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Abstract—Throughout recent years, dynamic time warping
(DTW) has remained as a robust similarity measure in time
series classification (TSC). 1-nearest neighbor (1-NN) algorithm
with DTW is the most widely used classification method on time
series serving as a benchmark. With the increasing demand for
TSC on low-resource devices and the widespread of wearable
devices, the need for a efficient and accurate time series classi-
fier has never been higher. Although 1-NN DTW attains accurate
results, it highly falls back on efficiency due to its quadratic com-
plexity in the length of time series. In this paper, we propose a
new approximation method for reducing the length of the time
series as the input of DTW. We call it control chart approximation
(CCA), after a similar concept used in statistical quality control
processing. CCA representation approximates raw time series
by transforming them into a set of segments with aggregated
values and durations forming a reduced 3-D vector. We also pro-
pose an adaptation of DTW in 3-D space as a distance measure
for 1-NN classifier, and denote the method as 1-NN 3-D DTW.
Our experiments on 85 datasets from UCR archive—including 28
long-length (>500 points) time series datasets—show up to two
orders of magnitude performance gain in running time compared
to the state-of-the-art 1-NN DTW implementation. Moreover, it
shows similar or better accuracy on the long time series in the
experiment.

Index Terms—Approximation methods, dynamic time warp-
ing (DTW), time series classification (TSC).

I. INTRODUCTION

OVER the past few years, substantial amounts of data has
been collected and analyzed to assist in optimal deci-

sion making. This collection and analysis of large datasets
has become a primary contributor toward the innovation and
growth of the current and emerging markets. A significant
portion of this collected data is in the form of time series.
The exponentially increasing volume and complexity of time
series data is a result of emerging new sensing technolo-
gies (robot sensors, wearable sensors, smart meters, satellites,
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smart mobile phones, etc.), along with an influx of inexpen-
sive storage. The key objective of time series analysis is to
extract hidden insights from raw data. Time series classifica-
tion (TSC) is one of the most important tasks in time series
analysis. There are a variety of TSC techniques in the litera-
ture. Distance-based classification techniques such as 1-nearest
neighbor (1-NN) require a similarity measure to calculate the
distance (similarity) between two time series.

Euclidean distance (ED) [1] and dynamic time warping
(DTW) [2]–[5] are the most popular distance-measures for
time series. 1-NN ED is often used for fast classification of
the time series of equal length. However, its accuracy is highly
sensitive to noise and it cannot be used when the lengths of
time series are different.

1-NN DTW classifier is one of the best distance-based clas-
sifiers in terms of accuracy [6], [7]. It has been successfully
applied in a variety of domains and problems such as analyzing
robots sensory signals [8], [9], medicine [5], [10], astron-
omy, biometric data [11], geology, historical manuscripts,
speech/music, gesture, signature [12], and fingerprint recog-
nition. 1-NN DTW can handle classification of time series of
different lengths, and is typically used as a benchmark among
time series classifiers [6]–[8], [13]. The drawback of 1-NN
DTW is its quadratic time complexity, which has reportedly
undermined its usefulness in many use cases. Multiple research
efforts would have used 1-NN DTW if it had not been so
computationally expensive [13].

The state-of-the-art implementation of 1-NN DTW [13]
reduces the computational complexity by omitting square root
calculations, using lower bounding, and applying early aban-
doning. However, it is still inefficient when classifying long
time series and large datasets. In this paper, we propose a
new representation method, called control chart approxima-
tion (CCA), which transforms raw time series data, from the
2-D space of time-values, to a sequence of segments each
forming a tuple of (segment begin time, segment average
of values, segment duration); with the durations being z-
normalized across the training time series. The data reduction
results in reduced noise, space, and length of the time series
before classification. An example of CCA transformation is
presented in Fig. 1.

To perform nearest neighbor classification in this new data
space, we propose the 3-D DTW (1-NN 3-D DTW), which is
based on 1-NN DTW and works in 3-D space. We show that
1-NN 3-D DTW significantly reduces the computation time of
TSC while still remaining competitive in terms of accuracy.
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Fig. 1. Three classes of CBF time series dataset (cylinder, bell, and funnel):
the raw data are shown in black, the segments are shown in red and CCA
transformed time series in a 3-D space are shown in blue.

The performance gain is much more significant on long time
series, where the running time is orders of magnitude faster
than the state-of-the-art implementation of 1-NN DTW while
scoring close or better in accuracy.

This paper is organized as follows. In Section II, back-
ground and related works are reviewed. Section III explains
the CCA time series representation, 1-NN 3-D DTW, and its
efficiency improvement techniques. Section IV showcases two
case studies, and compares the accuracy and running time
of 1-NN 3-D DTW against other state-of-the-art classifiers.
Finally, Section V concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Definitions

Definition 1: A time series T(t1, t2, . . . tn), is a sequence set
of n real values recorded over time.

Defining a similarity/distance measure between two time
series is at the core of most TSC techniques.

Definition 2: For two time series X(x1, x2, . . . xn) and
Y(y1, y2, . . . yn), the ED is defined as

ED(X, Y) =
√
√
√
√

n
∑

i=1

(xi − yi)
2.

ED is the most basic and classic distance measure which
is still competitive in some problems and domains [1], [14].
Fig. 2 illustrates an example of the ED visualization.

Generally, raw time series contain various sorts of distor-
tion and noise, which makes their comparison difficult. The
common distortions and invariances are amplitude and off-
set invariance, local scaling (warping) invariance, uniform
scaling invariance, phase invariance, occlusion invariance and
complexity-invariant distortions [15], [16].

Some invariances can be addressed and fixed at a prepro-
cessing step. For example, normalizing raw data for the time

Fig. 2. Visualization of ED (linear alignment of the paired points) between
two time series in orange and blue.

