
Theoretical Computer Science 710 (2018) 29–34
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On finding a longest common palindromic subsequence

Sang Won Bae a, Inbok Lee b,∗
a Department of Computer Science, Kyonggi University, Suwon, 443-760, Republic of Korea
b Department of Software and Computer Engineering, Korea Aerospace University, Goyang, 412-791, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 June 2016
Received in revised form 12 January 2017
Accepted 14 February 2017

Keywords:
String algorithm
Longest common palindromic subsequence

Recently, Chowdhury et al. [5] proposed the longest common palindromic subsequence prob-
lem. It is a variant of the well-known LCS problem, which refers to finding a palindromic
LCS between two strings T1 and T2. In this paper, we present a new O (n + R2)-time al-
gorithm where n = |T1| = |T2| and R is the number of matches between T1 and T2. We
also show that the average running time of our algorithm is O (n4/|�|2), where � is the
alphabet of T1 and T2. This improves the previously best algorithms whose running times
are O (n4) and O (R2 log2 n log logn).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The longest common subsequence (LCS) problem is a classical problem in string algorithms, where two strings T1 and T2
are given and it is required to find a longest subsequence that appears simultaneously in both strings T1 and T2. Previous
works on this problem include [2,3,6–9,11]. [3] is a good survey. Chvátal and Sankoff [7] studied the expected length of
an LCS of two random strings. A special case for large alphabets was covered in [11]. In [2], it was shown that the worst
time complexity of the LCS problem on the comparison-based model must be quadratic unless the alphabet size is fixed.
Hirshberg showed that the LCS problem can be solved in linear space [9]. Crochemore, Iliopoulos and Pinzon showed a
practically faster algorithm based on bit-vector operations in [6]. Another bit-vector operation approach for a variant of the
LCS problem is shown in [8].

Many variants of the LCS problem have been studied. Among them is the longest common palindromic subsequence problem
which asks to find a longest common subsequence of T1 and T2 that is a palindrome. For example, if T1 = cabbba and
T2 = aabcbab, then abba is a longest common palindromic subsequence of T1 and T2.

Problem 1. Given two strings T1 and T2, report the longest common subsequence of T1 and T2 which is a palindrome.

Manacher [13] presented a linear time algorithm reporting all the palindromes which are prefixes of a given string.
Apostolico, Breslauer, and Galil [1] showed that the same algorithm could be used to report all the maximal palindromes in
a given string, also in linear time. A suffix-tree based algorithm is shown in [10].

The problem has recently been proposed by Chowdhury et al. [5], in which two algorithms were proposed: an
O (n4)-time algorithm based on dynamic programming and the other of O (R2 log2 n log log n) time based on an idea from
computational geometry, where n = |T1| = |T2| and R is the number of matches between T1 and T2. Note that a match is

* Corresponding author.
E-mail address: inboklee@kau.ac.kr (I. Lee).
http://dx.doi.org/10.1016/j.tcs.2017.02.018
0304-3975/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2017.02.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:inboklee@kau.ac.kr
http://dx.doi.org/10.1016/j.tcs.2017.02.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2017.02.018&domain=pdf

30 S.W. Bae, I. Lee / Theoretical Computer Science 710 (2018) 29–34
a pair of positions in T1 and T2 with the same character. This means that the second algorithm may be slower than the
first one in the worst case where R = �(n2). In particular, in the second algorithm, Chowdhury et al. reduces the problem
to a geometric problem in four-dimensional space, and adopts geometric data structures such as range trees to efficiently
solve it.

In this paper, we present an O (n +R2) time algorithm for the longest common palindromic subsequence problem. Note
that our algorithm strictly outperforms the second algorithm of Chowdhury et al. [5] and its running time is bounded by
O (n4) even in the worst case. In order to achieve this improvement, we start with a recurrence relation being essentially
the same as the one of Chowdhury et al. yet in a different form, and apply our new ideas using staircase structures of
matches, finally yielding a more efficient recurrence relation and algorithm. This approach borrows some geometric ideas
while our algorithm does not need to handle any complicated geometric structure. Hence, compared to previous algorithms,
our algorithm is much easier to implement while increasing its performance.

Related problems include the longest common repeat problem. Given a set of strings, we would like to find the longest
substring which appears at least twice in each string. Linear time algorithms for the problem were introduced in [12].

2. Preliminaries

Let � be the alphabet. T [i] denotes the i-th character of T and T [i.. j] is the substring T [i]T [i + 1] · · · T [j]. |T | denotes
the length of T . T R , reverse of a string T is obtained by reading T from right to left: T [|T |]T [|T | − 1] · · · T [1]. A string T is
palindromic if T = T R .

