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Abstract—Time series similarity measure is an essential
issue in time series data mining, which can be widely used
in various applications. With an eye to the fact that most
current measures neglect the shape characteristic of time series,
this paper proposes a shape based similarity measure. By
introducing a shape coefficient into the traditional weighted
dynamic time warping algorithm, an improved version, shape
based weighted dynamic time warping (SWDTW) algorithm
is proposed. Specifically, the ways to measure univariate and
multivariate time series similarity with SWDTW are presented.
Finally, in order to verify the effectiveness of the proposed
similarity measure, both 1NN classification and similarity
search experiments are carried out using datasets derived from
UCR Time Series Classification Homepage. By comparing the
SWDTW similarity measure with other measures, the results
show that the proposed SWDTW measure is more of accuracy
and robust.

Keywords-time series; similarity measure; shape based
weighted dynamic time warping

I. INTRODUCTION

Time series data mining (TSDM) is the process of extract-
ing hidden information from a large amount of time series
data, one core issue of which is similarity measure. Almost
all of the tasks in TSDM, such as retrieval, clustering and
classification, need to find a suitable distance measure to
compare the similarity/dissimilarity between pairwise time
series [1]. Due to the characteristics of high dimensionality,
autocorrelation, shifting in time and amplitude, and noisy,
it’s not straightforward to derive a method that can measure
the similarity of time series efficiently and effectively[2].

Common methods to measure the similarity of time se-
ries are Euclidean distance(ED)[3], [4] and dynamic time
warping(DTW)[5], [6]. Compared with the previous one,
DTW is a dynamic programming method that can measure
the similarity for time series of different lengths, stretching
and bending. As a result, it can achieve a better accuracy
and good robustness, but high computational complexity,
and sometimes can lead to abnormal matching problem.
Therefore, various improvement methods for DTW have
been proposed, including LB Keogh lower bound [7], d-
ifferential dynamic time warping distance[8], [9], weight-

ed dynamic time warping distance(WDTW)[10], [11], etc..
Compared with DTW algorithm, WDTW adds weight to
the base distance of the points. In other words, it tends to
match points with narrow time interval, which can avoid
abnormal matching problem as possible. However, WDTW
algorithm only sees two basic characteristics of time series,
time and numerical characteristics, but ignores their shape
characteristic. It can be seen as the shape of a curve or
several curves(multivariate time series), which is constituted
by the numerical point sorted in time. For example, two
points have a large time interval, but their shapes are similar,
i.e., both points are peak or bottom points in curves. In
this condition, WDTW algorithm will avoid their matching,
however, it ignores the importance of the shape matching.

Therefore, this paper proposes a shape based similarity
measure for time series. By introducing a shape coefficient
into the traditional WDTW proposed in [9], a shape based
weighted dynamic time warping algorithm (SWDTW) is
presented to measure the similarity for both univariate and
multivariate time series. Finally, by comparing SWDTW
algorithm with other methods in the nearest neighbor clas-
sification and similarity search experiments, it has showed
that the proposed SWDTW similarity measure is more of
accuracy and robustness.

II. SHAPE BASED WEIGHTED DYNAMIC TIME WARPING

ALGORITHM

In this section, we propose a shape based weighted
dynamic time warping algorithm to measure the similarity
of time series. Similar to DTW, SWDTW is to find the mini-
mum matching distance by dynamic programming, allowing
the offset of time series in the time and numerical axis.
Their differences lie in the calculation of the base distance
between local points. In DTW, each point in time series is
equally dealt with in the calculation of the base distance.
Normally, the square of Euclidean distance between points
are used. In order to solve the abnormal matching prob-
lem of DTW, WDTW algorithm gives the base distance a
weight. The weight will be larger when two points have a
larger interval in time, which can possibly avoid abnormal
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matching between points. While in SWDTW, the weight is
relevant to both the time interval and shape characteristics
of the matching points. When two points have a narrow
time interval and similar shape, the weight is little. In other
words, when two points in the matched time series are in
the same corresponding place, and the shape of the curve
here is similar, then SWDTW algorithm will give the base
distance a small weight and support their matching. In the
following, a detailed description of the SWDTW distance
calculation process is presented.

