
A Dynamic Edit Distance Table�

Sung-Ryul Kim and Kunsoo Park

School of Computer Science and Engineering
Seoul National University

Seoul 151-742, Korea
{kimsr,kpark}@theory.snu.ac.kr

Abstract. In this paper we consider the incremental/decremental ver-
sion of the edit distance problem: given a solution to the edit distance
between two strings A and B, find a solution to the edit distance between
A and B′ where B′ = aB (incremental) or bB′ = B (decremental). As
a solution for the edit distance between A and B, we define the differ-
ence representation of the D-table, which leads to a simple and intuitive
algorithm for the incremental/decremental edit distance problem.

1 Introduction

Given two strings A[1..m] and B[1..n] over an alphabet Σ, the edit distance
between A and B is the minimum number of edit operations needed to convert
A to B. The edit distance problem is to find the edit distance between A and
B. Most common edit operations are the following.

1. change: replace one character of A by another single character of B.
2. deletion: delete one character from A.
3. insertion: insert one character into B.

A well-known method for solving the edit distance problem in O(mn) time
uses the D-table [1,10]. Let D(i, j), 0 ≤ i ≤ m and 0 ≤ j ≤ n, be the edit
distance between A[1..i] and B[1..j]. Initially, D(i, 0) = i for 0 ≤ i ≤ m and
D(0, j) = j for 0 ≤ j ≤ n. An entry D(i, j), 1 ≤ i ≤ m and 1 ≤ j ≤ n, of
the D-table is determined by the three entries D(i − 1, j − 1), D(i − 1, j), and
D(i, j − 1). The recurrence for the D-table is as follows: For all 1 ≤ i ≤ m and
1 ≤ j ≤ n,

D(i, j) = min{D(i − 1, j − 1) + δij , D(i − 1, j) + 1, D(i, j − 1) + 1} (1)

where δij = 0 if A[i] = B[j]; δij = 1, otherwise.
In this paper we consider the following incremental (resp. decremental) ver-

sion of the edit distance problem: given a solution for the edit distance between
A and B, compute a solution for the edit distance between A and aB (resp. B′

where B = bB′), where a (resp. b) is a symbol in Σ. By a solution we mean some

� This work was supported by the Brain Korea 21 Project.

R. Giancarlo and D. Sankoff (Eds.): CPM 2000, LNCS 1848, pp. 60–68, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A Dynamic Edit Distance Table 61

encoding of the D-table computed between A and B. Since essentially the same
techniques can be used to solve both incremental and decremental versions of
the edit distance problem, we will consider only the decremental version.

The incremental/decremental version of the edit distance problem was first
considered by Landau et al. [3]. They used the C-table [2,4,5,7,9] (represented
with linked lists) as a solution for the edit distance between A and B. Given
a threshold k on the edit distance, their algorithm runs in O(k) time. (If the
threshold k is not given, it runs in O(m + n) time.) However, the result in [3] is
quite complicated.

As a solution for the edit distance between A and B, we define the difference
representation of the D-table (DR-table for short). Each entry DR(i, j) in the
DR-table between A and B has two fields defined as follows: For 1 ≤ i ≤ m and
1 ≤ j ≤ n,

1. DR(i, j).U = D(i, j) − D(i − 1, j)
2. DR(i, j).L = D(i, j) − D(i, j − 1)

A third field DR(i, j).UL, which is defined to be D(i, j)−D(i−1, j−1), will be
used later, but it need not be stored in DR(i, j) because it can be computed as
DR(i, j).U +DR(i−1, j).L. Because the possible values that each of DR(i, j).U
and DR(i, j).L can have are −1, 0, and 1 [8], we need only four bits to store an
entry in the DR-table. It is easy to see that the D-table can be converted to the
DR-table in O(mn) time, and vice versa. We can also compute one row (resp.
column) of the D-table from the DR-table in O(n) (resp. O(m)) time.

