
O(n log log k)
MAXIME CROCHEMORE

King’s College London, Strand, London WC2R 2LS, UK
and Université Paris-Est. Maxime.Crochemore@kcl.ac.uk

ELY PORAT

Bar-Ilan University, Ramat-Gan 52900, Israel
PoratEly@cs.biu.ac.il

Abstract

We consider the complexity of computing a longest increasing subsequence
parameterised by the length of the output. Namely, we show that the maximal length k

of an increasing subsequence of a permutation of the set of integers {1, 2, . . . , n} can
be computed in time O(n log log k) in the RAM model, improving the previous 30-year
bound of O(n log log n). The optimality of the new bound is an open question.

queue

1. LONGEST INCREASING SUBSEQUENCE

We consider the problem of extracting a longest increasing subsequence (LIS) from a sequence

multiple occurrences of integers between 1 and n in the sequence of length n does not change
the result (see Section 4).

The question is related to the representation of permutations, elements of the symmetric group
on {1, 2, . . . , n}, with Young tableaux. This is certainly why it has attracted a lot of attention. See
the chapter by Lascoux, Leclerc, and Thibon in [8, Chapter 5] for a presentation of Schensted’s
algorithm [12] in this context.

The question is also related to the computation of a longest common subsequence (LCS) of two
strings, and to their alignment, in at least two ways. First, the LIS of S is the LCS between S and
the sequence (1, 2, . . . , n). This remark leads to an O(n2) running time algorithm implementing
the standard dynamic programming technique used for fi nding longest common subsequences
(it can indeed be reduced to O(n2/ log n) [9, 2]). Though simple, this solution cannot compete
against direct computations. Second, the LIS question is involved in the solution to whole-genome
comparisons proposed by Delcher et al [3] and in its subsequent variants. A comparison is
based on maximal exact matches between the two input genome sequences, matches that are
additionally constrained to occur only once in each sequence. An LIS is used to extract a long
subsequence of matches that are compatible between each other, i.e. they appear in the same
order along the two sequences, for producing an alignment of the complete genomes.

There is an extensive literature about the distribution of the maximal length of increasing
subsequences in random permutations. As a notable result, it is known that the expected LIS
length is ∼ 2

√
n as n→∞. See [13], or the survey by Odlyzko and Rains [11] who discuss these

questions, and references therein.

of integers. The sequence S is assumed to be a permutation of the set {1, 2, . . . , n}, but having

Keywords: Design and analysis of algorithms, Longest increasing subsequence, Data structures, Priority

  BCS International Academic Conference 2008 – Visions of Computer Science   69

Computing a Longest Increasing
Subsequence of Length k in Time



Liben-Nowell et al. [7] explore the LIS problem in the streaming model which typically aims at
reducing to a polylogarithmic amount the memory space required by the computation, in addition
to effi cient running time (see also [10]).

A direct solution to computing a longest increasing subsequence, running in O(n log n) time, was
proposed by Fredman [4]. The solution is optimal if the elements are drawn from an arbitrary set
due to the Ω(n log n) lower bound for sorting n elements. Parameterised by the LIS length k, the
running time is O(n log k). On integer alphabets, the fastest known solution runs in O(n log log n)
time (see [16] and references therein). It relies on the priority search trees of van Emde Boas
[14, 15], which provide O(log log n) amortised time per operation when keys are drawn from the
set {1, 2, . . . , n}.

The solution presented in this paper breaks the long-standing O(n log log n) upper bound down to
O(n log log k), where k is the maximal length of increasing subsequences. It extends immediately
to the computation of a longest increasing subsequence (not only its length). We assume the
RAM model for evaluating the running time and the algorithm can be viewed as a parameterised
solution (k is the length of the output). This is certainly a result mostly of theoretical nature but it
opens the road to a possible linear-time LIS computation.

To get the O(n log log k) bound, we feed the priority queue used in the standard algorithm with
elements drawn from a restricted range. This is done through a series of careful renamings
of the elements. Downsizing the key universe to size O(k) leads the priority queue to work
in amortised time O(log log k) and yields the announced result. But the length k of a longest
increasing subsequence is not an input of the algorithm: we show that an approximation of it is
enough, and how to compute such an approximation.

Section 2 recalls the core algorithm for computing a longest increasing subsequence and Section
3 describes our improved solution.

2. CORE ALGORITHM

We recall the core algorithm for computing a longest increasing subsequence, starting with the
computation of its length.

Let π be a permutation of {1, 2, . . . , n}. The aim is to extract a longest increasing subsequence
from the sequence S = (π(1), π(2), . . . , π(n)).

