Sequence analysis

Advance Access publication August 8, 2014

doi:10.1093/bioinformatics/btu541

Fast construction of FM-index for long sequence reads

Heng Li

Medical Population Genetics Program, Broad Institute, 75 Ames Street, Cambridge, MA 02142, USA Associate Editor: Michael Brudno

ABSTRACT

Summary: We present a new method to incrementally construct the FM-index for both short and long sequence reads, up to the size of a genome. It is the first algorithm that can build the index while implicitly sorting the sequences in the reverse (complement) lexicographical order without a separate sorting step. The implementation is among the fastest for indexing short reads and the only one that practically works for reads of averaged kilobases in length.

Availability and implementation: https://github.com/lh3/ropebwt2 Contact: hengli@broadinstitute.org

Received on June 2, 2014; revised on July 15, 2014; accepted on August 4, 2014

1 INTRODUCTION

FM-index plays an important role in DNA sequence alignment, de novo assembly (Simpson and Durbin, 2012) and compression (Cox et al., 2012). Fast and lightweight construction of FMindex for a large dataset is the key to these applications. In this context, a few algorithms (Bauer et al., 2013; Liu et al., 2014) have been developed that substantially outperform earlier algorithms. However, they are only efficient for short reads. A fast and practical algorithm for long sequence reads is still lacking. This work aims to fill this gap.

2 METHODS

Let $\Sigma = \{A, C, G, T, N\}$ be the *alphabet* of DNA with a lexicographical order A < C < G < T < N. Each element in Σ is called a *symbol* and a sequence of symbols called a *string* over Σ . Given a string P, |P| is its length and P[i] the symbol at position *i*. A sentinel \$ is smaller than all the other symbols. For simplicity, we let P[-1] = P[|P|] =\$. We also introduce \tilde{P} as the reverse of P and \overline{P} as the reverse complement of P.

Given a list of strings over Σ , $(P_i)_{0 \le i < m}$, let $T = P_0 \$_0 \dots P_{m-1} \$_{m-1}$ with $\$_0 < \cdots < \$_{m-1} < A < C < G < T < N$. The *suffix array* of *T* is an integer array S such that S(i), $0 \le i < |T|$, is the starting position of the *i*-th smallest suffix in the collection T. The Burrows-Wheeler Transform, or *BWT*, of *T* can be computed as B[i] = T[S(i) - 1]. For the description of the algorithm, we segment B into $B = B_{S}B_{A}B_{C}B_{G}B_{T}B_{N}$, where $B_{a}[i] = B[i]$ + C(a) with $C(a) = |\{j : T[j] < a\}|$ being the array of accumulative counts. By the definition of suffix array and BWT, B_a consists of all the symbols with their next symbol in T being a.

The above defines BWT for an ordered list of strings. We next seek to define BWT for an unordered set of strings C by imposing an arbitrary sorting order on C. We say list $(P_i)_i$ is in the reverse lexicographical order or *RLO*, if $\tilde{P}_i \leq \tilde{P}_j$ for any i < j; say it is in the *reverse-complement lexicographical order* or *RCLO*, if $\overline{P}_i \leq \overline{P}_j$ for any i < j. The *RLO-BWT* of C, denoted by $B^{\text{RLO}}(\mathcal{C})$, is constructed by sorting strings in \mathcal{C} in RLO and then applying the procedure in the previous paragraph on the sorted list. $RCLO-BWT B^{RCLO}(C)$ can be constructed in a similar way.

In $B^{\text{RCLO}}(\{P_i\}_i \cup \{\overline{P}_i\}_i)$, the k-th smallest sequence is the reverse complement of the k-th sequence in the FM-index. This property removes the necessity of keeping an extra array to link the rank and the position of a sequence in the FM-index, and thus helps to reduce the memory of some FM-index-based algorithms (Simpson and Durbin, 2012). For short reads, RLO/RCLO-BWT is also more compressible (Cox et al., 2012).

As a preparation, we further define two string operations: rank(c, k; B)and insert(c, k; B), where rank(c, k; B) = $|\{i < k : B[i] = c\}|$ gives the number of symbols c before the position k in B, and insert(c, k; B) inserts symbol c after k symbols in B with all the symbols after position k shifted to make room for c. We implemented the two operations by representing each B_c in a B + -tree in memory, where a leaf keeps a run-length encoded string and an internal node keeps the count of each symbol in the leaves descended from the node.