A subsequence of a string is a string obtained by deleting zero or more symbols from the original string. Given two or
more strings, a common subsequence is a subsequence which is common to each string. A longest common subsequence (LCS)
is a longest common subsequence among all the common subsequences. Finally, a longest common palindromic subsequence
(LCPS) is a longest subsequence among all common subsequences that are palindromic.

LC S(T1, T2) is the length of an LCS of T1 and T2 and LC P S(T1, T2) is that of an LCPS of T1 and T2.
For simplicity, we assume that T1 and T2 are of the same length: n = |T1| = |T2|. It is straightforward to modify our

algorithm to handle the case when |T1| �= |T2|. Again, the time complexity depends on the number of matches between T1
and T2.

3. Algorithm

Here we present an O (R2)-time algorithm for computing LC P S(T1, T2) of two strings T1 and T2 of length n, where R
denotes the number of matches between T1 and T2. A match between two strings T1 and T2 is a pair (a1, a2) of indices
such that T1[a1] = T2[a2].

Let D((a1, a2), (b1, b2)) = LC P S(T1[a1..b1], T2[a2..b2]). The O (n4)-time dynamic programming in [5] is based on the
following recurrence:

D((a1,a2), (b1,b2)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (a1 > b1 or a2 > b2)

1 + D((a1 + 1,a2 + 1), (b1 − 1,b2 − 1))

⎛
⎜⎝ a1 ≤ b1,a2 ≤ b2,

T1[a1] = T1[b1]
= T2[a2] = T2[b2]

⎞
⎟⎠

max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D((a1 + 1,a2), (b1,b2)),

D((a1,a2 + 1), (b1,b2)),

D((a1,a2), (b1 − 1,b2)),

D((a1,a2), (b1,b2 − 1))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(otherwise).

A straightforward dynamic programming based on the above recurrence solves n4 subproblems. We observe that they may
make a difference only when the corresponding pairs (a1, a2) and (b1, b2) are matches.

Lemma 1. Let a1, a2, b1, b2 be indices from 1 to n. For any 1 ≤ a′
1, a

′
2 ≤ n such that there is no match (a′′

1, a
′′
2) with a1 ≤ a′′

1 ≤ a′
1 and

a2 ≤ a′′
2 ≤ a′

2 , we have D((a1, a2), (b1, b2)) = D((a′
1, a

′
2), (b1, b2)). Symmetrically, for any 1 ≤ b′

1, b
′
2 ≤ n such that there is no match

(b′′
1, b′′

2) with b1 ≥ b′′
1 ≥ b′

1 and b2 ≥ b′′
2 ≥ b′

2 , we have D((a1, a2), (b1, b2)) = D((a1, a2), (b′
1, b

′
2)).

Proof. This immediately follows from the recurrence relation for D . �
Lemma 1 gives us a hint to reducing the number of subproblems to solve. We implement this using the following partial

order on the set of matches. Consider for the moment any set P ⊂ R
2 of points in the plane. For any p ∈ P , let p1 and p2

be the first and second coordinates of p in R2, namely, p = (p1, p2) ∈ R
2. For any p, q ∈ P , we write p ≺ q if and only if

p1 < q1 and p2 < q2. If p ≺ q, then we say that p precedes q or q succeeds p. Also, we write p
 q if either p ≺ q or p = q.

S.W. Bae, I. Lee / Theoretical Computer Science 710 (2018) 29–34 31
Fig. 1. Illustration of the two partitions of M when T1 = adbacbcda and T2 = cdabacbdb. In this example, there are |M| = 20 matches between T1 and
T2, depicted as dots in the figure.

We define (P) ⊆ P to be the maximal set of points q ∈ P such that there is no p ∈ P with p ≺ q. Symmetrically, define
(P) ⊆ P to be the set of points p ∈ P such that there is no q ∈ P with p ≺ q.

We now apply the above partial ordering to the set M of all matches between T1 and T2, interpreting each match
(a1, a2) ∈ M as a point in the plane R2 with the standard (x, y)-coordinate system. Repeatedly applying (·) and (·) to
M gives us two layered partitions of M: Let 1 := (M) and i := (M \ (1 ∪ · · · ∪ i−1)), while let 1 := (M) and

j := (M \ (1 ∪ · · · ∪ j−1)). Let m1 and m2 be the largest integers such that m1 �= ∅ and m2 �= ∅, respectively. See
Fig. 1 for an illustration.