Elements are processed in the order π(1), π(2), . . . , π(n). Conceptually we compute, for each
length ℓ = 1, 2, . ., the smallest last element that can end an increasing subsequence of that
length. It is called the best element for that length and denoted by B[ℓ].

Note that best elements B[1], B[2], . . . , form an increasing sequence. This fact is used for the
choice of a data structure to implement the list and is essential for getting an effi cient computation.

One step in the algorithm is as follows (see [1]). The currently processed element π(i) can extend
any increasing subsequence having the last element smaller than it. If π(i) is larger than all
the best elements computed so far for the sequence (π(1), π(2), . . . , π(i − 1)), it produces an
increasing subsequence longer than any previous one, for which it is the last element. Otherwise,
π(i) becomes the best element for an existing length: it replaces the smallest element greater than
it in B. This leads to the next algorithm to compute the maximal length of increasing subsequences
of S, in which B is a priority queue that stores the best elements.

LIS(π, n)
1. B ←− (); k ←− 0
2. for i←− 1 to n
3. x←− π(i)
4. Insert(B, x)
5. if succ(B, x) exists

 Computing a longest increasing subsequence of length k in time O(n log log k)

  BCS International Academic Conference 2008 – Visions of Computer Science70



6. Delete(B, succ(B, x))
7. else k ←− k + 1
7. return k

Example Let S0 = (12, 8, 9, 1, 11, 6, 7, 2, 10, 4, 5, 3). The queue B is initially empty. Its contents
after processing sequentially each of the elements are successively: (12), (8), (8, 9), (1, 9),
(1, 9, 11), (1, 6, 11), (1, 6, 7), (1, 2, 7), (1, 2, 7, 10), (1, 2, 4, 10), (1, 2, 4, 5), (1, 2, 3, 5). The length of
an LIS is then 4 the size of B at the end of the run.

Computing a longest increasing subsequence (not just its length) is a simple extension of the
algorithm. Instead of storing best elements only in the queue B, it suffi ces to store pairs of the form
(x, y) where y is a best element predecessor of x. Then, tracing back predecessor information
from the last best element in B produces a longest increasing subsequence.

Example (continued) The predecessor of 5 when it was inserted in B was 4, that of 4 was 2,
that of 2 was 1, which gives the LIS: (1, 2, 4, 5) of S0 = (12, 8, 9, 1, 11, 6, 7, 2, 10, 4, 5, 3). Considering
value 10, which is also a best element for an increasing subsequence of length 4, we get in the
same way another LIS: (1, 6, 7, 10).

The running time of the algorithm relies mainly on the implementation of the queue B of best
elements. Using an array and binary search (since elements are naturally sorted) to locate the
position of the next element x (i.e. to implement the operations Insert, Delete, prev , and succ)
yields a O(n log n) running time algorithm [4].

Using a more sophisticated priority list implementation in the form of van Emde Boas trees [14,
15], each step can be performed in O(log log n) amortised time yielding an overall O(n log log n)
running time algorithm [6].

In the next section we keep the same algorithm and the same priority list implementation but
process the initial sequence differently to get the announced running time.

3. IMPROVEMENT BY RENAMING

In order to compute a longest increasing subsequence, having length k, from the sequence S of
length n in time O(n log log k) we want a priority queue that works in O(log log k) amortised time
per operation. Our strategy to get this result is to downsize the key universe of the queue to size
O(k). This is done through a series of careful renamings of the elements of the sequence.

We assume that a good approximation m of k, m ≥ k, is given. We discuss how to fi nd such an
m at the end of the section.

The solution splits the initial sequence S into blocks of size m (except of course the last block that
can be smaller), and processes each block separately in the order of the sequence. We discuss
these two points.

Splitting S into blocks and sorting them. The sequence S is split into blocks, Cj , j =
1, . . . , ⌈n/m⌉, of consecutive elements:

Cj = (π((j − 1)m + 1), π((j − 1)m + 2), . . . , π((j − 1)m + m)).

We also consider sorted blocks: Cs
j is the sorted list of elements of Cj . Sorted and unsorted blocks

are kept in memory.

 Computing a longest increasing subsequence of length k in time O(n log log k)

  BCS International Academic Conference 2008 – Visions of Computer Science   71



Sorting all the blocks individually by radix sort would take too much time because the elements
in a given block are not in a limited range. To sort them all in linear time, we sort them altogether
but identify the block of each element. To do so, we associate with each element π(i) the pair
(⌈i/m⌉, π(i)) composed of its block number and itself. Pairs are then sorted lexicographically
using radix sort. And since the fi rst component of each pair identifi es its block, we get all the
blocks sorted.

The whole procedure runs in time O(n) because the elements and the block numbers are in the
set {1, 2, . . . , n}.