In this paper we present an O(m + n)-time algorithm for the incremen-
tal/decremental edit distance problem. Our result is much simpler and more
intuitive than that of Landau et al. [3]. A key tool in our algorithm is the change
table between the two D-tables before and after an increment/decrement. The
change table is not actually constructed in our algorithm, but it is central in
understanding our algorithm.

Our result finds a variety of applications. To verify whether a string p is an
approximate period of another string x where |x| = n and |p| = m, one needs to
find the edit distance between p and every substring of x [6]. A naive method that
computes a D-table of size O(m2) for each position of x will take O(m2n) time,
but our algorithm reduces the time complexity to O(mn) [6]. Other applications
include the longest prefix match problem, the approximate overlap problem, the
cyclic string comparison problem, and the text screen update problem [3].

This paper is organized as follows. In section 2, we describe the important
properties of the change table. In section 3, we present our algorithm for the
incremental/decremental edit distance problem.

2 Preliminary Properties

Let Σ be a finite alphabet of symbols. A string over Σ is a finite sequence of
symbols in Σ. The length of a string A is denoted by |A|. The i-th symbol in

62 Sung-Ryul Kim and Kunsoo Park

A is denoted by A[i] and the substring consisting of the i-th through the j-th
symbols of A is denoted by A[i..j].

Let A and B be strings of lengths m and n, respectively, over Σ, and let
B′ = B[2..n]. Let D be the D-table between A and B and let D′ be the D-table
between A and B′. Also let DR be the DR-table between A and B and let DR′

be the DR-table between A and B′ . In this section, we prove the key properties
between D and D′ that enables us to compute efficiently DR′ from DR.

b
0 1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8

1 2 2 3 4 5 6 7 8
1 1 2 2 3 4 5 6 7
2 2 1 2 2 3 4 5 6
3 2 2 1 2 2 3 4 5
4 3 3 2 2 2 2 3 4
5 4 3 3 2 3 3 2 3
6 5 4 3 3 2 3 3 2
7 6 5 4 4 3 2 3 3

b a b a b b a b

b

a

a
b

b
a
b
b

b a b a b b a b

b

a

a
b

b
a
b
b

b a b a b b a b

b

a

a
b

b
a
b
b

0 1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

1 1 2 3 4 5 6 7
1 2 1 2 3 4 5 6
2 1 2 1 2 3 4 5
3 2 1 2 1 2 3 4
4 3 2 2 2 1 2 3
5 4 3 2 3 2 1 2
6 5 4 3 2 3 2 1
7 6 5 4 3 2 3 2

-1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1

-1
-1

-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1

-1 -1 -1 -1
-1 -1 -1

-1-1 -1
-1-1
-1

1
1
1
1
1
1
1

1
1
1
1
1

1
1
1

1
1

0
0
0 0

0

0
0
0

0 0
0
0 0

000
0 0 0

0 000

D D’ Ch

Fig. 1. An example Ch-table

One key tool in understanding our algorithm is the change table (Ch-table
for short) from D to D′. Later, when we compute DR′ from DR, the first column
of DR is discarded and each entry DR(i, j + 1), 0 ≤ i ≤ m and 0 ≤ j < n, will
be converted to DR′(i, j). Thus, each entry in the Ch-table Ch from D to D′ is
defined as follows:

Ch(i, j) = D′(i, j) − D(i, j + 1).
The Ch-table is not actually constructed in our algorithm because the initial-
ization of the Ch-table will require Θ(mn) time. It will be used only for the
description of the algorithm. See Fig. 1 for an example Ch-table.

Figure 1 suggests a property of the Ch-table: the entries of value −1 (resp.
1) appear contiguously in the upper-right (resp. lower-left) part of the Ch-table
in a staircase-shaped region. This property is formally proved in the following
series of lemmas.

Lemma 1. In the Ch-table Ch, the following properties hold.
1. Ch(0, j) = −1 for all 0 ≤ j < n.
2. Ch(i, 0) = 0 for all 1 ≤ i < k, where k is the smallest index in A such that

A[k] = B[1].
3. Ch(i, 0) = 1 for all k ≤ i ≤ m.