It is more intuitive to look at these structures from a geometric viewpoint. If p ≺ q, then q is located in the first quadrant
with apex p. Thus, the union U of quadrants with apices p ∈ 1 contains all the other matches M \ 1. Observe that the
boundary of the union U forms a staircase-like polygonal chain, which implies a natural ordering on 1. For any integer
1 ≤ l ≤ | i |, let i[l] denote the l-th point in i along the boundary of U in the x-increasing order. The above argument
applies symmetrically to j , and thus let j[r] denote the r-th point in j for 1 ≤ r ≤ | j |.

The two partitions { 1, . . . , m1 } and { 1, . . . , m2 } of M provide a way to jump to “next” matches in M from any
current instance ((a1, a2), (b1, b2)) of the subproblems, and it suffices to solve D((a1, a2), (b1, b2)) by Lemma 1. Specifically,
we obtain the following recurrence relation based on the partitions: For convenience, let Di, j

l,r := D(i[l], j[r]), and let
χ((a1, a2)) := T1[a1] = T2[a2] for any match (a1, a2) ∈ M . Then, for any i ∈ {1, . . . , m1}, j ∈ {1, . . . , m2}, l ∈ {1, . . . , | i |}, and
r ∈ {1, . . . , | j |},

Di, j
l,r =

⎧⎪⎨
⎪⎩

1 + A(i, l; j, r)

(
i[l]
 j[r]

χ(i[l]) = χ(j[r])

)

max{B (i, l; j, r), B (i, l; j, r)} (otherwise)

,

where

A(i, l; j, r) := max{Di+1, j+1
l′,r′ | i[l] ≺ i+1[l′], j+1[r′] ≺ j[r]},

B (i, l; j, r) := max{Di, j+1
l,r′ | j+1[r′] ≺ j[r]}, and

B (i, l; j, r) := max{Di+1, j
l′,r | i[l] ≺ i+1[l′]}.

Here, we assume max ∅ = 0. The base case of the above recurrence is when i = m1 or j = m2, and in this case A(i, l; j, r),
B (i, l; j, r), and B (i, l; j, r) are all evidently zero since m1+1 = m2+1 = ∅. Note that the solution to the original problem
D((1, 1), (n, n)) is taken by the maximum of D1,1

l,r over all 1 ≤ l ≤ | 1| and 1 ≤ r ≤ | 1|. Hence, the problem can be solved
via dynamic programming by running four indices: i from m1 down to 1, j from m2 down to 1, l from 1 to | i |, and r from
1 to | j|. It solves exactly |M|2 =R2 subproblems.

Now we describe how to solve each subproblem in O (1) amortized time. The following is a key observation for the
purpose.

Lemma 2. Let p ∈ {1, . . . , n}2 be any point. For any positive integers i, l1, and l2 with 1 ≤ l1 ≤ l2 ≤ | i |, if p ≺ i[l1] and p ≺ i[l2],
then it holds that p ≺ i[l′] for any l1 ≤ l′ ≤ l2 . Symmetrically, for any positive integers j, r1, and r2 with 1 ≤ r1 ≤ r2 ≤ | j |, if

j[r1] ≺ p and j[r2] ≺ p, then it holds that j[r′] ≺ p for any r1 ≤ r′ ≤ r2 .

Proof. Suppose that p ≺ i[l1] and p ≺ i[l2]. By the structure of i , the point i[l′] for any l1 ≤ l′ ≤ l2 is contained in the
axis-parallel rectangle R whose upper-left corner is i[l1] and whose lower-right corner is i[l2]. Since the first quadrant
at p contains i[l1] and i[l2], so does the rectangle. See Fig. 2 for an illustration. This implies that the first quadrant at p
contains all points i[l′] and it thus holds that p ≺ i[l′].

32 S.W. Bae, I. Lee / Theoretical Computer Science 710 (2018) 29–34
Fig. 2. Illustration to Lemma 2.

Next, suppose that j[r1] ≺ p and j[r2] ≺ p. As above, the point j[r′] for any r1 ≤ r′ ≤ r2 is contained in the axis-
parallel rectangle R whose upper-left corner is j[r1] and whose lower-right corner is j[r2]. On the other hand, the third
quadrant at p contains both j[r1] and j[r2] since the first quadrant at j[r1] contains p and the first quadrant at j[r2]
contains p. This implies that the rectangle R is completely contained in the third quadrant at p, and so is j[r′] for any
r1 ≤ r′ ≤ r2. Hence, the first quadrant at each j[r′] contains p, and it thus holds that j[r′] ≺ p. �

Let I i (p) be the set of positive integers l′ such that p ≺ i[l′], and I j
(p) be the set of those r′ such that j[r′] ≺ p.