Algorithm 1 appends a string to an existing index by inserting each of its symbol from the end of P. It was first described by Chan et al. (2004). Algorithm 2 constructs RLO/RCLO-BWT in a similar manner to Algorithm 1 except that it inserts P[i] to [l, u), the suffix array interval of P's suffix starting at i + 1, and that BWT symbols in this interval are already sorted. This process implicitly applies a radix sort from the end of P, sorting it into the existing strings in the BWT in RLO/RCLO. Note that if we change line 1 to " $l \leftarrow u \leftarrow |\{i : B[i] = \$\}|$ ", Algorithm 2 will be turned into Algorithm 1. Recall that the BCR algorithm (Bauer et al., 2013) is, to some extent, the multi-string version of Algorithm 1. Following similar reasoning, we can extend Algorithm 2 so as to insert multiple strings at the same time, which gives Algorithm 3. We use an array A(j) to keep the state of the *j*-th sequence after inserting its *d*-long suffix. At line 2, A(j).c is the previously inserted symbol and [A(j).l, A(j)].u) is the interval to which the new symbol is inserted. In implementation, we may speed up the sorting mode by inserting multiple symbols at line 3.

When B is represented by a balanced tree structure, the time complexity of all three algorithms is $O(n \log n)$, where n is the total number of symbols in the input. However, we will see later that for short strings, Algorithm 3 is substantially faster than the first two algorithms, due to the locality of memory accesses, the possibility of cached B+-tree update and the parallelization of the 'for' loop at line 1. These techniques are more effective for a larger batch of shorter strings.

Disregarding RLO/RCLO, Algorithm 3 is similar to BCR except that BCR keeps B in monolithic arrays. As a result, the time complexity of BCR is O(nl), where l is the maximum length of reads, not scaling well to l.

Algorithm 1: Append one string
Input: A string P and an existing BWT B for T Output: BWT for TP \$
Function INSERTIO1(B, P) begin $c \leftarrow \$; k \leftarrow \{i : B[i] = \$\} $ for $i \leftarrow P - 1$ to -1 do $ \begin{bmatrix} \text{insert}(P[i], k; B_c) \\ k \leftarrow \text{rank}(P[i], k; B_c) + \sum_{a < c} \{j : B_a[j] = P[i]\} \\ c \leftarrow P[i] \end{bmatrix}$ return B
$ \begin{bmatrix} \operatorname{insert}(P[i], k; B_c) \\ k \leftarrow \operatorname{rank}(P[i], k; B_c) + \sum_{a < c} \{j : B_a[j] = P[i]\} \\ c \leftarrow P[i] \end{bmatrix} $ return B

3274

© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

Algorithm 2: Insert one string to RLO/RCLO-BWT

Input: $B^{\text{RLO}}(\mathcal{C})$ (or $B^{\text{RCLO}}(\mathcal{C})$) and a string P **Output:** $B^{\text{RLO}}(\mathcal{C} \cup \{P\})$ (or $B^{\text{RCLO}}(\mathcal{C} \cup \{P\})$) **Function** INSERTRLO1 (B, P, is_comp) begin $[l, u) \leftarrow [0, |\{i : B[i] = \$\}|)$ for $i \leftarrow |P| - 1$ to -1 do $| [l, u) \leftarrow \text{INSERTAUX}(B, P[i], l, u, P[i+1], is_comp)$ return B **Function** INSERTAUX $(B, c', l, u, c, is_comp)$ begin $k \leftarrow l$ if *is_comp* is true and $c' \neq$ "N" then for a = \$ or c' < a < "N" do $k \leftarrow k + [\operatorname{rank}(a, u; B_c) - \operatorname{rank}(a, l; B_c)]$ else for $\$ \leq a < c'$ do $[k \leftarrow k + [\operatorname{rank}(a, u; B_c) - \operatorname{rank}(a, l; B_c)]]$ $l' \leftarrow \operatorname{rank}(c', l; B_c); u' \leftarrow \operatorname{rank}(c', u; B_c)$ $\operatorname{insert}(c', k; B_c)$ $m \leftarrow \sum_{a < c} |\{j : B_a[j] = c'\}|$ return [l' + m, u' + m)

Algorithm 3: Insert multiple strings

```
Input: Existing BWT B and a list of strings \{P_k\}_k
  Output: Updated BWT B with strings inserted in the specified order
   Function INSERTMULTI(B, \{P_k\}_k, is\_sorted, is\_comp) begin
        for 0 \le j < |\{P_k\}_k| do
              A(j).c \leftarrow \$; A(j).i \leftarrow j
             if is_sorted is true then
               | [A(j).l, A(j).u) \leftarrow [0, |\{i : B[i] = \$\}|)
             else
               \  \  \left\lfloor \begin{array}{c} A(j).l \leftarrow A(j).u \leftarrow |\{i: B[i] = \$\}| + j \end{array} \right. 
        d \leftarrow 0
        while |A| \neq 0 do
              Stable sort array A by A(\cdot).c
2
             for 0 \leq j < |A| do
                  c \leftarrow A(j).c; A(j).c \leftarrow P_{A(j).i}[|P_{A(j).i}| - 1 - d]
                  [A(j).l, A(j).u)
                    \leftarrow \text{INSERTAUX}(B, A(j).c, A(j).l, A(j).u, c, is\_comp)
3
              Remove A(j) if A(j).c = 
             d \leftarrow d + 1
```

