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Abstract. The dynamic time warping (DTW) distance measure is one of thepopular and efficient distance measures used in
algorithms of time series classification. It frequently occurs with different kinds of transformations of input data. In this paper we
propose a combination of the DTW distance measure with a (discrete) integral transformation. This means that the new distance
measure IDTW is simply calculated as the value of DTW on the integrated input time series. However, this design means that
the distance cannot in itself give good classification results. We therefore propose to construct a parametric integraldynamic
time warping distance measure IDDTW which is a parametric combination of the distances DTW and IDTW. Such a combined
distance is used in the nearest neighbor (1NN) classification method in the case of both univariate and multivariate timeseries
analysis. Computational experiments performed on both one-dimensional and multidimensional datasets show that thisapproach
reduces the classification error significantly in comparison with the component methods. The parametric approach allows the new
distance to be adapted to each dataset, while showing no significant overfitting effects. The contribution and the main motivation
of the paper is to show that the simple transformation as the integral transform can include a bit information about examined time
series data and can be used to significantly improve performance of the classification process both for univariate and multivariate
time series data. The results are confirmed by graphical and statistical comparisons.

Keywords: time series classification, univariate and multivariate time series data, dynamic time warping, parametricintegral
distance measure

1. Introduction

Dynamic Time Warping (DTW) is a popular dis-
tance measure used in data mining ([4]). The Near-
est Neighbor (NN) method with DTW is frequently
used in classification and clustering of time series data
([32], [1], [27]). It can be applied to both univariate
and multivariate analysis of one-dimensional and mul-
tidimensional time series ([31], [28]). The results of
classification using the pair NN and DTW are usually
very good and hard to surpass by other distance mea-

sures ([13]). The DTW distance often occurs with var-
ious kinds of transformations of the input data. For
example, computing DTW on the derivative of the
raw data is called the Derivative Dynamic Time Warp-
ing (DDTW) distance measure ([20]). However, the
DTW distance measure on the transformed data rarely
gives us a universal distance measure which can com-
pete with DTW on a large number of datasets. There-
fore, in order to use the information in both the raw
and transformed data, combined methods are used. We
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can create a distance measure which is a combina-
tion of DTW on raw and transformed time series data.
Examples of such combined distances can be found
in the literature: a combination of raw and derivative
data with the discrete derivative of the first degree for
both one-dimensional and multidimensional time se-
ries ([14,17]), a combination with a sine/cosine trans-
form ([16]), and others ([30]).

In this paper we examine an integral transforma-
tion of time series data. We introduce the Integral
Dynamic Time Warping (IDTW) distance measure,
whose value is computed as the DTW on the integrated
input data. This distance measure can be defined for
both one-dimensional and multidimensional time se-
ries. We then introduce a parametric combination of
DTW and IDTW, called the Parametric Integral Dy-
namic Time Warping (IDDTW) distance measure. It is
a parametric convex combination of the DTW distance
measure on the raw and integrated data. The share of
each of the distance component is controlled by a sin-
gle real-valued parameter. Such a parametric distance
can be used for both univariate and multivariate time
series data. The IDDTW will be used in the classifi-
cation process with the one nearest neighbor (1NN)
method. The parameter of the combination is com-
puted in the learning phase on the training subset by
leave-one-out cross-validation.

We perform computational experiments on two
large benchmark data bases for one-dimensional and
multidimensional time series. The classification error
rates obtained on these datasets clearly show that the
proposed combined distance IDDTW gives better re-
sults than the component distances DTW and IDTW
alone. The results are presented by graphical compar-
ison and confirmed statistically. Since the parameter
of IDDTW is located outside the distance components,
there can be a significant reduction of computation
time in the learning phase (cross-validation). We can
easily get lower bounds for the combined distance,
which can also be used to reduce the computational
complexity of the method.

The contribution and the main motivation of the pa-
per is to show that that the simple transformation as the
integral transform can include a bit information about
examined time series data and can be used to signifi-
cantly improve performance of the classification pro-
cess. On the second hand, we show that only paramet-
rical approach can combine information from raw and
transformed data both for univariate and multivariate
time series data sets.

The presented method can be used in classifica-
tion of time series originated from all fields, includ-
ing price series, complementing other price prediction
models ([8,9,10]). It also seems that it may be used
in future research with granular computing techniques
([2,26,29,23,33]) to solve univariate and multivariate
time series classification problems.

The remainder of the paper is organized as follows.
We first (section 2) review the concept of time series
and the dynamic time warping algorithm for univariate
and multivariate time series data. In the same section
we introduce our parametric distance based on integral
transformation, and explain the optimization process
and properties of the new distance measure. In section
3 the benchmark datasets used in the empirical com-
parison of methods are described, and we explain the
experimental setup. Later in that section we present the
results of our experiments on the described time series,
as well as statistical analysis of the examined methods.
We conclude in section 4 with discussion of possible
future extensions of the work.