Proof. Immediate from the definition of the D-table.

Lemma 2. For 1 ≤ i ≤ m and 1 ≤ j < n, the possible values of Ch(i, j) are
in the range min{Ch(i− 1, j − 1), Ch(i− 1, j), Ch(i, j − 1)}.. max{Ch(i− 1, j −
1), Ch(i − 1, j), Ch(i, j − 1)}.

A Dynamic Edit Distance Table 63

Proof. Recall that Ch(i, j) is defined to be D′(i, j) − D(i, j + 1). By recurrence
(1), D(i, j + 1) is

min{D(i − 1, j) + δi,j+1, D(i − 1, j + 1) + 1, D(i, j) + 1}. (2)

Also, D′(i, j) is min{D′(i− 1, j − 1)+ δ′ij , D
′(i− 1, j)+1, D′(i, j − 1)+1} where

δ′ij = 0 if A[i] = B′[j]; δ′ij = 1, otherwise. Because B′[j] is the same symbol as
B[j + 1], δ′ij = δi,j+1. Hence,

D′(i, j) = min

D(i − 1, j) + Ch(i − 1, j − 1) + δi,j+1

D(i − 1, j + 1) + Ch(i − 1, j) + 1
D(i, j) + Ch(i, j − 1) + 1.

(3)

Note that the only differences between (2) and (3) are additional terms Ch(i−
1, j − 1), Ch(i − 1, j), and Ch(i, j − 1) in (3). Assume without loss of generality
that the second argument is minimum in (2). If the second argument is minimum
in (3), the lemma holds because Ch(i, j) = Ch(i − 1, j). Otherwise, assume
without loss of generality that the third argument is minimum in (3). Then
Ch(i, j) = D(i, j)+Ch(i, j−1)+1− (D(i−1, j+1)+1)) ≥ Ch(i, j−1) because
the second argument is minimum in (2). Also, Ch(i, j) ≤ Ch(i − 1, j) because
the third argument is minimum in (3).

Corollary 1. The possible values of Ch(i, j) are −1, 0, and 1.

Proof. It follows from Lemmas 1 and 2.

Lemma 3. For each 0 ≤ i ≤ m, let f(i) be the smallest integer j such that
Ch(i, j) = −1. (f(i) = n if Ch(i, j′) �= −1 for 0 ≤ j′ < n.) Then, Ch(i, j′) = −1
for all f(i) ≤ j′ < n. Furthermore, f(i) ≥ f(i − 1) for 1 ≤ i ≤ m.

Proof. We use induction on i. When i = 0, f(i) = 0 and the lemma holds
by Lemma 1. Assume inductively that the lemma holds for i = k. That is,
Ch(k, j′) �= −1 for 0 ≤ j′ < f(k) and Ch(k, j′) = −1 for f(k) ≤ j < n.

Let Ch(k+1, l) be the first entry in row k+1 that is −1. For Ch(k+1, l) to be
−1, at least one of Ch(k, l− 1) and Ch(k, l) must be −1 by Lemma 2. Thus, we
have shown that l = f(k+1) ≥ f(k). It is easy to see that Ch(k+1, l′) = −1 for
f(k+1) < l′ < n by the inductive assumption, the condition that f(k+1) ≥ f(k),
and Lemma 2.

The following lemma is symmetric to Lemma 3 and it can be similarly proved.

Lemma 4. For each 0 ≤ j < n, let g(j) be the smallest integer i such that
Ch(i, j) = 1. (g(j) = m + 1 if Ch(i′, j) �= 1 for 0 ≤ i′ ≤ m.) Then, Ch(i′ , j) = 1
for all g(j) ≤ i′ ≤ m. Furthermore, g(j) ≥ g(j − 1) for 1 ≤ j < n.

We say that an entry Ch(i, j) is affected if the values of Ch(i−1, j−1), Ch(i−
1, j), and Ch(i, j − 1) are not the same. We also say that DR′(i, j) is affected if
Ch(i, j) is affected.