Then, Lemma 2 implies that for any point p both I i (p) and I j
(p) form a set of consecutive integers in {1, . . . , | i |} and

{1, . . . , | j |}, respectively. For an illustrative example, see Fig. 2 in which I i (p) = {2, 3, 4, 5, 6, 7}. Now, we regard Di, j

as a | i | × | j | matrix with elements Di, j
l,r for any l ∈ {1, . . . , | i |} and r ∈ {1, . . . , | j|}. We then observe that the three

values A(i, l; j, r), B (i, l; j, r), and B (i, l; j, r) are the maximum elements of a submatrix of Di+1, j+1, Di, j+1, and Di+1, j ,
respectively. Hence, computing Di, j

l,r can be done by processing one or two range queries on the matrices. Moreover, our
queries are not arbitrary but obey a strict order as follows:

Lemma 3. If I i+1(i[l]) = {l1, . . . , l2} and I i+1(i[l + 1]) = {l′1, . . . , l′2}, then we have l1 ≤ l′1 and l2 ≤ l′2 . Analogously, if
I j+1

(j[r]) = {r1, . . . , r2} and I j+1
(j[r + 1]) = {r′

1, . . . , r
′
2}, then we have r1 ≤ r′

1 and r2 ≤ r′
2 .

Proof. First, observe that if i[l] = (xl, yl) and i[l + 1] = (xl+1, yl+1), then it holds that xl ≤ xl+1 and yl ≥ yl+1 by the
structure of i .

Suppose to the contrary that l1 > l′1. This implies that the x-coordinate of i[l + 1] is strictly smaller than that of i[l].
This is a contradiction to our construction of i and the way of indexing the points in i . Similarly, if l2 > l′2, then the
y-coordinate of i[l + 1] must be strictly larger than that of i[l], a contradiction.

The case of j can also be verified in an analogous way. �
Our implementation of the dynamic programming computes the matrices Di, j by running i from m1 down to 1 and j

from m2 down to 1. Assume that we are about to compute Di, j for any i < m1 and j < m2 and we have correctly computed
three matrices Di+1, j+1, Di, j+1, and Di+1, j . For l = 1, . . . , | i | and r = 1, . . . , | j | in order, we describe how to compute
A(i, l; j, r), B (i, l; j, r), and B (i, l; j, r).

First, we describe how to compute B (i, l; j, r) for all l = 1, . . . , | i | and r = 1, . . . , | j | in O (| i | · (| j | + | j+1|)) time.
Fix any l ∈ {1, . . . , | i |}. For simplicity, let Ir := I j+1

(j[r]) for each r ∈ {1, . . . , | j|}. Recall that B (i, l; j, r) = max{Di, j+1
l,r′ |

r′ ∈ Ir)}. Thus, B (i, l; j, r) is the maximum in the corresponding interval Ir in the l-th row of Di, j+1.
For our purpose, we exploit a special queue Q that supports all standard queue operations and in addition the operation

that reports the maximum element in Q in O (1) amortized time. We show how to build such a structure Q , similar to the
one in [4]. It consists of a standard queue Q 1 and a standard deque Q 2. When we insert v into Q , it is added at the rear
of Q 1. Also we repeatedly compare the element w at the rear of Q 2 and remove w from Q 2 if v > w . We stop if v ≤ w .
Finally, add v into the rear of Q 2. Since we can charge a removal from Q 2 to an addition to Q 1, this operation takes O (1)

amortized time. On a removal on Q , we remove the front element v from Q 1 and if the front element of Q 2 is equal to v ,
then remove it from Q 2, too. This can be done in O (1) time. Note that the maximum element in Q is located at the front
of Q 2: reporting the maximum is easily done in O (1) time.

As r increases from 1 to | j |, Q will store the values of Di, j+1
l,r′ for each r′ ∈ Ir . Then, B (i, l; j, r) can be obtained by the

maximum operation on Q in O (1) time.
Now, we describe how to update Ir and Q as r increases. First, we initialize Q to be an empty set. For r = 1, we specify

I1 and add the values of Di, j+1
′ to Q in order for all r′ ∈ I1. For any r ≥ 2, we already know Ir−1. By Lemma 3, Ir can be
l,r

S.W. Bae, I. Lee / Theoretical Computer Science 710 (2018) 29–34 33
found by exploring from each endpoint of Ir−1 to the right. Add Di, j+1
l,r′ for r′ ∈ Ir \ Ir−1 to Q in order and remove Di, j+1

l,r′
for r′ ∈ Ir−1 \ Ir from Q .