Fig. 3. Nonlinear realigning of the pairs of points in DTW between two
time series in red and black.

series X can be used to prevent amplitude and offset invariance
for this time series

Z-norm(X) = (

x′1, x′2, . . . , x′n
)

where x′i = [(xi − μ)/σ ], μ is the mean of X and σ is the
standard deviation of X.

In addition, a variety of distance function and data repre-
sentation techniques have been developed to prevent different
invariances. DTW is the most prominent example which
addresses a local scaling invariance [2]–[5].

B. Brief Review of DTW

DTW allows nonlinear pairing of points in two sequence
(Fig. 3). As a result, DTW allows the two compared time series
to be of different lengths—which is a feature our proposed
model relies on as we explain in the next section.

DTW computes the minimum distance of two time series
by matching the points nonlinearly. To calculate the dis-
tance between the two time series of X(x1, x2, . . . , xn) and
Y(y1, y2, . . . , ym) with corresponding length of n and m, DTW
finds the minimum Minkowski distance with lp norm over
the allowed matching between points of the two time series.
An n-by-m matrix can be constructed to cover all possible
matching and alignments between points of xi and yj. Each
element (i, j) of this matrix represents the alignment between
xi and yj to which it can be considered as the distance between
xi and yj, as well as defined by d(xi, yj) = ‖(xi − yj)‖p,
where ‖·‖p represents the lp norm. For example, for p = 2,
d(xi, yj) = |xi − yj|2.



2690 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 47, NO. 10, OCTOBER 2017

Fig. 4. Warping matrix and the optimal warping path for two time series
(reference and query).

W is defined as a continuous path of elements in the matrix
(alignments) from the beginning (x1, y1) to the ending (xn, ym)

of time series. Thus, W is the mapping path between X and
Y with the length S. The lth element of W is defined as wl =
d(i, j)l; that is

W = w1, w2, . . . , wl, . . . , wS

max(n, m) ≤ S ≤ n+ m− 1.

DTW finds permissible matching sequences, paths, and then
finds the optimal path with the minimum distance. Fig. 4
shows a graphical example of warping matrix and the optimal
warping path.

Permissible n-by-m matching points, or alignment paths, are
those that satisfy to the following conditions [17].

1) Boundary Conditions: The path should not skip a part at
the beginning or ending of the sequence. The first and
the last matches should be (x1, y1) and (xn, ym) meaning
w1 = (1, 1) and wS = (n, m).

2) Continuity Conditions: There should be no jumps in the
path. The previous step for each point (i, j) in the path
must be (i− 1, j), (i, j− 1), or (i− 1, j− 1).

3) Monotonicity Conditions: The warping path cannot go
back in time. This means in each step of the warp-
ing path, i and j indexes stay the same or increase.
Considering wk = (a, b), we have wk−1 = (a′, b′) where
a− a′ � 0 and b− b′ � 0.

DTW must find the path which minimizes the warping
distance

DTWp(X, Y) = min

⎧

⎨

⎩

p

√
√
√
√

S
∑

l=1

wl

⎫

⎬

⎭
.

The optimal path can be found by using dynamic program-
ming and the recursive equation given as

DTWp(X, Y) = p
√

γ (i, j)

(a) (b)

Fig. 5. X = {5, 6, 5, 4, 3} and Y = {5, 3, 2, 2, 4}. (a) Distance of aligned
points of X and Y . (b) Cumulative distance matrix.

where γ (i, j) is calculated by

γ (i, j) = |xi − yj|p +min

⎧

⎨

⎩

γ (i− 1, j− 1)

γ (i, j− 1)

γ (i− 1, j)

⎫

⎬

⎭

γ (0, 0) = 0, γ (0,∞) = ∞, γ (∞, 0) = ∞
(i = 1, 2, . . . , n; j = 1, 2, . . . , m).

The value of cell p
√

γ (n, m) is the DTW distance of X and Y .
Fig. 5 demonstrates an example of direct and cumulative dis-
tances in the DTW cost matrix. The optimal path is shown in
pink cells and (setting p = 2), the DTW distance is the square
root of 5.

Several extensions of DTW have been proposed in the liter-
ature. Using the distance between derivatives instead of point
to point distance was proposed in [18]–[20]. This method is
called derivative DTW (DDTW). DDTW transforms the points
of the time series to a higher level feature.

The relative importance of the different phases of each
alignment is considered in [21]. This method is called
weighted DTW (WDTW).

In [21], the WDTW concept is combined with DDTW and
it is called weighted DDTW (WDDTW). Different variations
of DTW often outperform each other in different application
domains.

It has been shown that DTW distance using 1-NN is one
of the most robust classification techniques which is hard to
beat [6], [22].

C. Improving the Efficiency of DTW

1) Global Warping Constraints: The purpose of warping
constraints is to limit the wandering distance of the search
paths by defining a band (warping scope) in the DTW warp-
ing matrix. This band does not necessarily retrieve the optimal
path, but it is expected to provide a decent path. It is expected
that a decent path is close to the matrix diagonal, and warping
constraints are defined around the diagonal. The Sakoe–Chiba
band [2] and the Itakura parallelogram [23] are the most
common constraint methods. Global constraints reduce the
computation cost however, the classification time and accu-
racy depend on a parameter (r), where r is the allowed range
of warping from the diagonal of the matrix. Fig. 6 shows a
graphical example of constraints for the Sakoe–Chiba band
and the Itakura parallelogram. Cross validation on a training
dataset is used to learn the best constraint (r). The classifier
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(a) (b)

Fig. 6. Example of global constraints. (a) Sakoe–Chiba band. (b) Itakura
parallelogram.

which uses 1-NN DTW with a learned warping constraint on
cross validation increases accuracy in some problems [24], but
training process is time expensive.