For a given time series 𝑋𝐾×𝑚 = {𝑥𝑘, 𝑘 = 1, 2, ...,𝐾}𝑇
and 𝑌𝐾×𝑛 = {𝑦𝑘, 𝑘 = 1, 2, ...,𝐾}𝑇 , in which, 𝑥𝑘 =
{𝑥𝑘𝑖, 𝑖 = 1, 2, ...,𝑚} and 𝑦𝑘 = {𝑦𝑘𝑗 , 𝑗 = 1, 2, ..., 𝑛}.
When 𝐾 = 1, 𝑋 and 𝑌 are univariate time series, and
when 𝐾 ≥ 2, 𝑋 and 𝑌 are multivariate time series.
𝐴𝑚×𝑛 = (𝑎𝑖𝑗)𝑚×𝑛 represents the distance matrix between
𝑋 and 𝑌 , in which 𝑎𝑖𝑗 is calculated by the base dis-
tance measure. In traditional DTW method, multivariate
time series in one dimensional space is seen as univariate
time series in multi-dimensional space and the square of
Euclidean distance is chosen as the base distance measure,

i.e.,𝑎𝑖𝑗 =
𝐾∑

𝑘=1

(𝑥𝑘𝑖 − 𝑦𝑘𝑗)2. While in SWDTW measure, the

weighted square of Euclidean distance is chosen as the base

distance, i.e. 𝑎𝑖𝑗 = 𝑤𝑖−𝑗

𝐾∑
𝑘=1

(𝑥𝑘𝑖 − 𝑦𝑘𝑗)2, that is to say, it is

necessary to give the weight coefficient 𝑤𝑖−𝑗 between two
corresponding points. 𝑆 = {𝑠𝑝, 𝑝 = 1, 2, ..., 𝑃} represents
the dynamic warping path in the distance matrix, which
needs to satisfy the following conditions:

(1)max{𝑚,𝑛} ≤ 𝑃 ≤ 𝑚+ 𝑛− 1;
(2)𝑠1 = 𝑎11,𝑠𝑃 = 𝑎𝑚𝑛;
(3) if 𝑠𝑝 = 𝑎𝑖𝑗 and 𝑠𝑝+1 = 𝑎𝑖′𝑗′ , then 0 ≤ 𝑗′ − 𝑗 ≤ 1.
If 𝐿𝑤(𝑖, 𝑗) represents the weighted cumulative distance

between the point 𝑖 of 𝑋 and 𝑗 of 𝑌 , then

𝐿𝑤(𝑖, 𝑗) = min[𝐿𝑤(𝑖−1, 𝑗−1), 𝐿𝑤(𝑖−1, 𝑗), 𝐿𝑤(𝑖, 𝑗−1)]+𝑎𝑖𝑗 ,
(1)

where 𝐿𝑤(1, 1) = 𝑎11.
There are more than one dynamic path. In all paths,

𝐿𝑤(𝑚,𝑛) represents the best weighted dynamic time warp-
ing path with the minimum value of the weighted cumulative
distance. Figure 1 shows an example of the matching process
in SWDTW. There are three time series, sample 1, sample
2 and sample 3, and the matrix represents the cumulative
distance matrix. The dashed line is the dynamic warping
path between sample 1 and sample 2, and the dashed one
represents the path between sample 1 and sample 3. As
shown, both lines are curves, which means that time series
are dynamically matched. The solid line is more curved than
the dashed line, which shows the dynamic matching process
for time series of the different category is more complicated
and of higher complexity. Thus, the length of the warping
path can be used for representing the dissimilarity of time

series. The length of warping path between sample 1 and
sample 3 is longer than that between sample 1 and sample
2. Thus, compared with sample 3, sample 2 is more similar
to sample 1. 𝑆𝑊𝐷𝑇𝑊 (𝑋,𝑌 ) represents the similarity of
time series 𝑋 and 𝑌 measured by SWDTW algorithm, thus
𝑆𝑊𝐷𝑇𝑊 (𝑋,𝑌 ) can be obtained by

