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Given two strings of the same length n, the non-overlapping inversion and transposition 
distance (also called mutation distance) between them is defined as the minimum number 
of non-overlapping inversion and transposition operations used to transform one string into 
the other. In this study, we present an O (n3) time and O (n2) space algorithm to compute 
the mutation distance of two input strings.
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1. Introduction

The dissimilarity of two strings is usually measured by 
the so-called edit distance, which is defined as the mini-
mum number of edit operations necessary to convert one 
string into the other. The commonly used edit operations 
are character insertions, deletions and substitutions. In bi-
ological application, the aforementioned edit operations 
correspond to point mutations of DNA sequences (i.e., mu-
tations at the level of individual nucleotides). From evolu-
tionary point of view, however, DNA sequences may evolve 
by large-scale mutations (also called rearrangements, i.e., 
mutations at the level of sequence fragments) [6], such as 
inversions (i.e., replacing a fragment of DNA sequence by 
its reverse complement) and transpositions (i.e., moving a 
fragment of DNA sequence from one location to another or, 
equivalently, exchanging two adjacent and non-overlapping 
fragments on DNA sequence). Note that a large-scale muta-
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tion that replaces a fragment of DNA sequence only by its 
reverse (without complement) is called a reversal. Based 
on large-scale mutation operations, the dissimilarity (or 
mutation distance) between two strings can be defined to 
be the minimum number of large-scale mutation opera-
tions used to transform one string to the other. Cantone 
et al. [1] introduced an O (nm) time and O (m2) space al-
gorithm to solve an approximate string matching problem 
with non-overlapping reversals, which is to find all lo-
cations of a given text that match a given pattern with 
non-overlapping reversals, where n is the length of the 
text and m is the length of the pattern. In this problem, 
two equal-length strings are said to have a match with non-
overlapping reversals if one string can be transformed into 
the other using any finite sequence of non-overlapping re-
versals. It should be noted that the number of the used 
non-overlapping reversals in the algorithm proposed by 
Cantone et al. [1] is not required to be less than or 
equal to a fixed non-negative integer. In [1], Cantone et 
al. also presented another algorithm whose average-case 
time complexity is O (n). Cantone et al. [2] studied the 
same problem by considering both non-overlapping rever-
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sals and transpositions, where they called transpositions 
as translocations and the lengths of two exchanged ad-
jacent fragments are constrained to be equivalent. They 
finally designed an algorithm to solve this problem in 
O (nm2) time and O (m2) space. For the above problem, 
Grabowski et al. [4] gave another algorithm whose worst-
case time and space are O (nm2) and O (m), respectively. 
Moreover, they proved that their algorithm has an O (n)

average time complexity. Recently, Huang et al. [5] stud-
ied the above approximate string matching problem under 
non-overlapping reversals by further restricting the num-
ber of the used reversals not to exceed a given positive 
integer k. They proposed a dynamic programming algo-
rithm to solve this problem in O (nm2) time and O (m2)

space.
In this work, we are interested in the computation of 

the mutation distance between two strings of the same 
length under non-overlapping inversions and transposi-
tions (i.e., non-overlapping inversion and transposition 
distance), where the lengths of two adjacent and non-
overlapping fragments exchanged by a transposition can 
be different. For this problem, we devise an algorithm 
whose time and space complexities are O (n3) and O (n2), 
respectively, where n is the length of two input strings. 
The rest of the paper is organized as follows. In Sec-
tion 2, we provide some notations that are helpful when 
we present our algorithm later. Next, we develop the main 
algorithm and also analyze its time and space complex-
ities in Section 3. Finally, we have a brief conclusion in 
Section 4.