2) Lower Bounding: The idea of lower bounding is to
do the expensive full calculation of optimal path in DTW
matrix, only when it is absolutely unavoidable. Applying lower
bounding makes the nearest neighbor search faster by prun-
ing off unhopeful candidates [6], [25]. LB_Kim, LB_Yi, and
LB_Keogh are the most common lower bound for time TSC
which are graphically presented on an example for candidate
C and query Q time series in Fig. 7.

LB_Kim [26] is the total summation of the squared differ-
ences between the two sequence’s first (A), last (D), minimum
(B), and maximum points (C). These distances are presented
in Fig. 7(a).

LB_Yi [27] is calculated as follows. The sum of the squared
length of gray lines in Fig. 7(b) represents LB_Yi.

LB_Keogh bound is explained in detail
in [6], [26], and [27]. LB_Keogh first defines U and L
as the upper and the lower bound of query time series as.

Ui = max(qi−r, . . . , qi+r) and Li = min(qi−r, . . . , qi+r),
where r is the allowed warping range. Then LB_Keogh is
formulated as

LB_Keogh(Q, C) =

√
√
√
√
√

n
∑

i=1

⎧

⎨

⎩

(ci − Ui) if ci > Ui

(ci − Li) if ci < Li

0

⎫

⎬

⎭
.

The sum of the squared length of gray lines in Fig. 7(c)
represents LB_Keogh.

A review and evaluation of lower bounding methods used
for DTW is presented in [28].

3) Early Abandoning: Early abandoning is another method
to accelerate 1-NN DTW calculations (as well as the other
distance-based classifiers such as 1-NN ED). This is done
by calculating partial distance accumulation for a candidate
sequence and comparing it to a threshold which is the best-
so-far candidate. If partial accumulation goes beyond the
threshold (best-so-far) at any time, the calculation is termi-
nated, and the candidate is discarded (Fig. 8). This technique
reduces redundant calculations in the similarity search. Early
abandoning was proposed and applied in [4] and [25] to accel-
erate the calculation of ED, as well as in [5] and [29], to make
1-NN DTW calculations faster.

(a)

(b)

(c)

Fig. 7. Example of lower bounding techniques. (a) LB_Kim. (b) LB_Yi.
(c) LB_Keogh. Used with permission from E. Keogh [25].

Fig. 8. Early abandoning technique. Early abandoning on (a) ED and
(b) DTW.

4) Time Series Representation: Each value in a time series
can be considered as a dimension. Time series are typically
high-dimensional data (i.e., long length). Time series repre-
sentations project points into a new space where it can be
processed more efficiently. Time series representation tech-
niques (also called dimensionality reduction techniques) aim
to reduce the dimensionality (length) of time series by extract-
ing features from the raw data. Time series representation
should follow the following goals [25]: dimensionality reduc-
tion, storage reduction, noise removal, computational costs
reduction, and minimizing information loss [the reconstruc-
tion error (RE)]. A review of representation methods, as
well as distance-based classification techniques, is presented
in [6]. Time series representation in the literature can be
mainly divided into two groups of nonsymbolic and sym-
bolic representations. Some of the nonsymbolic representation
methods are listed in [6], including discrete Fourier trans-
formation [30], single value decomposition [31], discrete
wavelet transformation [32], piecewise aggregate approxima-
tion (PAA) [33], [34], adaptive piecewise constant approx-
imation (APCA) [35], and Chebyshev polynomials [36].
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Fig. 9. Comparison of approximation methods and their reconstruction error.
The raw data is in black and approximation is in red.

Reference [37] lists some of the symbolic representation meth-
ods, including shape description alphabet [38], interactive
matching of patterns with advanced constraints in time series
databases [39], clipping [40], persist [41], piecewise vec-
tor quantized approximation [42], and symbolic aggregate
approximation [43] and its extensions [44], [45]. More recent
representation methods focus on histogram-based representa-
tion for time series data (especially for long time series). These
methods consider the distance/similarity based on the sub-
structures (higher-level features) which are extracted from a
time series. Bag-of-patterns [46], time series based on a bag-
of-features representation [47], and bag-of-symbolic Fourier
approximation (SFA)-symbols (BOSS) [48] are some exam-
ples of this type of representations. BOSS VS [49] also
uses bag-of-SFA in its representation and it is much faster
than BOSS.

This paper proposes a new numeric representation of
time series denoted as CCA. CCA is discussed in detail in
Section III. An example is presented in Fig. 9 to compare
CCA with PAA and APCA. ED between the raw time series
and the approximation is the reconstruction error (RE). In this
example, it can be seen that after approximation with the same
compression ratio (14 segments), CCA has the lowest RE.
The output of CCA looks graphically similar to the output
of PAA and APCA. A time series is divided into flat seg-
ments. In PAA, the length of the segments must be same,
but APCA and CCA relax this constraint. The value of each
segment is the mean of all the points which fall within that
segment.

III. THREE-DIMENSIONAL DTW

A. Control Chart Approximation: Time Series Representation

In this section, we present our numeric representation of
time series CCA.