𝑆𝑊𝐷𝑇𝑊 (𝑋,𝑌 ) = min(
√
𝐿𝑤(𝑚,𝑛)). (2)

In summary, the SWDTW algorithm can be represented
by
⎧⎨
⎩

𝑎𝑖𝑗 = 𝑤𝑖−𝑗

𝐾∑
𝑘=1

(𝑥𝑘𝑖 − 𝑦𝑘𝑗)
2

𝐿𝑤(𝑖, 𝑗) = min[𝐿𝑤(𝑖− 1, 𝑗 − 1), 𝐿𝑤(𝑖− 1, 𝑗), 𝐿𝑤(𝑖, 𝑗 − 1)] + 𝑎𝑖𝑗

𝑆𝑊𝐷𝑇𝑊 (𝑋,𝑌 ) = min(
√

𝐿𝑤(𝑖, 𝑗)).
(3)
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Figure 1: An example of shape based weighted dynam-
ic time warping algorithm. In figure, three samples have
been extracted from the synthetic control dataset (detailed
information can be seen in experiments section), in which,
sample 1 and sample 2 belong to the same category and
sample 3 belong to another category. As seen, the dashed
line represents the dynamic warping path between sample
1 and sample 2 while the solid line represents the warping
path between sample 1 and sample 3.

In the following, the detailed calculating process of the
weight factors 𝑤𝑖−𝑗 between two corresponding points 𝑖
and 𝑗 is presented. First, the importance vectors 𝐸𝑋 =
{𝑒𝑘𝑖}𝐾×𝑚 and 𝐸𝑌 = {𝑒𝑘𝑗}𝐾×𝑛 of the points in two
time series 𝑋 and 𝑌 are obtained by the local extreme
point detection algorithm, in which both 𝑒𝑘𝑖 and 𝑒𝑘𝑗 are
determined by:

𝑒𝑘𝑖 =

⎧⎨
⎩

1,when 𝑋𝑖 is the local maximum

− 1,when 𝑋𝑖 is the local minimum

0,when 𝑋𝑖 is none of local maximum and minimum
(4)

As mentioned before, as a numerical point sequence
sorted by time, time series not only have numerical and time
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characteristic, but the shape feature. In this paper, we draw
attention on the local point distribution of the time series.
In sequence, points can be classified into three categories,
which are local maximum(peak), local minimum(bottom)
and normal. Therefore, when matching two time series, we
tend to match points with the same shape, e.g., ”peak-peak”
or ”bottom-bottom”, and avoid ”peak-bottom” matching.
Thus, the weight of two corresponding points is given as
follows:

𝑤𝑖−𝑗 = 𝑤𝑚𝑎𝑥/(1 + 𝑒𝑥𝑝(−𝑔 × (𝑐×𝑅−𝑚𝑐 ×𝐾))) (5)

where 𝑐 = ∣𝑖− 𝑗∣ is the distance coefficient, obviously, 0 ≤
𝑐 ≤ 𝑚𝑎𝑥(𝑚,𝑛); 𝑅 is the shape coefficient, which can be de-

termined by 𝑅 =
𝐾∑

𝑘=1

𝑟𝑘, 𝑟𝑘 = ∣𝑒𝑘𝑖𝑒𝑘𝑗 − 1∣, 𝑘 = 1, 2, ...,𝐾;

𝑚𝑐 is the middle point of 𝑋 or 𝑌 , i.e., 𝑚𝑐 = [𝑚/2] or
[𝑛/2]; 𝑤𝑚𝑎𝑥 is the upper limit of the weight; 𝑔 is a constant
that can effectively control the level of penalty on the time
interval between the point and the shape difference. When
𝑔 = 0, the weight values of all points are the same, that
is, the traditional DTW method. With the increase of 𝑔, the
penalty for both the time interval and the unmatched shape
of two points increases. In [9], it is pointed out that a good
effect can be obtained when the value of 𝑔 is between 0.01
and 0.6. Unlike WDTW, the influence of 𝑔 on the results
depends not only on the time interval, but also on the shape
differences of the sequences. According to the definition of
the weight value 𝑤𝑖−𝑗 , it is an increasing function of the
shape coefficient 𝑅 and the distance coefficient 𝑐.