Finding all the intervals Ir for all r takes O (| j | + | j+1|) since the endpoints of Ir always move to the right. Also,
it is easy to see that the above procedure calls O (| j| + | j+1|) operations to Q since every Di, j+1

l,r′ is once added to Q
and removed, and one maximum operation is performed at each r to evaluate B (i, l; j, r). Therefore, repeating this for all
l = 1, . . . , | i | takes O (| i | · (| j | + | j+1)) time.

Computing B (i, l; j, r) can be done in an analogous way, taking O ((| i | +| i+1|) · | j |) time. For simplicity, we let Ir :=
I j+1

(j[r]) and I ′l := I i+1(i[l]). As done above, one can specify all the intervals Ir and I ′l in O (| i | +| i+1| +| j| +| j+1|)
time. Note that A(i, l; j, r) is the maximum in Di+1, j+1 over range I ′l × Ir .

We associate each column of Di+1, j+1 with an instance of our special queue; for r′ ∈ {1, . . . , | j+1|, let Q r′ be the queue
associated with the r′-th column of Di+1, j+1. As l increases from 1 to | i |, each Q r′ will store the values of Di+1, j+1

l′,r′ for all
l′ ∈ I ′l . This can be done similarly as above by Lemma 3: we add Di+1, j+1

l′,r′ into Q r′ for all l′ ∈ I ′l \ I ′l−1 and remove Di+1, j+1
l′,r′

from Q r′ for all l′ ∈ I ′l−1 \ I ′l . Thus, for each l, we will have the queues Q 1, . . . , Q | j+1| that all together store the rows of
Di+1, j+1 corresponding to the interval I ′l .

Now, consider any fixed l. We construct an array Z of | j+1| elements such that Z [r′] = max{Di+1, j+1
l′,r′ |l′ ∈ I ′l }. This

array Z can be computed by performing the maximum operation on each queue Q r′ in O (| j+1|) time. Initialize another
queue Q . As r increases from 1 to | j |, the new queue Q will store Z [r′] for all z′ ∈ Ir . Again by Lemma 3, this can be
done for each r by adding Z [r′] for all z′ ∈ Ir \ Ir−1 and removing those for all z′ ∈ Ir−1 \ Ir . Then, at each r, the maximum
among those stored in Q is exactly max{Di+1, j+1

l′,r′ | l′ ∈ I ′l , r
′ ∈ Ir}, that is, A(i, l; j, r).

Theorem 1. LC P S(T1, T2) can be computed in O (n +R2) time.

Proof. Our algorithm runs in three steps: (1) specify all the matches M between two given strings T1 and T2, (2) compute
the partitions { 1, . . . , m1 } and { 1, . . . , m2 } of M , and (3) compute the values of Di, j

l,r as described above.
The first step can be done in O (n +R) time by sorting all the tuples (T1[i], i) and (T2[j], j).
The second step can be done in O (R2) time: after sorting M in the x-increasing order, 1 can be computed in linear

time. Then, we remove 1 from M and repeat the above until there is nothing left. Since every i has at least one point
for 1 ≤ i ≤ m1, we have m1 ≤R, and hence this takes at most O (R2) time. Computing 1, . . . , m2 is analogous.

Finally, for each i and j, computing Di, j
l,r for all 1 ≤ l ≤ | i | and 1 ≤ r ≤ | j | takes O ((| i | + | i+1|)(| j | + | j+1|)) time.

Summing this all over i and j, we see that this step takes O (R2) time as

m1∑
i=1

m2∑
j=1

(| i| + | i+1|)(| j| + | j+1|) ≤
m1∑
i=1

(| i| + | i+1|) · 2R ≤ 2R · 2R = 4R2. �

Now we are interested in the average time complexity. We assume that T1 and T2 are random strings over the alphabet
�: each character of � has the same probability of appearing at each position of T1 and T2.

Lemma 4. If T1 and T2 are random strings over the alphabet �, then E[R] = n2/|�|. Also, E[R2] = O (n4/|�|2).

Proof. Let Xi be the number of matches between T1[i] and T2. We also define Xij such that Xij = 1 if T1[i] = T2[j] and
Xij = 0 otherwise. It is straightforward that Xi = ∑

1≤ j≤n Xij . By linearity of expectation,

E[Xi] =
∑

1≤ j≤n

E[Xij] = n/|�|.