64 Sung-Ryul Kim and Kunsoo Park

Lemma 5. If DR′(i, j) is not affected, then DR′(i, j) equals DR(i, j + 1).

Proof. If DR′(i, j) is not affected, then the value of Ch(i, j) is the same as the
common value of Ch(i − 1, j − 1), Ch(i − 1, j), and Ch(i, j − 1) by Lemma 2.
Then DR′(i, j).U = D′(i, j)−D′(i− 1, j) = D(i, j +1)+Ch(i, j)− (D(i− 1, j+
1) + Ch(i − 1, j)) = DR(i, j + 1).U . Similarly, DR′(i, j).L = DR(i, j + 1).L.

We say that an entry Ch(i, j) is a (−1)-boundary (resp. 1-boundary) entry if
Ch(i, j) is of value −1 (resp. 1) and at least one of Ch(i, j− 1), Ch(i+1, j), and
Ch(i + 1, j − 1) (resp. Ch(i, j + 1), Ch(i − 1, j), and Ch(i − 1, j + 1)) is not of
value −1 (resp. 1).

By Lemma 5 we can conclude that in computing DR′ from DR, only the
affected entries need be changed. See Fig. 1 again. Because the entries whose
values are −1 (or 1) appear contiguously in the Ch-table, the affected entries
are either (−1)- or 1-boundary entries themselves or appear adjacent to (−1)-
or 1-boundary entries. The key idea of our algorithm is to scan the (−1)- and
1-boundary entries starting from the upper-left corner of the DR-table when we
compute the affected entries. Lemmas 3 and 4 imply that the number of (−1)-
and 1-boundary entries in the DR-table is O(m + n).

3 Boundary Scan Algorithm

In this section we show how to compute DR′ from DR. First, we describe how we
scan the boundary entries starting from the upper-left corner of the DR′-table
within the proposed time complexity. Then, we will mention the modifications
to the boundary-scan algorithm which leads to an algorithm that converts DR
to DR′.

For simplicity we will use the Ch-table in the description of our algorithm.
However, the Ch-table is not explicitly constructed but accessed through the
one-dimensional tables f() and g(). The details will be given later.

Lemma 6.

Ch(i, j) = min

−DR(i, j + 1).UL + Ch(i − 1, j − 1) + δi,j+1

−DR(i, j + 1).U + Ch(i − 1, j) + 1
−DR(i, j + 1).L + Ch(i, j − 1) + 1

(i.e., Ch(i − 1, j − 1), Ch(i − 1, j), Ch(i, j − 1), and DR(i, j + 1) are needed to
compute Ch(i, j)).

Proof. Recall that Ch(i, j) = D′(i, j) − D(i, j + 1). Substituting recurrence (1)
for D′(i, j) and distributing D(i, j+1) into the min function, we have Ch(i, j) =
min{. . . , D′(i− 1, j)−D(i, j + 1) + 1, . . .} (only the second argument is shown).
Substituting D(i − 1, j + 1) + Ch(i − 1, j) for D′(i − 1, j), the second argument
becomes D(i − 1, j + 1) − D(i, j + 1) + Ch(i − 1, j) + 1 = −DR(i, j + 1).U +
Ch(i − 1, j) + 1. The lemma follows from similar calculations for the first and
the third arguments.

A Dynamic Edit Distance Table 65

Algorithm 1

Let k be the smallest index in A such that A[k] = B[1].
(i−1, j−1)← (0, 1); (i1, j1)← (k, 0); f(0)← 0; g(0)← k
finished−1 ← false
finished1 ← false
while not finished−1 or not finished1 do

if i−1 < i1 − 1 then {Case 1}
Compute Ch(i−1 + 1, j−1). {See Fig. 4.}
if Ch(i−1 + 1, j−1) = −1 then