According to the definition of shape coefficient, there are
three values for 𝑟𝑘 as follows:

𝑟𝑘 =

⎧⎨
⎩

0,when 𝑒𝑘𝑖 = 1,𝑒𝑘𝑗 = 1 or 𝑒𝑘𝑖 = −1,𝑒𝑘𝑗 = −1
1,when 𝑒𝑘𝑖 = 0 or 𝑒𝑘𝑗 = 0

2,when 𝑒𝑘𝑖 = 1,𝑒𝑘𝑗 = −1 or 𝑒𝑘𝑖 = −1,𝑒𝑘𝑗 = 1
(6)

Therefore, the range of shape coefficient 𝑅 ∈
{0}∪{1, 2, ...,𝐾}∪{2 × 𝑖, 𝑖 = 1, 2, ...,𝐾} , i.e. when
all dimensions are ”peak-peak”, or ”bottom-bottom”, the
weight function is only dominated by shape coefficient, and
the value reaches its minimum value 𝑤𝑚𝑖𝑛 = 𝑤𝑚𝑎𝑥/(1 +
𝑒𝑥𝑝(𝑔×𝑚𝑐×𝐾)). In other words, it encourages ”peak-peak”
or ”bottom-bottom” points to match. When all dimensions
are ”peak-bottom” matching, shape coefficient reaches its
maximum value 𝑅 = 2𝐾, which can expand the influence
of the shape coefficient and avoid the matching of the peak
point and bottom point. When there are all none extreme
points matching, the shape coefficient 𝑅 = 𝐾, at the point
the weight value is not dominated by the shape coefficient
𝑅 but the distance coefficient 𝑐.

As described before, the calculating process of the
SWDTW algorithm is based on the univariate time se-
ries. But it is not to say that this method can only be
used to calculate the similarity for one-dimensional time

series. It can also be used for measuring the similarity for
multi-dimensional time series. Similar to other univariate
similarity measures, SWDTW can be used to calculate
each corresponding dimension of multivariate time series,
respectively. Then the sum of the result from the measures
of all variables can be used as the similarity measure for
multivariate time series. It should be noted that in order
to avoid the numerical value of each dimension affecting
other dimensions, before measuring the similarity, normal-
ization needs to be carried out to standardize the whole
time series. Normally, the ”min-max” normalization is used.
For the MTS 𝑋 with 𝐾 dimensions, for each dimension
𝑥𝑘 = {𝑥𝑘𝑖, 𝑖 = 1, 2, ..., 𝑛𝑘}, 𝑘 = 1, 2, ...,𝐾,

𝑥̂𝑘𝑖 = (𝑥𝑘𝑖 −𝑚𝑖𝑛(𝑥𝑘))/(𝑚𝑎𝑥(𝑥𝑘)−𝑚𝑖𝑛(𝑥𝑘)). (7)

However, in real application, it can only be used for small
scale of few variables or short length as a result of high
computational complexity. For multivariate time series with
large scale, we can represent them by dimensionality reduc-
tion method, such as principal component analysis or linear
segmentation. Afterwards, we can use SWDTW to measure
the transformed time series. The detailed information will
be discussed in our later work.

III. EXPERIMENTS

In order to verify the effectiveness of the proposed
SWDTW similarity measure, in this section, we adopts
the measure in the nearest neighbor (1NN) classification
and similarity search experiments in comparison with other
common measures, i.e. Euclidean distance(ED), dynamic
time warping(DTW), and weighted dynamic time warping
(WDTW) algorithms. As mentioned before, the proposed
SWDTW measure can be used to measure the similarity for
both univariate and multivariate time series. Thus, in this
section, we carried out experiments on both univariate and
multivariate time series datasets. The detailed process and
the results are shown as follows.

