2014) GPU-accelerated BWT construction for large collection of

short reads. arXiv:1401.7457.

Simpson,J.T. and Durbin,R. (2012) Efficient de novo assembly of large genomes

using compressed data structures. Genome Res., 22, 549–556.

Table 1. Performance of BWT construction

Dataa Algorithm RCLO Real CPU% RAMb

(GB)

Comments

worm nvbio – 316 s 138 12.9 See notec

worm ropebwt-bcr – 480 s 223 2.2 -btORf

worm Algorithm 3 Yes 506 s 250 10.5 -brRm10g

worm Algorithm 3 No 647 s 249 11.8 -bRm10g

worm beetl-bcr – 965 s 259 1.8 RAM diskd

worm beetl-bcr – 2092 s 122 1.8 Networke

worm Algorithm 1 – 5125 s 100 2.5 -bRm0

worm beetl-bcrext – 5900 s 48 0.1 Networke

12 878 ropebwt-bcr – 3.3 h 210 39.3 -btORf

12 878 nvbio – 4.1 h 471 63.8 See notef

12 878 Algorithm 3 Yes 5.0 h 261 34.0 -brRm10g

12 878 Algorithm 3 No 5.1 h 248 60.9 -bRm10g

12 878 beetl-bcr – 11.2 h 131 31.6 Networke

Venter Algorithm 3 Yes 1.4 h 274 22.2 -brRm10g

Venter Algorithm 3 No 1.5 h 274 22.8 -bRm10g

mol Algorithm 3 No 6.8 h 285 20.0 -bRm10g

aDatasets—worm: 66M� 100bp Caenorhabditis elegans reads from SRR065390;

12878: 1206M� 101bp human reads for sample NA12878 (Depristo et al., 2011).

Venter: 32M� 875 bp (in average) human reads by Sanger sequencing (Levy et al.

2007; http://bit.ly/levy2007); mol: 23M� 4026bp (in average) human reads by

Illumina’s Moleculo sequencing (http://bit.ly/mol12878).
bHardware—CPU: 48 cores of Xeon E5-2697v2 at 2.70GHz; GPU: one Nvidia

Tesla K40; RAM: 128GB; Storage: Isilon IQ 72000x and X400 over network.

CPU time, wall-clock time and peak memory are measured by GNU time.
cRun with option ‘-R -cpu-mem 4096 -gpu-mem 4096’. NVBio uses more CPU and

GPU RAM than the specified.
dResults and temporary files created on in-RAM virtual disk ‘/dev/shm’.
eResults and temporary files created on Isilon’s network file system.
fRun with option ‘-R -cpu-mem 48000 -gpu-mem 4096’.

3275

Fast construction of FM-index

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/30/22/3274/2391324
by NATIONAL SUN YAT-SEN UNIVERSITY user
on 02 February 2018

http://bit.ly/beetlGH
https://github.com/lh3/ropebwt
http://bit.ly/nvbioio
http://bit.ly/nvbioio
r
http://bit.ly/levy2007
http://bit.ly/mol12878