i−1 ← i−1 + 1; f(i−1)← j−1

else
j−1 ← j−1 + 1

fi
else if j1 < j−1 − 1 then {Case 2}

Symmetric to Case 1.
else {Case 3, i1 = i−1 + 1 and j1 = j−1 − 1 }

Compute Ch(i−1 + 1, j−1). {See Fig. 5.}
if Ch(i−1 + 1, j−1) = −1 then

i−1 ← i−1 + 1; i1 ← i1 + 1; f(i−1)← j−1

else if Ch(i−1 + 1, j−1) = 1 then
j−1 ← j−1 + 1; j1 ← j1 + 1; g(j1)← i1

else
j−1 ← j−1 + 1; i1 ← i1 + 1

fi
fi
if i−1 = m or j−1 = n then finished−1 ← true fi
if i1 = m + 1 or j1 = n− 1 then finished1 ← true fi

od

Fig. 2. Algorithm 1

Algorithm 1 is the boundary-scan algorithm. In the algorithm, the pair
(i−1, j−1) (resp. (i1, j1)) indicates that Ch(i−1, j−1) (resp. Ch(i1, j1)) is the cur-
rent (−1)-boundary (resp. 1-boundary) entry that is being scanned. The follow-
ing property holds for Ch(i−1, j−1) and Ch(i1, j1) by Lemmas 3 and 4. See Fig. 3
for an illustration.

Property 1.

1. Ch(i, j) �= −1 if i > i−1 and j < j−1.
2. Ch(i, j) �= 1 if i < i1 and j > j1.

In one iteration of the loop in Algorithm 1, one or both of the current boundary
entries are moved to the next boundary entries. For example, the current (−1)-
boundary entry is moved to the next (−1)-boundary entry which can be down
or to the right of the current (−1)-boundary entry. We maintain the following
invariants in each iteration of Algorithm 1.

66 Sung-Ryul Kim and Kunsoo Park

Ch(i-1 , j-1) Ch(i1 , j1)

all -1

no -1

no 1

all 1

(a) (b)

Fig. 3. Boundary entry conditions

Invariant 1

1. i−1 < i1 and j−1 > j1.
2. All values of f(0), . . . , f(i−1) are known.
3. All values of g(0), . . . , g(j1) are known.

One iteration of Algorithm 1 has three cases. Case 1 applies when the current
(−1)-boundary can be moved by one entry (down or to the right) without vio-
lating Invariant 1.1. Case 2 applies when the current 1-boundary can be moved
by one entry (down or to the right) without violating Invariant 1.1. Case 3 ap-
plies when moving the (−1)-boundary entry down by one entry or moving the
1-boundary entry to the right by one entry will violate Invariant 1.1, and thus
both boundary entries have to be moved simultaneously. What Algorithm 1 does
in each case is described in Fig. 2.

Ch(i-1 , j-1)

Ch(i1 , j1)

Ch(i-1 +1 , j-1)all 0

X

Y

Ch(i-1 , j-1)

Ch(i-1 +1 , j-1)

Ch(i1 , j1)

X

Y

(a) (b)

Fig. 4. Case 1

A Dynamic Edit Distance Table 67

What remains to show is the methods to obtain the values of the Ch-table
entries that are used to compute a new Ch-table entry, e.g., Ch(i−1 + 1, j−1) in
Case 1. The two subcases for Case 1 are depicted in Fig. 4. The first subcase is
when j−1 > j1 + 1. See Fig. 4 (a). The unknown values of the Ch-table entries
are X and Y . By Invariant 1.2 the value of f(i−1) is known. If f(i−1) < j−1, then
X = −1. Otherwise (f(i−1) = j−1), X = 0 because X is not 1 by Property 1.1.
It is easy to see that Y = 0 because Y is inside the region in which there are
no (−1)’s (by Property 1.1) and no 1’s (by Property 1.2). The second subcase
is when j−1 = j1 + 1. See Fig. 4 (b). We can compute the value of X as −1
if f(i−1) < j−1; 1 if g(j1) ≤ i−1; 0, otherwise. We know that Y �= −1 by
Property 1.1. Thus, Y = 1 if g(j1) ≤ i−1 + 1; Y = 0, otherwise. Case 3 is
depicted in Fig. 5. The value of X can be computed as we computed the value
of X in the second subcase of Case 1.