Given a time series X = (x1, x2, . . . xn), we want to produce
CCA representation, which is presented as

CX = {(t1, v1, u1), . . . (tk, vk, uk)}
where the tuple (ti, vi, ui) defines the ith segment, ti is the start
time, vi is the value, ui is the duration of the segment in the
time series, and k is the total count of segments. Each segment
contains a continuous sequence of data points in the time series
whose values fall into the same range (state). The segments
embody the continuous state change of the time series values.
Similar to control limits in control charts, certain thresholds

Fig. 10. Time series approximation. The raw time series is presented in blue
and its approximation in orange.

need to be defined in order to detect such state changes over
time. A segment starts when a data point passes a threshold
and its time value marks the beginning of a new segment (ti).
We call these special points—at the beginning and end of the
segments—the jump points. The value vi of each segment is
defined as the mean of the raw data points falling in that seg-
ment. In our experiments mean performed better than other
summary statistics such as median. The value and duration of
each segment are defined as follows:

ui = ti+1 − ti (1)

vi =
⎛

⎝

ti+1∑

j=ti

xj

⎞

⎠/ui. (2)

Fig. 10(left) shows a standardized control chart with ±3σ

control limits used to partition a time series into four states
(A, B, C, and D) and results in a CCA representation of the
time series with five segments. In this example, the standard
control limits of ±3 are used, and the range between the two
control limits are divided to 2. For more exact approximations,
the same concept can be used by dividing the space between
two control limits into more partitions. In control charts, K
represents the distance (in the terms of standard deviation)
between the control limits and the center line (control lines:
μ ± Kσ ). Typically, three-sigma limits are employed (i.e., K
is usually set to 3). In order to provide more flexibility for a
user, in our algorithm the parameter K is defined and used but
its default value is 3.

This number of partitions between control limits in CCA is
controlled by the parameter s, which is the distance between
the thresholds within the upper and lower control limits. In
Fig. 10(right), the distance between controls limits, s is set
to 1, which creates eight states. This results in a more accurate
approximation; however, it increases the number of produced
segments by 8 (17 segments). Algorithm 1, represents how
CCA algorithm detects the jump points and produce the seg-
ments in detail. The next step in CCA is normalizing the
segments durations to have the same the scale as segments
values. Thereby, each segment duration (ui) is z-normalized
by relative to mean (μu) and standard deviation (σu) of all
the segments durations. We denote the normalized duration of
each segment as its waiting time (wi)

wi = ( ui − μu)/σu. (3)
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Fig. 11. CCA examples. (a) s = 1, approximation. (b) s = 0.5, approximation. (c) s = 1, CCA transformation. (d) s = 0.5, CCA transformation.

Algorithm 1 CCA Algorithm With z-Normalized Time
Series X, Control Limit K, and Distance Parameter s

1: function COMPUTE-CCA(X = {x1, . . . xn}, K, s)
2: j← 1, tj ← 0
3: CX ← φ

4: if n = 1 then return CX = {(0, x1, 1)}
5: end if
6: for i← 1 . . . n do
7: Find ri ∈
{(−∞,−K], (−K,−K + s], . . . , (. . . , K], (K,∞)} such
that xi ∈ ri.

8: if (i > 1 & ri �= ri−1) or i = n then
9: tj+1 ← i � start of the (j+ 1)th segment

10: uj = tj+1 − tj
11: vj = (

∑tj+1
i=tj

xi)/uj

12: CX ← CX ∪ (tj, vj, uj)

13: end if
14: end for
15: return CX

16: end function

The final result of CCA are sequential normalized segment
values (v) and waiting times (w)

CX = {(t1, v1, w1), . . . (tk, vk, wk)}.
The graphical presentation of this output can be shown

in 3-D graphs. In Fig. 11, CCA time series representation
is presented with two different s values. In the upper left
graph, the threshold distance parameter is set to 1 (s = 1);
it has created five segments. Then, the segments durations are

TABLE I
SAMPLE OF POSSIBLE VALUES FOR s AND NUMBER OF STATES

normalized. The lower left graph shows the 3-D representation
of the final CCA segments. In the upper right graph, the CCA
representation of the same time series with s = 0.5 shows
11 resulting segments. The lower right graph shows the final
values after normalization in 3-D space.

In CCA algorithm, the range of the distance between control
limits (s) is from 3 to ε. The lower s will create more states
and expectedly more segments in time series transformation.
In Table I, some sample of s values along with the number of
states are shown.

When s is extremely small (ε), the smallest change in the
value of each point compared to its predecessor will make that
point a jump point. In this special case, with the exception of
constant remaining points every point in the time series will
become a jump point, and the resulting CCA will be very close
to, or the same as, the original time series. In the process of
TSC, the best choice of s is dependent on the structure of data.
In order to find optimal s for a specific time series data, cross
validation can be used to learn the best choice of s for that
problem.
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B. Three-Dimensional DTW Distance

Suppose we have two time series C and Q, and we want
to measure the distance of these time series after CCA repre-
sentation (transformation). In order to calculate this distance,
we propose a new version of DTW called 3-D DTW which is
an adaptation of traditional DTW on more axis. Suppose the
transformed time series are

Transformed C = {(

vc
1, wc

1

)

, . . . ,
(

vc
i , wc

i

)

, . . . ,
(

vc
m, wc

m

)}

Transformed Q =
{
(

vq
1, wq

1

)

, . . . ,
(

vq
j , wq

j

)

, . . . ,
(

vq
n, wq

n

)
}

.

Note that we eliminated the ti values in the tuples as they are
not considered as a dimension for DTW calculation. Similar to
conventional DTW, the segments are ordered along the matrix
based on their occurrence in time, and time distance is inher-
ent in DTW path calculation. Hence, we do not consider the
starting time of each segment in the distance calculation. Note
that even if two time series are from the same problem, and
if the lengths of the original time series are equal, after CCA
transformation they will not necessarily have equal lengths
(the same number of segments/steps). First, we define a dis-
tance matrix between every two segment. Each element of the
matrix is defined as

D(i, j) =
(

vc
i − vq

j

)2 +
(

wc
i − wq

j

)2
(4)

where i ∈ [1, n] and j ∈ [1, m].
Then, a matrix is constructed based on pairwise distance

D(i, j) of segments starting from γ (1, 1) to γ (n, m) similar to
conventional DTW.