2. Preliminaries

Let x be a string of length n over a finite alphabet 
Σ . A character at position i of x is represented with xi , 
where 1 ≤ i ≤ n. A substring of x from position i to j is 
indicated as xi, j , i.e., xi, j = xi xi+1 . . . x j , for 1 ≤ i ≤ j ≤ n. 
In biological sequences, Σ = {A, C, G, T }, in which A–T
and C–G are considered as complementary base pairs. 
We use θ(x) to denote an inversion operation acting on 
a string x, resulting in a reverse and complement of x. 
For example, θ(A) = T , θ(T ) = A, θ(G) = C , θ(C) = G
and θ(C G A) = T C G . In addition, we utilize τ (uv) = vu to 
represent a transposition operation to exchange two non-
empty strings u and v . Note that the lengths of u and 
v are required to be identical in some previous works 
[2–4], but they may be different in this study. For conve-
nience, we call θ and τ as mutation operations. We also let 
θi, j(x) = θ(xi, j) for 1 ≤ i ≤ j ≤ n and τi, j,k(x) = xk, j xi,k−1
for 1 ≤ i < k ≤ j ≤ n, where [i, j] is called a mutation range
for θi, j and τi, j,k .

For an integer 1 ≤ t ≤ n, we say that a mutation oper-
ation θi, j or τi, j,k covers t if i ≤ t ≤ j. Given two mutation 
operations, they are non-overlapping if the intersection of 
their mutation ranges is empty. In this study, we are only 
interested in sets of non-overlapping mutation operations. 
Given a set Θ of non-overlapping mutation operations and 
a string x, let Θ(x) be the resulting string after consec-
utively applying the mutation operations in Θ on x. For 
example, suppose that Θ = {τ1,3,2, θ5,5} and x = T AG AC . 
Then we have Θ(x) = AGT AG .
M1[i, j] i = 1 2 3 4 5

j = 1 (1,1, A) (2,1, A) (3,1, A) (4,1, A) (5,1, A)

2 (1,2, T ) (2,2, T ) (3,2, T ) (4,2, T ) (5,2, T )

3 (1,3, C) (2,3, C) (3,3, C) (4,3, C) (5,3, C)

4 (1,4, T ) (2,4, T ) (3,4, T ) (4,4, T ) (5,4, T )

5 (1,5, G) (2,5, G) (3,5, G) (4,5, G) (5,5, G)

M2[i, j] i = 1 2 3 4 5

j = 1 (1,1, T ) (2,1, T ) (3,1, T ) (4,1, T ) (5,1, T )

2 (1,2, A) (2,2, A) (3,2, A) (4,2, A) (5,2, A)

3 (1,3, G) (2,3, G) (3,3, G) (4,3, G) (5,3, G)

4 (1,4, A) (2,4, A) (3,4, A) (4,4, A) (5,4, A)

5 (1,5, C) (2,5, C) (3,5, C) (4,5, C) (5,5, C)

Fig. 1. Mutation tables M1 and M2 for a given string x = T AG AC , where 
the column is indexed by i and the row by j. Shaded entries respectively 
represent the inversion θ1,3(x) on M1 and the transposition operation 
τ1,5,4(x) on M2.

Definition 1 (Non-overlapping inversion and transposition dis-
tance). Given two strings x and y of the same length, the 
non-overlapping inversion and transposition distance (sim-
ply called mutation distance) between x and y, denoted 
by md(x, y), is defined as the minimum number of non-
overlapping inversion and transposition operations used to 
transform x into y. If there does not exist any set of non-
overlapping mutation operations that converts x into y, 
then md(x, y) is infinite. Formally,

md(x, y) =
⎧⎨
⎩

min{|Θ| : Θ(x) = y}
if ∃Θ such that Θ(x) = y

∞ otherwise

For example, let x = T AG AC and y = T A AC G . Clearly, 
there are only two sets of mutation operations Θ1 =
{θ1,2, τ3,5,4} and Θ2 = {τ3,5,4} such that Θ1(x) = y and 
Θ2(x) = y. Therefore, md(x, y) = |Θ2| = 1.

3. The algorithm

Basically, a transposition (respectively, inversion) oper-
ation acting on a string x can be considered as a permu-
tation of characters in x (respectively, complement of x). 
From this view point, a mutation operation actually com-
prises several sub-operations, called as mutation fragments, 
each of which is denoted either by a tuple (i, j, x j) or 
(i, j, θ(x j)). The mutation fragment (i, j, x j) (respectively, 
(i, j, θ(x j))) means that x j (respectively, complement of x j ) 
is moved into the position i in the resulting string obtained 
when applying the mutation operation on x. For conve-
nience, we arrange all possible mutation fragments in two 
n × n two-dimensional tables M1 and M2, called mutation 
tables of x, as follows.