2. Parametric integral dynamic time warping
(IDDTW)

A one-dimensional (univariate) time series is a se-
quence of observations aligned in time or space ([6]).
In this paper we shall assume that time series are dis-
crete i.e. they are finite sequences of real numbers:

x= {x(i) ∈ R : i = 1,2, . . . ,n},

wheren∈ N is the length of the time series.
Multidimensional (multivariate) time series are de-

fined as finite sequence of one-dimensional time se-
ries:

X = (x1,x2, . . . ,xm),

wherem∈ N is the dimensionality of the multi-series
X i.e. the number of variables of the multi-series. In
this paper we shall assume that all time series (dimen-
sions, variables) of a multi-series have the same length
n for all elements of the dataset.

2.1. Dynamic time warping

The dynamic time warping distance measure (DTW)
is a popular distance measure used to calculate the sim-
ilarity/dissimilarity of time series ([4]). To calculate
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the DTW for the two one-dimensional time series with
lengthn∈ N

x= {x(i) ∈ R : i = 1,2, . . . ,n},

y= {y(i) ∈R : i = 1,2, . . . ,n}

we proceed as follows. We define a local cost function
d — a real-valued function of two real variables which
computes a distance between two different points of
the time seriesx and y. For the standard DTW it is
usually defined as:

d(x(i),y( j)) = (x(i)− x( j))2
. (1)

Then we construct a square matrixD with dimension-
ality n× n consisting of the local cost function val-
uesD(i, j) = d

(

x(i),y( j)
)

. The matrix elementD(i, j)
corresponds to the alignment between valuesx(i) and
y( j) of the time series. Then we create a warping path
W = {w1,w2, . . . ,wK} (K ∈ N) with elements of the
matrix D. In standard DTW the warping path is re-
quired to satisfy three conditions:

1. w1 = d(1,1) andwK = D(n,n) (boundary condi-
tions);

2. if wk = D(ik, jk) andwk+1 = D(ik+1, jk+1) then
ik+1− ik ≤ 1 and jk+1− jk ≤ 1 (continuity);

3. ik+1− ik ≥ 0 and jk+1− jk ≥ 0 (monotonicity).

To get a warping path we start at the elementD(1,1)
and shifting at most one index forward we finish at the
elementD(n,n) (Fig. 1). The path which minimizes
the warping cost gives the value of the DTW distance
measure:

DTW(x,y) = min
W

{

k=K

∑
k=1

wk

}

. (2)

Sometimes the DTW is defined as the square root of
(2).

In practice, we calculate the value of DTW by build-
ing a cumulative distance matrixΓ by dynamic pro-
gramming with the following recursion:

Γ(i, j) = D(i, j)+

min{Γ(i −1, j −1),Γ(i −1, j),Γ(i, j −1)}

with initial conditions:

Γ(0,0) = 0,

Γ(0, i) = ∞, Γ(i,0) = ∞ (i = 1,2, . . . ,n).

Fig. 1. Time series alignment and the corresponding warpingpath.

The value of DTW is found at position(n,n) of the
matrix Γ:

DTW(x,y) = Γ(n,n)
(

DTW(x,y) =
√

Γ(n,n)
)

.

The DTW distance measure does not satisfy the tri-
angle inequality hence it is not a metric. However, it
holds that DTW(x,x) = 0 and DTW(x,y) =DTW(y,x)
for the cost function (1).

2.2. Integral dynamic time warping

The distance measure computed as DTW on an in-
tegrated input time series (indefinite integral of a func-
tion) will be called the Integral Dynamic Time Warp-
ing distance measure (IDTW):

IDTW(x) = DTW(I(x)), (3)

where I(x) is an integral of the time seriesx. In the
case of discrete time series, integration is simply the
cumulative sum. Fory= I(x):

y(1) = x(1),

y(i) = y(i −1)+ x(i), i = 2,3, . . . ,n

or

y(i) =
i

∑
j=1

x( j), i = 1,2, . . . ,n. (4)

The metric conditions for IDTW are the same as for
DTW.
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2.3. Multivariate dynamic time warping

With the assumption that the univariate time series
of all dimensions of a multivariate time series have
the same length we can view a multi-series as a one-
dimensional trajectory in anm-dimensional Euclidean
space:

X = {X(i) = (x1(i),x2(i), . . . ,xm(i)) ∈ R
m:

i = 1,2, . . . ,n}. (5)

Then we can define the DTW distance measure be-
tween two multi-seriesX andY ([17]) in the same qay
as for the one-dimensional case, but with a local cost
functiond defined as

d(X(i),Y( j)) =
k=m

∑
k=1

(xk(i)− yk( j))2
, (6)

i.e. as the squared Euclidean distance of twom-
dimensional vectors formed by the values along the
dimensions of the multi-series at positionsi and j
(Fig. 2).

Fig. 2. Multivariate time series alignment and the cost function d.

Similarly to the one-dimensional case, we define
the Integral Dynamic Time Warping distance mea-
sure as DTW computed on the integrated multi-series
X = (x1,x2, . . . ,xm), i.e. we integrate each component
one-dimensional time series (dimension, variable) sep-
arately by formula (4):

I(X) = (I(x1), I(x2), . . . , I(xm)),

IDTW(X,Y) = DTW(I(X), I(Y)). (7)

The multidimensional IDTW has similar properties as
the multidimensional DTW.