A. Data sets

The univariate time series data sets used derive from
the UCR Time Series Classification Homepage [12], which
possesses a multitude of the time series data sets that are
publicly available and labeled. The lengths of samples in the
datasets vary from 96 to 570, and the number of classes per
dataset varies from 2 to 9. The size of the training dataset
(testing dataset) varies from 28 (28) to 1000 (4000). The
datasets contain data from various domains, such as robotics,
handwriting recognition and medicine. In the experiment,
10 univariate time series datasets are selected. In the mul-
tivariate time series classification experiment, the data sets
used derive from the UCI homepage, in which EEG [13],
Japanese Vowel (JV) [14] and Robot (Execution) Failure
(REF) [15] dataset are selected. The EEG data set was
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derived from two types of experimental objects. The number
of variables is 64, and the length is 256. Here we randomly
select 60 samples from two different types of samples,
named co2a0000364 and co2c0000337. The JV data set is
a set of records of different individual pronunciation, which
contains 9 categories of samples with 12 variables and the
various length of 7-29. The REF data set records the failure
of the robot, which includes LP1-LP5 five data sets. The
first subset LP1 data set is used in this paper.

The software of MATLAB (version R2015a) was used
in the computational process. A PC with Intel Core i7-
4710MQ 2.05 GHZ processor (8GB RAM) and Windows
7 Professional SP1 (64-bit) operating system served as the
hardware platform.

B. The nearest neighbor classification experiment

1) Experiment settings: In this part, the proposed similar-
ity measure is validated by the 1NN classification method.
Following Wang et al. [16] and Serra et al. [17], the nearest-
neighbor classifier has several advantages for use as the
validation method. First of all, the performance of the 1NN
classifier is decided by the similarity measure it selects.
Second, the 1NN classifier is parameter-free, thus easily
implemented and compared with other measures. Third, it
has been suggested that the simple 1NN classifier can obtain
the best results in time series classification. Furthermore, in
most of the existing research, the 1NN classification method
has been used as the evaluation criterion of the similarity
measure. The error rates are calculated as the results. In
both WDTW and SWDTW, the upper limit of weight 𝑤max

is set as 2, 𝑔 is taken as 0.08.
2) Result and analysis: 1NN classification results are

shown in Table I. All the results obtained from non-random
measures are better than that from the random baseline
similarity measure. Our proposed SWDTW outperforms
other measures in most datasets except Olive Oil, EEG
and REF(LP1) datasets. Additionally, it can achieve zero-
error classification in some datasets, i.e., CBF, Trace, Two
Patterns and Coffee datasets. Both DTW and WDTW also
win in some of datasets. Furthermore, ED obtains 2.83 for
average rank, only being superior to the random baseline.
To show the comparison of the similarity measures more
clearly, the box plot of the performance ranks of each mea-
sure is presented in Figure 2. The measures are SMDTW,
WDTW, DTW, ED and random baseline from left to right in
horizontal axis. As shown, from a global basis, our proposed
SWDTW measure can obtain the best average performance
in all datasets, followed by WDTW and DTW. In addition,
ED and random measures are inferior to other measures.

In order to further assess the statistical difference be-
tween the error ratio of our proposed measure and other
similarity measures, the well-known Wilcoxon signed-rank
test is employed. The Wilcoxon signed-rank test is a non-
parametric statistical hypothesis test. It usually serves to

SWDTW WDTW DTW ED Random

1

2

3

4

5

Figure 2: Box plot for the distribution of performance ranks
of each measure across datasets. Dashed lines denote statisti-
cally significantly equivalent groups of measures (𝑝 < 0.05)

compare two repeated measurements (or related samples) by
assessing whether their mean ranks in population differ [17].
In order to comprehensively compare similarity measures,
we employed the average error ratio of all datasets as
input. According to common practice, the threshold of the
significance level is set as 5%. The statistical analysis results
are shown in Figure 2. The green dashed line denotes the
statistically equivalent group measures. As seen, the SDTW,
WDTW and DTW are statistically equivalent. Although our
proposed SWDTW do not outperform WDTW and DTW
measures, our main contribution is proposing an idea to
extract the shape characteristic of the time series in simi-
larity measure, which can also outperform other methods in
accuracy or efficiency in some cases.