γ (i, j) is calculated by

γ (i, j) =
(

vc
i − vq

j

)2 +
(

wc
i − wq

j

)2 +min

⎧

⎨

⎩

γ (i− 1, j− 1)

γ (i, j− 1)

γ (i− 1, j)

⎫

⎬

⎭

γ (0, 0) = 0, γ (0,∞) = ∞, γ (∞, 0) = ∞,

(i = 1, 2, . . . , n; j = 1, 2, . . . , m). (5)

After calculating all elements of the matrix, the last ele-
ment, γ (n, m) is the square of distance between transformed
C and Q.

3-D DTW follows the same conditions (i.e., boundary con-
ditions, continuity, and monotonicity) and the same algorithm
as regular DTW, but the distance matrix is changed according
to the structure of a transformed time series. Calculation of
3-D DTW distance is presented in Algorithm 2. We demon-
strate an example here in order to illustrate the technique.

Example 1: We randomly selected two time series from the
Gun_Point train dataset from [50]. The original time series are
shown in Fig. 12. We are interested in calculating their 3-D
DTW distance after applying the CCA transformation. Setting
s equal to 1, CCA results in the following segment list:

Transformed Q

= {(0.56, 1.28), (0.59,−0.67), (1.51,−0.76),

(2.03,−0.09), (1.52,−0.67), (0.5,−0.81),

(−0.6, 1.81)}
Transformed C

= {(−0.66, 1.38), (0.48,−0.76), (1.66, 0.71),

(0.47,−0.67), (−0.63, 1.43)}.

Algorithm 2 3-D DTW Algorithm With Early Abandoning

1: function 3D-DTW(Q = {(vq
1, wq

1), . . . , (v
q
m, wq

m)}, C =
{(vc

1, wc
1), . . . , (v

c
n, wc

n)}, BSF: best so far (closest query))

2: E[0, 0]← (vq
1 − vc

1)
2 + (wq

1 − wc
1)

2 � Initialize first

cell

3: for j← 1 . . . m do � Initialize first row

4: E[1, j]← E[1, j− 1]+ (vc
1 − vq

j )
2 + (wc

1 − wq
j )

2

5: end for

6: for i← 1 . . . n do � Initialize first column

7: E[i, 1]← E[i− 1, 1]+ (vc
i − vq

1)
2 + (wc

i − wq
1)

2

8: end for

9: for i = 1 . . . n do

10: for j = 1 . . . m do

11: k← min

⎧

⎪
⎪
⎨

⎪
⎪
⎩

E(i− 1, j− 1)

E(i, j− 1)

E(i− 1, j)

⎫

⎪
⎪
⎬

⎪
⎪
⎭

12: E[i, j]← k + (vc
i − vq

j )
2 + (wc

i − wq
j )

2

13: end for

14: min_cost ← min(E[i, .])

15: if min_cost > BSF then

16: return ∞
17: end if

18: end for

19: return E[n, m]

20: end function

Fig. 12. Original time series of C and Q.

Fig. 13 shows these time series after the transformation in
a 3-D space. Fig. 14 shows the matrix for calculating the dis-
tance of two time series after CCA transformation, and the
alignment between points.

The first element γ (1, 1) in this matrix is calculated as

γ (1, 1) = (vc
1 − vq

1)
2 + (wc

1 − wq
1)

2

= (−0.66− (−0.56))2 + (1.38− 1.28)2
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Fig. 13. CCA transformed time series of C (in blue) and Q (in orange) and
their 3-D-DTW alignment.

Fig. 14. Three-dimensional DTW cost matrix after CCA transformation of
time series.

which is 0.02. Then the first row is calculated as

γ (1, j) =
(

vc
1 − vq

j

)2 +
(

wc
1 − wq

j

)2 + γ (1, j− 1),

j = 1, 2, . . . , m. (6)

For example

γ (1, 2) = (

vc
1 − vq

2

)2 + (

wc
1 − wq

2

)2 + γ (1, 1)

= ((−0.66)− 0.59)2 + (1.38− (−0.67))2 + 0.02

which is 5.750.
Then, the first column is calculated as

γ (i, 1) =
(

v2
i − vq

1

)2 + (

wc
1 − wq

2

)2 + γ (i− 1, 1),

i = 1, 2, . . . , n. (7)

For example

γ (1, 2) = (

vc
1 − vq

2

)2 + (

wc
1 − wq

2

)2 + γ (1, 1)

= ((−0.66)− 0.59)2 + (1.38− (−0.67))2 + 0.02

which is 5.280.
The remaining matrix elements, from [2, 2] to [5, 7], are

calculated using (5). For example

γ (2, 2) = (

vc
2 − vq

2

)2 + (

wc
2 − wq

2

)2

+ min{γ (1, 1), γ (2, 1), γ (1, 2)}
= (0.48− 0.59)2 + ((−0.76)− (−0.67))2

+ min{0.02, 5.28, 5.75}
which is 0.040.

The value of the last element of the matrix, i.e., γ (5, 7),
shows the squared distance between these transformed time
series. The pink cells in the matrix show the optimal selected
path and the aligned points. The aligned points are connected
together with gray dashed lines in Fig. 13.

One of the advantages of 3-D DTW is that all of the effi-
ciency improvement techniques (such as the squared distance,
warping constrain, lower bounding, early abandoning, etc.) in
regular DTW, as well as DTW extensions techniques (such as
DDTW, WDTW, WDDTW, etc.), are applicable on 3-D DTW
after minor changes in the algorithm. In the following section,
we show how to apply lower bounding and early abandoning
in 3-D DTW.

C. Early Abandoning on 3-D DTW

Early abandoning in 3-D DTW works similar to Early aban-
doning in regular DTW [29]. The objective is to eliminate the
search if the accumulative 3-D distances between two CCA
transformed time series is greater than a predefined threshold
(best-so-far). Algorithm 2, shows how to calculate 3-D DTW
distance along with early abandoning.