• M1[i, j] = (i, j, θ(x j)) for i, j = 1, 2, . . . , n.
• M2[i, j] = (i, j, x j) for i, j = 1, 2, . . . , n.

For example, let x = T AG AC . Then its mutation tables 
are shown in Fig. 1.

When an inversion operation θi, j applies on a string x, 
we can decompose it into ( j − i + 1) mutation frag-
ments F(θi, j, x, t) for i ≤ t ≤ j, where F(θi, j, x, t) =
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(t, i + j − t, θ(xi+ j−t)). Similarly, a transposition operation 
τi, j,k can be also decomposed into ( j − i + 1) mutation 
fragments F(τi, j,k, x, t) for i ≤ t ≤ j, where if i ≤ t ≤
i + j − k, then F(τi, j,k, x, t) = (t, k + t − i, xk+t−i); oth-
erwise (that is, when i + j − k < t ≤ j), F(τi, j,k, x, t) =
(t, t − j + k − 1, xt− j+k−1). For the purpose of brevity, we 
let τi, j,k(x, 1) = {(t, k + t − i, xk+t−i) : i ≤ t ≤ i + j − k} and 
τi, j,k(x, 2) = {(t, t − j + k − 1, xt− j+k−1) : i + j − k < t ≤ j}.

The aforementioned decomposition can be extended to 
apply on a set Θ of non-overlapping mutation operations. 
That is, when Θ acts on a string x, it can be decomposed 
into a sequence F(Θ, x) = 〈F1, F2, . . . , Fn〉 of mutation 
fragments by the following formula: For t = 1, 2, . . . , n,

Ft =
⎧⎨
⎩

F(θi, j, x, t) if ∃θi, j ∈ Θ that covers t
F(τi, j,k, x, t) if ∃τi, j,k ∈ Θ that covers t
(t, t, xt) otherwise

For instance, given Θ = {τ1,2,2, θ4,5} and x = T AG AC , 
we have F(Θ, x) = 〈(1, 2, A), (2, 1, T), (3, 3, G), (4, 5, G),

(5, 4, T)〉.

Observation 1. Given a string x and its mutation tables 
M1 and M2, the result of an inversion θi, j(x) can be ob-
tained by concatenating ( j − i + 1) mutation fragments 
starting at M1[i, j] and continuing to move in the anti-
diagonal direction to M1[ j, i] (see the shaded entries of 
M1 in Fig. 1 for an example). Moreover, the result of a 
transposition τi, j,k(x) is obtained by concatenating the mu-
tation fragments on the following two paths, one start-
ing at M2[i, k] and continuing to move in the diagonal 
direction to M2[i + j − k, j] and the other beginning at 
M2[i + j − k + 1, i] and also continuing to move in the di-
agonal direction to M2[ j, k − 1] (see the shaded entries of 
M2 in Fig. 1 for an example).

For a mutation fragment F = (i, j, σ), we say that F
yields the character σ , denoted by �(F ) = σ . If a se-
quence S = 〈F1, F2, . . . , Fm〉 consists of m mutation frag-
ments (m is also considered as the length of S) with 
�(Fi) = σi for 1 ≤ i ≤ m, then we say that S yields a string 
σ1σ2 . . . σm , which is further written as �(S) = σ1σ2 . . . σm . 
A subsequence P containing first t elements of S , i.e., 
P = 〈F1, F2, . . . , Ft〉, is called a prefix of S and denoted by 
P � S , where 1 ≤ t ≤ m.

Definition 2 (Agreed sequence). A sequence S = 〈F1, F2, . . . ,
Fm〉 of m mutation fragments is an agreed sequence if there 
exists a set Θ of non-overlapping mutation operations 
such that S �F(Θ, x), where m ≤ n.