C. Similarity search experiments

1) Experiments settings: In order to further verify the
proposed SWDTW similarity measure, in this part, we carry
out the K-nearest similarity search experiments on both
univariate time series and multivariate time series datasets
of three different scales, i.e., small, medium and large. In
univariate time series datasets. In univariate datasets, Gun-
point, Trace and Lighting-2 datasets, lengthes of which
are 150, 275 and 637, respectively. While in multivariate
datasets, EEG, Japanese Vowel(JV) and REF(LP1) datasets
are chosen. Similar to the classification experiment, the
SWDTW similarity is compared with ED, DTW and WDTW
similarity measures.

For the time series datasets with 𝑛 samples, select 𝑖𝑡ℎ,
𝑖 = 1, 2, 3..., 𝑛 sample from testing datasets to be used
as matching samples first. Second, find out 𝑘 samples in
training dataset that are the most similar with the matched
samples by using the similarity measure methods listed
above, where 𝑘 = 1, 5 or 10. Finally, find out samples that
belong to the same category with the matched sample and
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Table I: Error rates in 1NN classification for different data sets. The data sets include 10 univariate and 3 multivariate data
sets. In the front 5 columns, the detailed information about datasets has been given. In the last 5 columns, the error rates
of the classification experiments for each datasets based on random, Euclidean distance, dynamic time warping, weighted
dynamic time warping and shape based weighted dynamic time warping algorithms are presented, respectively. As ED
algorithm can only measure time series with the same lengthes, thus, it can’t be applicable to JV dataset.

Datasets Length
Size of

train sets
Size of

test sets
Number of

classes
Number of
variables Random ED DTW WDTW SWDTW

Gun-point 150 50 150 2 1 0.506 0.087 0.093 0.087 0.067
CBF 128 30 900 3 1 0.655 0.148 0.003 0.004 0
Trace 275 100 100 4 1 0.757 0.240 0 0 0

Two patterns 128 1000 4000 4 1 0.743 0.093 0 0 0
Lighting-2 637 60 61 2 1 0.488 0.246 0.131 0.115 0.098
ECG200 96 100 100 2 1 0.515 0.120 0.230 0.200 0.160

Fish 463 175 175 7 1 0.871 0.217 0.177 0.160 0.160
Beef 470 30 30 5 1 0.763 0.467 0.500 0.500 0.400

Coffee 286 28 28 2 1 0.394 0.250 0.179 0.179 0
Olive Oil 570 30 30 4 1 0.644 0.133 0.167 0.133 0.167

EEG 256 30 30 2 64 0.767 0.067 0.033 0.067 0.067
Japanese vowel 7-29 135 135 9 12 0.948 - 0.037 0.037 0.037

REF(LP1) 15 43 45 4 6 0.667 0.422 0.400 0.578 0.489
Average error rate 0.648 0.207 0.159 0.169 0.134

Average rank 5.00 2.83 2.33 2.17 1.50

the number is denoted as ℎ𝑖, and calculate the matching
error rate 𝑒𝑖 = 1 − ℎ𝑖/𝑘, 𝑖 = 1, 2, ..., 𝑛. According to the
definition, 𝑒𝑖 ∈ [0, 0.1, 0.2, ..., 1] , which has 11 values.
After repeating 𝑛 times, 𝜀 represents the random variable
of experiment error rate, then the mathematical expectation
value 𝑒∗ of 𝜀 can be calculated as follows.

𝑒∗ =
𝑛∑

𝑖=1

𝑝(𝜀 = 𝑒𝑖)× 𝑒𝑖

Table II: Error rates in similarity search experiment on
different datasets including 3 univariate and 3 multivariate
data sets. Results with the minimum values are bold.