Ch(i-1 , j-1)

Ch(i-1 +1 , j-1)Ch(i1 , j1)

X

Fig. 5. Case 3

We now show that all affected Ch-table entries are computed by Algorithm 1.
It is easy to see that each affected entry Ch(i, j), 1 ≤ i ≤ m and 1 ≤ j < n, falls
into one of the following types by Lemmas 3 and 4. For each of the types we can
easily check which cases in our algorithm compute Ch(i, j).

1. Ch(i, j) is a (−1)-boundary entry such that Ch(i, j − 1) �= −1: Ch(i, j) is
computed by Case 1 if Ch(i, j − 1) = 0; by Case 3, otherwise.

2. Ch(i, j) is an 1-boundary entry such that Ch(i − 1, j) �= 1: Ch(i, j) is com-
puted by Case 2 if Ch(i − 1, j) = 0; by Case 3, otherwise.

3. Ch(i, j) = 0 and either Ch(i − 1, j) = −1 or Ch(i, j − 1) = 1: Ch(i, j) is
computed by Case 1 if Ch(i, j − 1) = 0; by Case 2 if Ch(i − 1, j) = 0; by
Case 3, otherwise.

To compute DR′ from DR, we first discard the first column from DR. Then,
we run a modified version of Algorithm 1. The modifications to Algorithm 1 is to
compute DR′(i, j) whenever we compute the value of Ch(i, j). Once Ch(i, j) is
computed using Lemma 6, the fields in DR′(i, j) can be easily computed. That
is, DR′(i, j).L = DR(i, j + 1).L + Ch(i, j) − Ch(i, j − 1) and DR′(i, j).U =
DR(i, j + 1).U + Ch(i, j) − Ch(i − 1, j).

68 Sung-Ryul Kim and Kunsoo Park

We can easily check that one iteration of the loop takes only constant time
and that it increases at least one of i−1, j−1, i1, j1 by one. Hence, the time com-
plexity of our algorithm is O(m + n).

Theorem 1. Let A and B be two strings of lengths m and n, respectively, and
B′ = B[2..n]. Given the difference representation DR between A and B, the
difference representation DR′ between A and B′ can be computed in O(m + n)
time.

References

1. Galil, Z. and Giancarlo, R.: Data Structures and Algorithms for Approximate
String Matching. J. Complexity 4 (1988) 33–72

2. Galil, Z. and Park, K.: An Improved Algorithm for Approximate String Matching.
SIAM J. Computing, Vol. 19, No. 6 (1990) 989–999

3. Landau, G. M., Myers, E. W., and Schmidt, J. P.: Incremental String Comparison.
SIAM J. Computing, Vol. 27, No. 2 (1998) 557–582

4. Landau, G. M. and Vishkin, U.: Fast String Matching with k Differences. J. Com-
put. System Sci., 37 (1998) 63–78

5. Landau, G. M. and Vishkin, U.: Fast Parallel and Serial Approximate String
Matching. J. Algorithms, 10 (1989) 157–169

6. Sim, J. S., Iliopoulos, C. S., Park, K., and Smyth, W. F.: Approximate Periods of
Strings. In 10th Annual Symposium, Combinatorial Pattern Matching ’99 (1999)
123–133

7. Ukkonen, E.: Algorithms for Approximate String Matching. Inform. and Control,
64 (1985) 100–118

8. Ukkonen, E.: Finding Approximate Patterns in Strings. J. of Algorithms, 6 (1985)
132–137

9. Ukkonen, E. and Wood, D.: Approximate String Matching with Suffix Automata.
Algorithmica, 10 (1993) 353–364

10. Wagner, R. A. and Fisher, M. J.: The String-to-string Correction Problem. J.
Assoc. Comput. Mach., 21 (1974) 168–173

	Introduction
	Preliminary Properties
	Boundary Scan Algorithm