Given a mutation operation θi, j or τi, j,k , we call i and 
j as the left end point and right end point of the mutation 
operation, respectively. We also say that this mutation op-
eration (i.e., θi, j or τi, j,k) intersects with a range [a, b] if the 
intersection of [i, j] and [a, b] is non-empty. The number 
of mutation operations in Θ that intersects with the range 
[1, m], where m ≤ n, is denoted as ρ(Θ, m). For example, 
if Θ = {θ1,2, τ4,6,5, θ7,9}, then ρ(Θ, 4) = 2. Suppose that a 
mutation fragment F = (i, j, σ) is in F(Θ, x) for some set 
Θ of non-overlapping mutation operations. Then F is said 
to be covered by a mutation operation θl,r or τl,r,k in Θ
if F = F(θl,r, x, i) or F = F(τl,r,k, x, i). If F is not covered 
by any mutation operation in Θ , that is F = (i, i, xi), then 
we can consider that F is still covered by a virtual muta-
tion operation. We use L(Θ, x, F ) and R(Θ, x, F ) to denote 
the left and right end points of a mutation operation in Θ
respectively that covers F . Formally,

• L(Θ, x, F ) =

⎧⎪⎪⎨
⎪⎪⎩

l if ∃θl,r or τl,r,k ∈ Θ such that
F = F(θl,r, x, i)
or F = F(τl,r,k, x, i)

i otherwise

• R(Θ, x, F ) =

⎧⎪⎪⎨
⎪⎪⎩

r if ∃θl,r or τl,r,k ∈ Θ such that
F = F(θl,r, x, i)
or F = F(τl,r,k, x, i)

i otherwise

For example, suppose that Θ = {τ1,3,2, θ4,5}, x =T AG AC
and F(Θ, x) = 〈(1, 2, A), (2, 3, G), (3, 1, T), (4, 5, G), (5,

4, T)〉. For F = (2, 3, G), we have L(Θ, x, F ) = 1 and 
R(Θ, x, F ) = 3.

For an integer i, let Ai = {(i + 1, t, θ(xt)) : i + 1 < t ≤ n}
and Bi = {(i + 1, t, xt) : i + 1 < t ≤ n}, which are sets of 
mutation fragments covered by inversion and transposition 
operations respectively acting on x whose left end points 
are all i + 1, where 0 ≤ i < n.

Definition 3. Let S = 〈F1, F2, . . . , Fm〉 be an agreed se-
quence of m mutation fragments of x, where m ≤ n, and 
Θ be a set of non-overlapping mutation operations such 
that S � F(Θ, x). Sequence S is called a complete sequence
if R(Θ, x, Fm) = m.

Observation 2. Suppose that S = 〈F1, F2, . . . , Fm〉 is a com-
plete sequence, where m < n. Then S ′ = 〈F1, F2, . . . , Fm,

Fm+1〉 is an agreed sequence if Fm+1 ∈ Am ∪ M1[m + 1,

m + 1] ∪ Bm ∪ M2[m + 1, m + 1].

Definition 4 (Legal sequence). An agreed sequence S =
〈F1, F2, . . . , Fm〉 of m mutation fragments of x is legal if 
�(S) = y1,m , where m ≤ n.

The main idea of our algorithm is as follows. First, the 
algorithm constructs all legal sequences of length 1 by ex-
amining all mutation fragments in A0 ∪ M1[1, 1] ∪ B0 ∪
M2[1, 1]. A legal sequence is then created if the mutation 
fragment yields y1. Next, for each 1 ≤ i < n, the algo-
rithm produces all possible legal sequences of length i + 1, 
which can be obtained from all previously created legal 
sequences of length i. At the end, if there exists a legal 
sequence of length n, then the algorithm returns the min-
imum number of the used mutation operations among all 
legal sequences of length n. Otherwise, the algorithm re-
turns infinity.

To distinguish all the legal sequences of length i, where 
1 ≤ i ≤ n, we first define four sets of extended mutation 
fragments Ii , Hi , Ti and V i of x as follows:

• Ii = {(g, d, (i, j, θ(x j)))} for 0 ≤ g ≤ n − 1, 0 ≤ d ≤ n
and 1 ≤ j ≤ n.
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• Hi = {(s, d, (i, j, x j))} for 1 ≤ s ≤ n − 1, 0 ≤ d ≤ n and 
i < j ≤ n.