Datasets k Random ED DTW WDTW SWDTW
Gun-point 1 0.507 0.087 0.093 0.087 0.087

5 0.505 0.248 0.259 0.241 0.239
10 0.479 0.351 0.335 0.327 0.326

Trace 1 0.740 0.240 0 0 0
5 0.740 0.448 0.014 0.014 0.014

10 0.757 0.507 0.065 0.072 0.075
Lighting-2 1 0.541 0.246 0.131 0.115 0.098

5 0.449 0.348 0.223 0.246 0.226
10 0.482 0.380 0.321 0.336 0.323

EEG 1 0.400 0.067 0.033 0.067 0.067
5 0.800 0.267 0.300 0.260 0.260

10 0.900 0.350 0.383 0.357 0.357
Japanese

Vowel 1 0.733 - 0.037 0.037 0.037

5 0.800 - 0.129 0.118 0.120
10 0.900 - 0.209 0.202 0.201

REF(LP1) 1 0.859 0.378 0.333 0.444 0.400
5 0.800 0.436 0.382 0.538 0.484

10 0.900 0.493 0.436 0.560 0.613

2) Result and analysis: As shown in Table II, the results
of similarity search using five measures for six datasets when
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Figure 3: The example result of similarity search for LP1
dataset. The first subfigure is the 3D image of the searched
sample, which is the 6𝑡ℎ sample in testing dataset of LP1,
and the remaining subfigures are the searched samples found
by random baseline, ED, DTW, WDTW and SWDTW
measures, respectively. They are the 21𝑡ℎ,6𝑡ℎ,9𝑡ℎ,9𝑡ℎ,5𝑡ℎ

samples in training dataset of LP1, respectively.

𝑘 equals to 1, 5 and 10 are given. From a global view,
with the increase of 𝑘, the error rates increase, which shows
that the similarity measures used are more accurate in the
nearest neighbor search experiment. Similar to classification
experiment, all the none-random measures can outperform
random measures and none measures can outperform all
other measures in similarity search experiment. SWDTW
algorithm can achieve a best performance in Gun-point and
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Trace datasets, while DTW algorithm wins in both Lighting-
2 and REF(LP1) datasets. It can show that compared with
multivariate time series datasets, SWDTW algorithm can
perform better in univariate time series dataset. In order
to compare the matching results of different methods more
intuitively, this paper takes the sixth sequence of LP1 testing
dataset as input sample, and the sample category is 1, which
is represented by LP1-Test-6(1), and finds the most similar
samples in the training datasets by the above five methods,
for example, the result obtained by ED is represented by
LP1-ED-6(1). In the similarity matching experiment, the
most similar samples found by Random, ED, DTW, WDTW
and SWDTW algorithm are samples numbered 21, 6, 9, 9
and 5. In those samples, except for sample 21 belonging
to category 3, other samples belong to the category 1 that
is in accordance with testing sample. Because LP1 is a
multivariate time series, the samples searched by different
methods are displayed with 3D images in Figure 3. As
shown, from the shape view, the fluctuation trend of the
sample found by SWDTW method is the most similar with
the testing sample, so as to further demonstrate the validity
of the SWDTW algorithm.

IV. CONCLUSION

In the light of the condition that most existing methods
ignore the shape characteristic of time series, this paper
proposes a shape based similarity measure for time series.
By introducing a shape coefficient into the weight function,
a shape based weighted dynamic time warping algorithm is
proposed that can effectively capture the numerical, time and
the shape characteristics. In experiments, 1NN classification
and similarity search for both univariate and multivariate
time series are carried out and verify the effectiveness of
the proposed SWDTW method.

However, the method proposed in this paper still has
some shortcomings. Similar to DTW algorithm, due to the
complexity of the dynamic programming, the computational
complexity is very high and may restrict its real applica-
tions, especially for multivariate time series of long length.
Therefore, in our future research, we will draw our attention
on improving the computational efficiency of the SWDTW
algorithm. We will first consider those methods that have
successfully improve the efficiency of the DTW algorithm.
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