Processing a block. In the modifi ed algorithm, instead of processing an element x of S as in
Lines 4-7 of Algorithm LIS, we deal with a key associated with it. All the elements of a block are
treated online. Before going to the next block some work as to be done to assign keys to elements.

When processing a block, each element x is associated a key y = key(x) in a one-to-
one correspondence. The inverse function is called elt , then x = elt(y). Keys are in the set
{1, 2, . . . , 2m} and are inserted in the queue B.

To assign keys in the designated range we merge elements whose keys are in the queue B
with the current sorted block. Note that elements whose keys are in B are in increasing order as
already mentioned in Section 2, which is essential for merging. Keys are then ranks of elements in
the obtained sorted list. Since we assume m ≥ k, the number of keys in B is no more than m, the
length of the sorted list is no more than 2m, which implies that keys are in the set {1, 2, . . . , 2m}.

After keys are assigned, we update B with the new keys of elements that are conceptually in the
queue.

The last step in the treatment of a block is to process all its elements in the order of the block. The
key of each element is dealt with as in Algorithm LIS.

The next scheme summarise the processing of a block.

Processing a block
1. merge (elt(y) | y ∈ B) with the next sorted block
2. assign new keys in the order of the list
3. update keys in B correspondingly
4. insert in B keys of elements of the block in the order of the block

Example (continued) We consider m = 4 for the improved algorithm, and go on with the
example sequence S0 = (12, 8, 9, 1, 11, 6, 7, 2, 10, 4, 5, 3).

To avoid confusion in the description between elements of S and their keys, these are denoted by
letters a, b, c, . . .

The three blocks are C1 = (12, 8, 9, 1), C2 = (11, 6, 7, 2), C3 = (10, 4, 5, 3), their sorted versions
are Cs

1 = (1, 8, 9, 12), Cs
2 = (2, 6, 7, 11), Cs

3 = (3, 4, 5, 10).

Processing the fi rst block. Keys of 12, 8, 9, 1 are d, b, c, a respectively. After processing the key of
each element, the contents of queue B are successively: (d), (b), (b, c), and (a, c).

Processing the second block. Queue B = (a, c) corresponds to the list of elements (1, 9). It
is merged with Cs

2 producing the list (1, 2, 6, 7, 9, 11). The content of B is update to (a, e). After
processing keys f, c, d, b of elements of C2, the contents of queue B are successively: (a, e, f),
(a, c, f), (a, c, d), and (a, b, d).

 Computing a longest increasing subsequence of length k in time O(n log log k)

  BCS International Academic Conference 2008 – Visions of Computer Science72



Processing the third block. Queue B = (a, b, d) corresponds to the list of elements (1, 2, 7). It is
merged with Cs

3 producing the list (1, 2, 3, 4, 5, 7, 10). The content of B is update to (a, b, f). After
processing keys g, d, e, c of elements of C3, the contents of queue B are successively: (a, b, f, g),
(a, b, d, g), (a, b, d, e), and (a, b, c, e).

The list of elements whose keys are in B is: (1, 2, 3, 5), which give an LIS of length 4 ending with
5. Computing an LIS can be done as explained above.

In the implementation of Algorithm LIS, the cost of all renamings is O(n) if radix sorting is used.
Each operation on the queue (Insert, Delete, Update) takes only O(log log m) amortised time
because the elements in B belong to the set {1, 2, . . . , 2m}. This gives the following statement.

Lemma 1 The implementation of Algorithm LIS with blocks of size m, m ≥ k, and renamings runs
in time O(n log log m) for a sequence of length n.

Finding the size of blocks. In the above presentation an approximation m of the length k of
longest increasing subsequences of S satisfying m ≥ k, is assumed to be given. We discuss now
how to fi nd it.

The idea is to try increasing values of m until we get the approximation leading to the announced
running time. Starting with some value m0, expected to be no more than k, for m (for instance,
m0 = 4), we consider the sequence (mi | i ≥ 0) defi ned by mi = mi−1

log mi−1 for i > 0.

For a given value of m in the sequence, we run Algorithm LIS implemented as described above but
with this change: the run stops if the size of the queue B becomes larger than m, and the algorithm
signals the fact. Therefore, the fi rst time the algorithm does not stop due to this condition is when
the value of m is the smallest value in the list that is larger than k. Let mi be this value.

Doing so, the running time of the modifi ed Algorithm LIS is O(n log log mj) for 0 ≤ j < i
because during all these runs the queue B contains no more than mj elements that all belong to
{1, 2, . . . , 2mj}. For the value mi the run fi nishes normally because the condition of its complete
execution, m ≥ k, is met. The running time for this value of m is O(n log log mi).