• Ti = {(g, d, (i, j, x j))} for 0 ≤ g ≤ n − 1, 0 ≤ d ≤ n and 
1 ≤ j < i.

• V i = {(0, d, (i, i, xi))} for 0 ≤ d ≤ n.

Actually, each extended mutation fragment is used to 
indicate a “status” of a legal sequence S = 〈F1, F2, . . . , Fi〉
of length i with some extra guiding information g , d and s. 
The value of g is the number of steps that are required 
to move towards the anti-diagonal (respectively, diagonal) 
direction on the mutation table M1 (respectively, M2) to 
complete an inversion (respectively, transposition) opera-
tion. That is, if the last mutation fragment Fi of S is cov-
ered by a mutation θl,r or τl,r,k , then g = r − i. The value 
of d denotes the number of the currently used mutation 
operations in S . If Fi is covered by a transposition oper-
ation, say τl,r,k , and Fi ∈ τl,r,k(x, 1), then s equals to the 
left end point of τl,r,k (i.e., s = l). An extended mutation 
fragment is further called an ending fragment (respectively, 
continuing fragment) if the value of its first component is 
zero (respectively, non-zero).

Next, we represent each legal sequence by an extended 
mutation fragment as follows. Given a legal sequence
S = 〈F1, F2, . . . , Fi〉 that consists of i mutation fragments 
of x, let Θ be any set of non-overlapping mutation op-
erations such that S � F(Θ, x). We further let ω be the 
mutation operation in Θ that covers Fi . Note that ω
may be a virtual mutation operation. We create an ex-
tended mutation fragment e by the following cases (each 
case is also called as a type of extended mutation frag-
ment):

Case 1 (type I): ω is an inversion operation. Then
e = (R(Θ, x, Fi) − i, ρ(Θ, i), Fi).

Case 2 (type H): ω is a transposition operation and Fi ∈
ω(x, 1). Then e = (L(Θ, x, Fi), ρ(Θ, i), Fi).

Case 3 (type T ): is a transposition operation and Fi ∈
ω(x, 2). Then e = (R(Θ, x, Fi) − i, ρ(Θ, i), Fi).

Case 4 (type V ): ω is a virtual mutation operation. Then 
e = (0, ρ(Θ, i), Fi).

Now, we briefly describe how to produce all possible 
legal sequences of length i + 1 from all previously created 
legal sequences of length i. Let Li be the set of all extended 
mutation fragments of x with each corresponding to a le-
gal sequence of length i. Suppose that Li is already known. 
Below, we construct Li+1 by examining all extended muta-
tion fragments in Li . For each extended mutation fragment 
e ∈ Li , we first identify all candidate mutation fragments at 
column i + 1 of the mutation tables M1 and M2 based on 
the guiding information contained in e. Let Ni(e) be set of 
the candidate mutation fragments of x at column i + 1 of 
M1 and M2. Then we compute Ni(e) as follows:

Case 1. e is a continuing fragment. Let Fi = (i, j, σ) be 
the mutation fragment contained in e. Then we consider 
three sub-cases to compute Ni(e): (1) Suppose that e is 
of type I . Then Ni(e) = {(i + 1, j − 1, θ(x j−1))}. (2) Sup-
pose that e is of type H , i.e., e = (s, d, Fi). If j < n, then 
Ni(e) = {(i + 1, j + 1, x j+1), (i + 1, s, xs)}; otherwise (i.e., 
j = n), Ni(e) = {(i + 1, s, xs)}. (3) Suppose that e is of 
type T , i.e., e = (g, d, Fi). Then Ni(e) = {(i +1, j +1, x j+1)}.
Case 2. e is an ending fragment. We set Ni(e) = Ai ∪
M1[i + 1, i + 1] ∪ Bi ∪ M2[i + 1, i + 1].

Next, for any Fi+1 ∈ Ni(e) with �(Fi+1) = yi+1, an ex-
tended mutation fragment e′ is created to contain Fi+1. 
As to the values of the guiding information in e′ , they can 
easily be obtained from those in e based on Observations 1
and 2. Finally, we add e′ into Li+1.