IV. EXPERIMENTS

A recent study on all rival TSC techniques proposed in last
five years, on 85 datasets (100 resampling experiments on each
dataset), concluded that DTW is hard to beat, and where it is
beaten in accuracy the benefit is small [22]. DTW is signifi-
cantly more accurate than benchmark classifiers such as naive
Bayes, C45, logistic regression, ED, linear and quadratic SVM,
and Bayesian networks. Significantly more accurate classifiers
than DTW either exhibits small improvement margin or huge
tradeoff in runtime. The study shows that COTE [51], shapelet
transform [52], [53], BOSS [48], and elastic ensemble [7]
are the best classifiers beating DTW. The most accurate one,
COTE is an ensemble of 35 classifiers with a runtime com-
plexity bounded by shapelet transform O(n2m2) and as high
as O(n3) [22].

The recently proposed BOSS VS method [49] is much
faster than the state-of-the-art implementation of DTW, SVM
quadratic kernel, and BOSS with almost same accuracy rate as
BOSS. BOSS VS is the state-of-the-art classifier considering
both accuracy and runtime, and is one of our baselines.

We compared the efficiency and accuracy of 3-D DTW
(3-D DTW—Algorithm 2) with the state-of-the-art implemen-
tation of DTW [13] (using efficiency improvement methods
mentioned in Section II-C) and also BOSS VS [49] as our
baselines. We did not include direct comparison with other
classifiers, because BOSS VS is only second to COTE,
shapelet transform, BOSS, and Elastic Ensemble on average
accuracy [22] and faster than all of them [49]. Thus, it makes a
good representative baseline for our method which favors effi-
ciency over accuracy. Also the comparison with exact DTW,
should exhibit the effect of our approximation method on
accuracy.

Three-dimensional DTW performance is evaluated using the
UCR public benchmark datasets archive [50]. In the UCR TSC
archive, there are 85 time series from different domains and
problems. Each dataset in this archive comes in two parts, a
train partition and a test partition. The train partition is used
in the model building process, and the test partition is used
for measuring the classification accuracy. In all time-series
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Fig. 15. Effect of s values on some example datasets.

datasets, the data is z-normalized prior to the experiment to
have a mean of 0 and variance of 1.

One challenge by using the CCA is choosing the right s
for approximation. Our experiments with various range of s
values over all the UCR datasets, could not verify a meaningful
trend of accuracy relative to s consistent with all the datasets.
Therefore, coming up with a right set of candidates that can
be used for efficient cross validation of s on a general dataset
is not trivial. However, with the right selection of candidates,
based on the structure of the time series in question, cross
validation can be made efficient and effective when improving
accuracy is of higher concern.

Our results showed that, on most time series, choosing an
s value, which creates an even number of partitions (with the
middle threshold falling on zero line), generally obtain better
results in terms of accuracy. On a large scale, some particu-
lar s values were observed to perform better on average. In
Fig. 15, the effect of s values on accuracy (the error rate)
for some example datasets is presented. With an exception
of few datasets, they scored competitively well, and with lit-
tle sacrifice on accuracy, while maintaining the two order of
magnitude performance gain compared to other state-of-the-art
methods.

In this experiment, we show the classification result with
s = 0.6 and show that even without prior knowledge about
the structure of the data and suitable s candidates, 1-NN 3-D
DTW with a default value for s will work well in terms of
accuracy and running time, especially on the long time series.
For parameter K, we used the default value (K = 3) but a user
can change it according to the specification of any problem.

Our homepage1 reports all raw numbers and contains the
C++ source code for 1-NN 3-D DTW. All experiments were
performed on an Intel Xeon E5-2620 (2.00 GHz) machine with
single core setting.

1The 3-D-DTW results http://prominent.mie.uic.edu/3d-dtw (2017).

A. Case Study

For the purpose of the case study, two long and large time
series datasets are selected from the UCR archive. The purpose
is to demonstrate the very efficient running time of 1-NN 3-D
DTW classification, as well as its high accuracy on long time
series.

1) Phoneme: Phonemes are the smallest units of intelligi-
ble sound produced by a human being, and phonetic spelling
is the sequence of phonemes that a word comprises. The orig-
inal phoneme dataset is presented in [54], which has 370 000
phonemes and massive amounts of noise. It is one of the
largest single dimension TSC dataset. The data in the orig-
inal dataset are of unequal length. In UCR archive [50], the
data is interpolated to make all time series equal length (1024),
and contains a subset of 214 train and 1896 test samples from
the original dataset. Having as much as 39 classes, phoneme
time series are very challenging to classify. Three sample time
series with different classes are randomly selected from the
dataset, which are shown in Fig. 16. The black graph shows
the raw data, and the red graph shows the jump points and
steps after CCA representation and data reduction. From the
left graph to the right graph, respectively, 1024 points of the
raw data are reduced to 160, 17, and 310 points (segments)
by CCA transformation, respectively.

The classification accuracy and process time of 1-NN 3-D
DTW are compared with state-of-the-art implementation of
1-NN DTW and BOSS VS in Table II. 3-D DTW has the
highest accuracy with 25.2%. Classification of this problem
by 1-NN DTW on a single core machine takes around 45
min, while 1-NN 3-D DTW prediction is done in less than 5
min (close to BOSS VS) with better accuracy.

2) Starlight Curves: Starlight curves is the largest dataset
available in the UCR time series archive [50]. It contains 1000
train and 8236 test records with a length of 1024 in three
types of classes (star objects): 1) eclipsed binaries; 2) Cepheid;
and 3) RR Lyrae variables. Fig. 17 shows sample graphs in
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Fig. 16. Graphical presentation of three samples of phoneme datasets with three different classes. The raw data is presented in black line and the approximation
in red line.

TABLE II
CLASSIFICATION ACCURACY AND TIME COMPARISON OF PHONEME

Fig. 17. Graphical presentation of three samples of starlight curves datasets
with three different classes. The raw data is presented in black line and the
approximation in red line.