3 RESULTS AND DISCUSSION

return B

We implemented the algorithm in ropeBWT2 and evaluated its performance together with BEETL (http://bit.ly/beetlGH), the original on-disk implementation of BCR and BCRext, ropeBWT-BCR (https://github.com/lh3/ropebwt), an inmemory reimplementation of BCR by us, and NVBio (http:// bit.ly/nvbioio), a GPU-based algorithm inspired by CX1 (Liu et al., 2014). Table 1 shows that for ~ 100 bp reads, ropeBWT2 has comparable performance to others. For the \sim 875 bp Venter dataset, NVBio aborted due to insufficient memory under various settings. We did not apply BCR because it is not designed for

Table 1. Performance of BWT construction

Data ^a	Algorithm	RCLO	Real	CPU%	RAM ^b (GB)	Comments
worm worm	nvbio ropebwt-bcr	-	316 s 480 s	138 223	12.9 2.2	See note ^c -btORf
worm	Algorithm 3 Algorithm 3	Yes No	506 s 647 s	250 249	10.5 11.8	-brRm10g
worm	beetl-bcr	-	965 s	259	1.8	RAM disk ^d
worm worm	Algorithm 1	_	2092 s 5125 s	122	1.8 2.5	-bRm0
worm 12878	beetl-bcrext ropebwt-bcr	-	5900 s 3.3 h	48 210	0.1 39.3	Network ^e -btORf
12878 12878	nvbio Algorithm 3	– Ves	4.1 h 5 0 h	471 261	63.8 34.0	See note ^f
12 878	Algorithm 3	No	5.1 h	248	60.9	-bRm10g
Venter	Algorithm 3	Yes	11.211 1.4 h	274	22.2	-brRm10g
Venter mol	Algorithm 3 Algorithm 3	No No	1.5 h 6.8 h	274 285	22.8 20.0	-bRm10g -bRm10g

^aDatasets-worm: 66M × 100 bp Caenorhabditis elegans reads from SRR065390; 12878: 1206M × 101 bp human reads for sample NA12878 (Depristo et al., 2011). Venter: 32M × 875 bp (in average) human reads by Sanger sequencing (Levy et al. 2007; http://bit.ly/levy2007); mol: 23M × 4026 bp (in average) human reads by Illumina's Moleculo sequencing (http://bit.ly/mol12878).

^bHardware—CPU: 48 cores of Xeon E5-2697v2 at 2.70 GHz; GPU: one Nvidia Tesla K40; RAM: 128 GB; Storage: Isilon IQ 72000x and X400 over network. CPU time, wall-clock time and peak memory are measured by GNU time.

^cRun with option '-R -cpu-mem 4096 -gpu-mem 4096'. NVBio uses more CPU and GPU RAM than the specified.

^dResults and temporary files created on in-RAM virtual disk '/dev/shm'.

eResults and temporary files created on Isilon's network file system.

fRun with option '-R -cpu-mem 48000 -gpu-mem 4096'.

long reads of unequal lengths. Only ropeBWT2 works with this data set and the even longer moleculo reads.

Funding: NHGRI U54HG003037; NIH GM100233.

Conflict of Interest: none declared.

REFERENCES

- Bauer, M.J. et al. (2013) Lightweight algorithms for constructing and inverting the BWT of string collections. Theor. Comput. Sci., 483, 134-148.
- Chan, H.-L. et al. (2004) Compressed index for a dynamic collection of texts. In: Sahinalp,S.C. Muthukrishnan,S. and Dogrusöz,U. (eds) CPM, Volume 3109 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp. 445-456.
- Cox,A.J. et al. (2012) Large-scale compression of genomic sequence databases with the burrows-wheeler transform. Bioinformatics, 28, 1415-1419.
- Depristo, M.A. et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet., 43, 491-498.
- Levy, S. et al. (2007) The diploid genome sequence of an individual human. PLoS Biol., 5, e254.
- Liu,C.-M. et al. (2014) GPU-accelerated BWT construction for large collection of short reads, arXiv:1401.7457.
- Simpson, J.T. and Durbin, R. (2012) Efficient de novo assembly of large genomes using compressed data structures. Genome Res., 22, 549-556.