Lemma 1. Let P1 and P2 be two complete sequences of length m
of x with �(P1) = �(P2). Moreover, let S1 be an agreed sequence 
of x with P1 � S1 and S2 be the resulting sequence obtained by 
replacing P1 with P2 in S1 . Then, S2 is also an agreed sequence 
of x and �(S1) = �(S2).

Proof. Since S1 and P2 are agreed sequences of x, there 
exist sets of non-overlapping mutation operations Θ1 and 
Θ2 such that S1 � F(Θ1, x) and P2 � F(Θ2, x). Moreover, 
P1 � F(Θ1, x) since P1 � S1. We construct a set Θ3 of 
non-overlapping mutation operations from Θ1 as follows. 
First, let Θ3 be the resulting set obtained by removing all 
mutation operations in Θ1 that intersect with the range 
[1, m]. Note that the ranges of these removed mutation 
operations are completely contained in the range [1, m]
because P1 is a complete sequence of length m. Next, we 
insert those mutation operations in Θ2 whose ranges en-
tirely lie in the range [1, m] into Θ3. It can be verified that 
Θ3 is a set of non-overlapping mutation operations and 
moreover S2 �F(Θ3, x) and �(S1) = �(S2). �

Given an extended mutation fragment e, we use d(e)
to indicate the value of its second component (i.e., the 
number of the used mutation operations) for convenience. 
Based on Lemma 1, we have the following corollary.

Corollary 1. Let e1 and e2 be two ending fragments in Li . If 
d(e1) < d(e2), then we can safely discard e2 from Li when com-
puting the mutation distance between x and y.

Lemma 2. Let e1 and e2 be two continuing fragments of 
the same type T in Li with e1 = (g, d1, (i, j, x j)) and e2 =
(g, d2, (i, j, x j)). If d(e1) < d(e2) (i.e., d1 < d2), then we can 
safely remove e2 from Li without affecting the computation of 
the mutation distance between x and y.

Proof. Since two continuing fragments e1 and e2 of type T
contain the same mutation fragment (i, j, x j ) and the same 
guiding information g , the right end point of the mutation 
operation covering (i, j, x j) in e1 is equal to that of the 
mutation operation covering (i, j, x j ) in e2. Denote by t the 
above right end point. Clearly, for e1 and e2, their candi-
date mutation fragments at the columns from i to t on the 
mutation tables M1 and M2 are exactly equivalent. Hence, 
we can safely discard e2 from Li if d1 < d2 according to 
Corollary 1. �

Similar to the discussion in the proof of Lemma 2, it 
can also be verified that there do not exist two continuing 
fragments of same type I or H in Li such that the values 
of all their components, excluding the second components 
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(i.e., the number of used mutation operations), are equal. 
Now, the details of our algorithm for computing the non-
overlapping inversion and transposition distance between 
two equal-length strings x and y are described in Algo-
rithm 1.

Algorithm 1. Computing the mutation distance between 
two strings.

Input: Two strings x and y of the same length n.
Output: The mutation distance md(x, y).
1. Let i = 0, d = 0 and L1 = ∅;
2. Construct L1 by calling EMF_Creation(i,d);
3. if L1 =∅ then return ∞;
4. for i = 1 to n − 1 do
5. Li+1 = EMF_Extension(Li);
6. if Li+1 = ∅ then return ∞;
7. Return min{d(e) : e ∈ Ln};

Procedure 1. EMF_Creation(i, d).
Input: i and d;
Output: Add extended mutation fragments to Li+1 when 

Li = ∅ or there is an ending fragment in Li .
1. for each (i + 1, t, θ(xt)) ∈ Ai do
2. if θ(xt) = yi+1 then add (t − i − 1,d + 1, (i + 1, t ,

θ(xt))) of type I to Li+1;
3. if θ(xi+1) = yi+1 then add (0,d + 1, (i + 1, i + 1,

θ(xi+1))) of type I to Li+1;
4. for each (i + 1, t, xt) ∈ Bi do
5. if xt = yi+1 then add (i + 1,d + 1, (i + 1, t, xt)) of

type H to Li+1;
6. if xi+1 = yi+1 then add (0,d, (i + 1, i + 1, xi+1)) of

type V to Li+1;

Procedure 2. EMF_Extension(Li).
Input: Li .
Output: Li+1.