TABLE III
CLASSIFICATION ACCURACY AND TIME COMPARISON OF STARLIGHT

each class. The difficult part of classification is detecting RR
Lyrae variables from Cepheids due to their similar shapes.
Since there is no sudden value fluctuation in this problem, the
CCA representation is very effective, and it can significantly
reduce the number of points after transformation. This will
result faster classification process. Fig. 17 shows, from left to
right, reduction of 1024 raw data points to 7, 10, and 12 points
(segments) by CCA transformation, respectively.

Table III compares the classification accuracy and time
among classifiers. 1-NN 3-D DTW accuracy is nearly the same
as 1-NN DTW and BOSS VS while significantly outperform-
ing these classifiers in time. While the state-of-the-art 1-NN
DTW takes 2 h, and BOSS VS takes 3 min to process the
classification of this problem, 1-NN 3-D DTW does the same
job in less than 8 s on the same machine with the same accu-
racy. Whereas BOSS VS is among the fastest classifiers and is
significantly faster than 1-NN DTW CV, 1-NN DTW, SVM,

Fig. 18. Difference in accuracy between 1-NN 3-D DTW and 1-NN DTW
classification on all 85 time series datasets in UCR archive with different time
series lengths.

and random forest [49], it is outperformed by 1-NN 3-D DTW
by about 20 times.

B. Classification Accuracy

Fig. 18 shows the comparison of 1-NN 3-D DTW to 1-NN
DTW classification accuracy for all datasets in UCR archive.
1-NN DTW is frequently used as the benchmark for compari-
son [6], [13]. In this figure, each point represents one dataset.
The x-axis is the difference between 1-NN 3-D DTW and
1-NN DTW classification accuracies, and the y-axis is the
length of time series. The points on the right side of the y-axis
are the datasets which 1-NN 3-D DTW performs better, and
the points on the left side of the y-axis are the datasets which
1-NN DTW does better in terms of classification accuracy.

Fig. 18 shows that 1-NN 3-D DTW performance in term
of accuracy is competitive to 1-NN DTW. The majority of
datasets fall within a range of −10% to 10%. However,
the main advantage of our method is in accelerating the
classification process rather than improving the accuracy.

The classification time becomes a more significant factor
for long time series, and it is where most current classifiers
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 19. Pairwise classification accuracy comparison of 1-NN 3-D DTW with (a) 1-NN ED, (b) 1-NN ED centroid, (c) 1-NN DTW, (d) 1-NN DTW
centroid (8), (e) naive Bayes, (f) random forest, (g) SVM quadratic kernel, and (h) BOSS VS on all long datasets.

fall short. In many use cases a faster prediction is much more
important than a nonsignificant increase in accuracy. For that
reason, we are interested to see how our method works on
long time series (500 points and above). There are 28 datasets
in UCR archive that have more than 500 points in length.
Table IV shows the list of these datasets along with their
lengths.

First, we compare the accuracy of 1-NN 3-D DTW on long
time series with 1-NN ED and 1-NN DTW which are the most
common time series classifiers. We also review the accuracy
of 1-NN ED Centroid and 1-NN DTW Centroid which are
considered to be very fast classifiers.

Fig. 19 shows pairwise classification accuracies comparison
between 1-NN 3-D DTW and Fig. 19(a) 1-NN ED, Fig. 19(b)
1-NN ED centroid, Fig. 19(c) 1-NN DTW, Fig. 19(d) 1-NN
DTW centroid (8), Fig. 19(e) naive Bayes, Fig. 19(f) random
forest, Fig. 19(g) SVM quadratic kernel, and Fig. 19(h) BOSS
VS. Each long time series dataset is represented by one blue
point. Each point under the straight red line indicates that
1-NN 3-D DTW is more accurate. The 1-NN 3-D DTW offers
a significantly higher accuracy than 1-NN ED, 1-NN ED cen-
troid, and 1-NN DTW centroid. Our 1-NN 3-D DTW also
outperforms the accuracy of 1-NN DTW for more than half
of long time series datasets (15 win/13 lose). Despite the loss
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TABLE IV
LIST OF LONG TIME SERIES DATASETS IN URC ARCHIVE

of information by approximation, 3-D DTW exhibits superi-
ority through the effect of noise and redundancy reduction.
Although the information loss caused by approximation could
have an adverse impact on accuracy, reducing noise and redun-
dancy on the other hand is an improving factor. This result is
consistent with other studies such as effect of noise reduction
in BOSS [48], and also removing redundant data by discrim-
inative subsequences in time series shapelets [52], [53]. In
the next section, we show that 1-NN 3-D DTW is orders of
magnitude faster than 1-NN DTW.

The 1-NN 3-D DTW classifier outperforms naive Bayes,
random forest, and SVM. On most long time series datasets,
the accuracy difference of 1-NN 3-D DTW to BOSS VS is
within −15% to 10%. Note that there are many circumstances
in which we would prefer to sacrifice some levels of accuracy
for considerable efficiency [35], [45]. The advantage of the
1-NN 3-D DTW classifier is its efficient running time before
its classification accuracy.

C. Classification Computational Cost

Fig. 20 demonstrates the pairwise comparison of classifi-
cation time of 1-NN 3-D DTW with 1-NN DTW on all 85
time series in URC archive. Each point represents a classifi-
cation time (in seconds) of one time series dataset. The points
above the straight blue line indicate less classification runtime
in 1-NN 3-D DTW compared to 1-NN DTW.

As seen in Fig. 20 1-NN 3-D DTW has a huge performance
leap over 1-NN DTW in terms of time on all UCR time series
datasets.

It takes only around 45 min to classify all 85 time series
datasets by the 1-NN 3-D DTW using one CPU core, whereas
the same job takes more than 18 h by the state-of-the-art 1-NN
DTW implementation and also more than 1.2 h by a single-
core running BOSS VS classifier.