By definition, R = ∑
1≤i≤n Xi . Again, we get

E[R] =
∑

1≤i≤n

E[Xi] = n2/|�|.

Now we are interested in E[R2]. As all Xi ’s are mutually independent and Xi ∼ B(n, 1/|�|),

V ar[R] = n · V ar[Xi] = n2 |�| − 1

|�|2 .

Finally,

E[R2] = {E[R]}2 + V ar[R] = n4

|�|2 + n2 |�| − 1

|�|2 = O (n4/|�|2). �

34 S.W. Bae, I. Lee / Theoretical Computer Science 710 (2018) 29–34
Theorem 2. The average time complexity of our algorithm that computes LC P S(T1, T2) is O (n4/|�|2).

Proof. Straight from Lemma 4. �
4. Conclusions

We showed that the longest common palindromic subsequence problem can be solved in O (n + R2) time. Of course in
the worst case R = n2, but the merit of our algorithm is that it does not depend on the length of strings, but it depends
on the number of matches between two strings. With random strings, the average time complexity is O (n4/|�|2). If we
consider an integer alphabet, then the average time complexity will be much smaller than O (n4).

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education (NRF-2011-0013963 and 2015R1D1A1A01057220).

References

[1] A. Apostolico, D. Breslauer, Z. Galil, Parallel detection of all palindromes in a string, Theoret. Comput. Sci. 141 (1–2) (1995) 163–173.
[2] A.V. Aho, D.S. Hirschberg, J.D. Ullman, Bounds on the complexity of the longest common subsequence problem, J. ACM 23 (1) (1976) 1–12.
[3] L. Bergroth, H. Hakonen, T. Raita, A survey of longest common subsequence algorithms, in: SPIRE 2000, pp. 39–48.
[4] M.A. Babenko, T.A. Starikovskaya, Computing longest common substrings via suffix arrays, in: CSR 2008, pp. 64–75.
[5] S.R. Chowdhury, Md.M. Hassan, S. Iqbal, M.S. Rahman, Computing a longest common palindromic subsequence, Fund. Inform. 129 (2014) 329–340.
[6] M. Crochemore, C.S. Iliopoulos, Y.J. Pinzon, Speeding-up Hirschberg and Hunt–Szymanski LCS algorithms, in: SPIRE 2001, pp. 59–67.
[7] V. Chvátal, D. Sankoff, Longest common subsequences of two random sequences, J. Appl. Probab. 12 (1975) 306–315.
[8] S. Deorowicz, A. Danek, Bit-parallel algorithms for the merged longest common subsequence problem, Internat. J. Found. Comput. Sci. 24 (8) (2013)

1281–1298.
[9] D.S. Hirschberg, Algorithms for the longest common subsequence problem, J. ACM 24 (4) (1977) 664–675.

[10] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge University Press, 1997.
[11] M. Kiwi, M. Loebl, J. Matous̃ek, Expected length of the longest common subsequence for large alphabets, Adv. Math. 197 (2) (2005) 480–498.
[12] I. Lee, C.S. Iliopoulos, K. Park, Linear time algorithm for the longest common repeat problem, in: SPIRE 2004, pp. 10–17.
[13] G. Manacher, A new linear-time on-line algorithm for finding the smallest initial palindrome of a string, J. ACM 22 (3) (1975) 346–351.

http://refhub.elsevier.com/S0304-3975(17)30151-2/bib4142473935s1
http://refhub.elsevier.com/S0304-3975(17)30151-2/bib4148553736s1
http://refhub.elsevier.com/S0304-3975(17)30151-2/bib434849523134s1
http://refhub.elsevier.com/S0304-3975(17)30151-2/bib43533735s1
http://refhub.elsevier.com/S0304-3975(17)30151-2/bib44443133s1
http://refhub.elsevier.com/S0304-3975(17)30151-2/bib44443133s1
http://refhub.elsevier.com/S0304-3975(17)30151-2/bib483737s1
http://refhub.elsevier.com/S0304-3975(17)30151-2/bib473937s1
http://refhub.elsevier.com/S0304-3975(17)30151-2/bib4B4C4D3035s1
http://refhub.elsevier.com/S0304-3975(17)30151-2/bib4D3735s1

	On ﬁnding a longest common palindromic subsequence
	1 Introduction
	2 Preliminaries
	3 Algorithm
	4 Conclusions
	Acknowledgement
	References