1. Li+1 ←∅ and Ei ←∅; /* Ei is used to keep all ending
fragments in Li */

2. for each extended mutation fragment e in Li do
3. case 1: e = (s,d, (i, j, x j)) is of type H .
4. if j < n and x j+1 = yi+1 then add (s,d, (i + 1,

j + 1, x j+1)) of type H to Li+1;
5. if xs = yi+1 then add ( j − i − 1,d, (i + 1, s, xs))

of type T to Li+1;
6. case 2: e = (g,d, (i, j, x j)) is of type T .
7. if g > 0 then
8. if x j+1 = yi+1 then add (g − 1,d, (i + 1,

j + 1, x j+1)) of type T to Li+1;
9. else /* that is, g = 0 */

10. Add e to Ei ;
11. case 3: e = (g,d, (i, j, θ(x j))) is of type I .
12. if g > 0 then
13. if θ(x j−1) = yi+1 then add (g − 1,d, (i + 1,

j − 1, θ(x j−1))) of type I to Li+1;
14. else /* that is, g = 0 */
15. Add e to Ei ;
16. case 4: e is of type V .
17. Add e to Ei ;
18. if Ei =∅ then d = min{d(e) : e ∈ Ei} and EMF_Cre-

ation(i,d);
19. Return Li+1;
For example, consider x = T AG AC , whose mutation ta-
bles are shown in Fig. 1, and y = T A AC G . Then for sim-
plicity, we just list the result of Li for each i = 1, 2, . . . , 5
as follows, where the superscript I , H , T or V indicates the 
type of the corresponding extended mutation fragment. 
According to the result of L5, we finally can conclude that 
md(x, y) = 1.

• L1 = {(1,1, (1,2, T ))I , (3,1, (1,4, T ))I ,

(0,0, (1,1, T ))V }.
• L2 = {(0,1, (2,1, A))I , (0,0, (2,2, A))V ,

(2,1, (2,4, A))H }.
• L3 = {(3,1, (3,4, A))H , (1,1, (3,2, A))T }.
• L4 = {(3,1, (4,5, C))H }.
• L5 = {(0,1, (5,3, G))T }.

Theorem 1. Algorithm 1 computes the mutation distance of two 
equal-length strings in O (n3) time and O (n2) space.

Proof. The correctness of Algorithm 1 can be verified ac-
cording to the discussion we mentioned before. Below, 
we analyze the complexities of Algorithm 1. For conve-
nience, we use |K | to denote the number of extended 
mutation fragments of type K in Li . By Corollary 1 and 
Lemma 2, we have O (|I|) = O (|H |) = O (|T |) = O (n2) and 
O (|V |) = O (1). Therefore, Procedure 2 can be done in 
O (|I| + |H | + |T |) = O (n2) time. It is not hard to see that 
Procedure 1 costs O (n) time in the worst case. Moreover, 
Procedure 2 is called at most O (n) times in Algorithm 1. 
As a result, the total time complexity of Algorithm 1 is 
O (n3). In addition, the space complexity of Algorithm 1 is 
O (|I| + |H | + |T |) = O (n2). �
4. Conclusions

In this work, we studied the computation of the non-
overlapping inversion and transposition distance (also 
called mutation distance) between two equal-length strings, 
which can be useful applications especially in computa-
tional biology. As a result, we presented an O (n3) time 
and O (n2) space algorithm to compute this mutation dis-
tance. Note that the mutation operations we considered 
allow both inversion and transposition and the lengths of 
two substrings exchanged by a transposition are not nec-
essarily identical. In fact, the algorithm we proposed in 
this study can be utilized to solve the approximate string 
matching problem under non-overlapping inversion and/or 
transposition distance by the sliding window technique. In 
future, it will be interesting to explore whether a space-
time tradeoff is possible for the technique we used to 
compute the mutation distance between two equal-length 
strings.
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