Using 1-NN 3-D DTW, 73 out of 85 datasets (86%) are
classified in less than 10 s, and 80 out of 85 datasets (92%) are
classified less than 1 min. Fig. 21 demonstrates the pairwise
comparison of classification time of 1-NN 3-D DTW with
1-NN DTW and BOSS VS only on long time series. Note
that Fig. 20 shows the same comparison (between1-NN 3-D
DTW with 1-NN DTW) but on all 85 datasets.1-NN 3-D DTW
is significantly faster than 1-NN DTW with similar or better

Fig. 20. Pairwise classification time comparison of 1-NN 3-D DTW with
1-NN DTW on all 85 time series datasets.

accuracy. It is orders of magnitude faster than 1-NN DTW in
all long time series. 1-NN 3-D DTW is faster than BOSS VS
with a slightly declined accuracy. In all the long time series
datasets, 1-NN 3-D DTW is faster than BOSS VS except only
three time series datasets (Phoneme, FordA, and FordB). The
details of classification accuracy and process time comparison
between 1-NN 3-D DTW, 1-NN DTW and BOSS VS on all
long time series datasets are presented in Table V. For the long
time series datasets, using 1-NN 3-D DTW, the classification
of all datasets finishes roughly in 37 min. Using 1-NN DTW
and BOSS VS the classification finishes approximately after
17 h and 1 h, respectively.

On the tradeoff between classification accuracy against
processing time and computational cost, 1-NN 3-D DTW per-
forms reasonably well. On one hand, it is considerably more
accurate than extremely fast (but not accurate) classifiers (such
as 1-NN ED, 1-NN ED centroid, naive Bayes, etc.), and, on
the other hand, it is significantly faster than extremely accu-
rate (but slow) classifiers (such as COTE ensemble, shapelet,
BOSS, elastic ensemble, etc.).

D. Texas Sharpshooter Plot

Along with measuring the accuracy and time classification
of 1-NN 3-D DTW and comparing it to other methods, it is
needed to predict ahead of time on which datasets and domains
1-NN 3-D DTW will reach superior classification accuracy
results.

The Texas sharpshooter plot [15] is the tool to predict if one
method or the other is performing better in terms of classifica-
tion accuracy. The purpose is to predict the test classification
accuracy for 1-NN 3-D DTW and the 1-NN ED based on the
classification accuracy on the train datasets.

In order to create the Texas sharpshooter plot, we used the
expected gain equation which is proposed in [10] and [11]

Expected gain = 1− NN 3-D DTW accuracy

1− NN ED accuracy
.
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Fig. 21. Pairwise classification time comparison of 1-NN 3-D DTW with 1-NN DTW and BOSS VS on all long datasets.

TABLE V
DETAILS OF ACCURACY AND PROCESS TIME COMPARISON BETWEEN 3-D DTW, BOSS VS, AND DTW FOR LONG TIME SERIES

We used threefold cross validation to calculate the classifi-
cation accuracy on the train datasets. If the expected gain is
greater than 1, we can assume that 1-NN 3-D DTW will have
a better result than 1-NN ED in the testing of that particu-
lar dataset too. In Fig. 22, the comparison of the actual gain
(based on the testing dataset) against the expected gain (based
on the training dataset) of 1-NN 3-D DTW and 1-NN ED is
presented.

There are four areas in this plot.
1) True Positive: Where expected gain is greater than 1 and

actual gain is also greater than 1. It means we expected

the better accuracy and we received the better accuracy.
Sixteen out of 28 datasets fall into this area.

2) False Negative: Where expected gain is less than
1, but the actual gain is greater than 1. It means
we expected worst accuracy, but we got the better
accuracy. One out of 28 datasets falls into this area
(Haptics).

3) True Negative: Where expected gain and actual gain are
both less than 1. It means we correctly expected that
the accuracy would decrease. Ten out of 28 datasets fall
into this area.
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Fig. 22. Expected accuracy gain of 1-NN 3-D DTW/1-NN ED from train
data compared to actual accuracy gain on test data for long datasets.

4) False Positive: Where expected gain is greater than 1,
but the actual gain is less than 1. It means we wrongly
expected the accuracy to improve, but it got worse. This
is the bad area because we decided to use 1-NN 3-D
DTW based on the expected gain on the training but
we lost accuracy in testing. There is only 1 out of 28
datasets which falls into this area (InlineSkate).

Therefore, in general 1-NN 3-D DTW enjoys a high level
of predictability for the classification accuracy of long time
series datasets.

V. CONCLUSION

Our proposed methods, CCA and 1-NN 3-D DTW, have
focused on data reduction and improving the efficiency of
1-NN DTW for classification of long time series in large
datasets. CCA representation approximates and reduces the
raw time series by creating a vector of segments with single
values and durations. The output of CCA is the input of 1-NN
3-D DTW classifier.

3-D DTW is the adaptation of common DTW in a 3-D,
and is used to measure the distance between two CCA
representations of time series.

Using 85 time series, benchmark datasets from UCR
archive, including 28 long time series datasets in an exhaustive
evaluation, we show that 1-NN 3-D DTW is orders of mag-
nitude faster than the state-of-the-art implementation of 1-NN
DTW. It has better or similar level of accuracy for long time
series in the experiment.

Regarding tradeoff between accuracy and computational
cost, 1-NN 3-D DTW is shown to be competitive among the
state-of-the-art classifiers.

Developing tuning methods for parameter s according to
the target time series, could further improve the accuracy or
efficiency of our technique on specific datasets, and is left for
future work.

Almost all of 1-NN DTW extension methods for accuracy
or efficiency improvements such as global warping constraints
and weighting techniques, are also applicable on 1-NN 3-D
DTW.
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