Noting that log log(mlog m) = 2 log log m, the total running of the whole execution of Algorithm LIS
for m = m0, m1, . . . , mi is

O(n(Σj=0,...,i1/2j−1) log log mi),

which is also O(n log log mi), and eventually O(n log log k) because m < klog k implies log log m <
2 log log k.

The conclusion lies in the next statement.

Theorem 2 Let S be a permutation of the integers {1, 2, . . . , n} and let k be the maximal length of
its increasing subsequences. Computing k and extracting a longest increasing subsequence from
S can be done in time O(n log log k).

4. CONCLUSION

The result stated in Theorem 2 is valid for sequences of integers with repetitions. Although
the problem seems more general its solution comes down to that of a permutation as follows:
each element x occurring at position i in S is renamed as the rank of the pair (x, i) in the
lexicographically sorted list of all these pairs. This process is yet similar to the renaming by ranking
used in our solution.

As to whether the upper bound in Theorem 2 is optimal, and not linear, raises the question of
fi nding a totally different approach to compute longest increasing subsequences because the
implementation of Schensted’s algorithm is squeezed as much as possible with the present

 Computing a longest increasing subsequence of length k in time O(n log log k)

  BCS International Academic Conference 2008 – Visions of Computer Science   73



solution. But this is unlikely to happen if we consider that many researchers have already worked
on the problem.

Another possible way for exploring the complexity of the problem is to use other techniques for
sorting integers (see for example [5]). But some of them are affi liated to van Emde Boas’ method
and are mostly designed to avoid the non-linear space coming from the large range of input
integers. This is not the problem we have for computing the LIS of a permutation, though the
techniques might simplify the solution or give a direct answer to the question.

5. ACKNOWLEDGEMENTS

We are grateful to the anonymous reviewer for very detailed comments and for pointing reference
[5] to us.

REFERENCES

[1] S. Bespamyathnikh and M. Segal. Enumerating longest increasing subsequences and
patience sorting. Information Processing Letters, 76(1-2):7–11, 2000.

[2] M. Crochemore, G. M. Landau, and M. Ziv-Ukelson. A sub-quadratic sequence alignment
algorithm for unrestricted cost matrices. SIAM Journal of Computing, 32(6):1654–1673,
2003.

[3] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L. Salzberg.
Alignment of whole genomes. Nucleic Acid Research, 27(11):2369–2376, 1999.

[4] M. L. Fredman. On computing the length of longest increasing subsequences. Discrete
Mathematics, 11:29–35, 1975.

[5] Y. Han. Deterministic sorting in o(n log log n) time and linear space. Journal of Algorithms,
50:96–105, 2004.

[6] J. Hunt and T. Szymanski. A fast algorithm for computing longest increasing subsequences.
Communications of ACM, 20:350–353, 1977.

[7] D. Liben-Nowell, E. Vee, and A. Zhu. Finding longest increasing and common subsequences
in streaming data. Journal of Combinatorial Optimization, 11(2):155–175, 2006.

[8] M. Lothaire. Algebraic Combinatorics on Words. Number 90 in Encyclopedia of Mathematics
and its Applications. Cambridge University Press, Cambridge, UK, 2002.

[9] W. Masek and M. Paterson. A faster algorithm for computing string edit distances. J.
Comput. Syst. Sci., 20:18–31, 1980.

[10] S. Muthukrishnan. Data Streams: Algorithms and Applications, volume 1 of Foundations and
Trends in Theoretical Computer Science. Now Publishers Inc., Hanover, MA, 2005.

[11] A. M. Odlyzko and E. M. Rains. On longest increasing subsequences in random
permutations. 1999.

[12] C. Schensted. Largest increasing and decreasing subsequences. Canadian Journal of
Mathematics, 13:179–191, 1961.

[13] J. M. Steele. Variations on the monotone subsequence theme of Erdös and Szekeres.
In D. Aldous, P. Diaconis, J. Spencer, and J. M. Steele, editors, Discrete Probability and
Algorithms, volume 72 of The IMA volumes in mathematics and its applications, pages 111–
131. Springer-Verlag, Berlin, 1995.

[14] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Information Processing Letters, 6:80–82, 1977.

[15] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an effi cient priority
queue. Mathematical Systems Theory, 10:99–127, 1977.

[16] I.-H. Yang, C.-P. Huang, and K.-M. Chao. A fast algorithm for computing a longest increasing
subsequence. Information Processing Letters, 93(5):249–253, 2005.

 Computing a longest increasing subsequence of length k in time O(n log log k)

  BCS International Academic Conference 2008 – Visions of Computer Science74