2.4. Combining raw and integrated data

Before combining into one distance measure, both
raw and integrated data are normalized. The normal-
ized time series will be a new time series denoted N(x):

N(x) = z-norm(x),

where z-norm denotes z-normalization by:

z-norm(x) =
x− µ(x)

σ(x)
,

whereµ(x) is the mean of the (univariate) time series
x, andσ(x) is the standard deviation ofx.

The normalized multivariate time series will be the
series for which every dimensionality is normalized
separately:

N(X) = (N(x1),N(x2), . . . ,N(xm)).

Therefore the strict definitions of the distances are:

NDTW(a,b) = DTW(N(a),N(b)),

NIDTW(a,b) = NDTW(I(N(a)), I(N(b))),

wherea andb are univariate and multivariate time se-
ries respectively. However, to simplify notation, in the
rest of the work we shall always use the symbols DTW
and IDTW (instead of NDTW and NIDTW) with the
assumption that the data is always normalized before
computation of the distance measure.

We can now define the parametric integral dynamic
time warping distance measure (for both univariate and
multivariate time series) as a convex combination of
the distances DTW and IDTW:

IDDTW(a,b) =

(1−α) DTW(a,b)+α IDTW(a,b),

where a and b are univariate and multivariate time
series respectively andα is a real-valued parameter
(α ∈ [0,1]).

The distance function IDDTW can be used in the
nearest neighbor classification method, where the pa-
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rameterα is tuned in the learning phase. In this work
the parameterα will be chosen by leave-one-out cross-
validation on the training dataset.

Sinceα is outside the distances DTW and IDTW,
to compute values of IDDTW for all parameters from
the interval [0,1] we need to calculate DTW and
IDTW only once. This allows some optimization of
the computation time in the learning phase of the NN
method. The optimized algorithm for leave-one-out
cross-validation on the training dataset is shown in
Fig. 3.

2.5. Metric conditions and lower bounds

Since the DTW distance measure is not a metric (it
does not satisfy the triangle inequality), the new com-
bined distance measure IDDTW is also not a metric.
However, similarly to DTW, the following identities
hold:

IDDTW(X,X) = 0,

IDDTW(X,Y) = IDDTW(Y,X),

for every fixed parameterα ∈ [0,1].
To shorten the calculation time of the NN method

with the distance IDDTW we can use a lower bound.
If LB is a lower bound for DTW and LBI is a lower
bound for IDTW then

LBα(a,b) = (1−α) LB(a,b)+α LBI(a,b) (8)

is a lower bound for the distance IDDTW (for every
fixed α ∈ [0,1] in both the univariate and multivariate
cases). There are many good lower bounds of the DTW
for one-dimensional time series, such as LB_Keogh
([18]) and LB_Improved ([22]). By our definition of
DTW for multidimensional time series (5), (6) we can
easily transform those univariate lower bounds to mul-
tivariate DTW lower bounds. Then, by (8), we can also
find a good lower bounds for IDDTW.

3. Results

3.1. Experimental setup

We conducted computational experiments for both
one-dimensional and multidimensional time series
data ([19]).

In the univariate case, we performed experiments on
85 data sets from the UCR Time Series Classification

Archive ([7]). This is a database with labeled time se-
ries data from a very broad range of fields, including
medicine, finance, multimedia and engineering. Each
dataset from the database is split into training and test-
ing subsets. All data is z-normalized. Information on
the time series used is presented in Table 1.

For the classification process the nearest neighbor
method (1NN) is used for all compared distances:
DTW, IDTW and IDDTW. We use the cross-validation
(leave-one-out) method to find the best parameterα in
our classifier IDDTW on a training subset. If the mini-
mal error rate is the same for more than one value ofα,
we choose the median of those values. A finite subset
of the parameterα is chosen, ranging from 0 to 1 with
a fixed step size of 0.01.

In the multivariate case, the experiments are carried
out on 16 data sets, all of which have labels given. The
data sets originate from different domains, including
medicine, robotics, handwriting recognition, etc. In-
formation on the time series used is presented in Ta-
ble 2 (UCI — [3], CMU MOCAP — [11], [5], [21],
[25]). Most data is not z-normalized. There is no split
into training and testing subsets.

The multivariate time series samples in each dataset
are of different lengths. For each dataset, the samples
are extended to the length of the longest time series in
the data set. We extend all variables of the multidimen-
sional series to the same length. For a short time series
instancex with lengthn, we extend it to a long instance
y with lengthnmax by

y( j) = x(i), for i =

⌈

j −1
nmax−1

(n−1)+0.5

⌉

j = 1,2, . . . ,nmax.

Some of the values in the sample are duplicated in or-
der to extend a time series. In this way, all the values
in the original multivariate time series sample appear
in the extended sample.

For the classification process the nearest neighbor
method (1NN) is used for all compared distances:
DTW, IDTW and IDDTW. For each dataset we cal-
culated the classification error rate using the 10-fold
cross-validation method (1NN classifier). We use the
cross-validation (leave-one-out) method to find the
best parameterα for our classifier IDDTW on a training
subset for each split of the 10-fold CV. If the minimal
error rate is the same for more than one value ofα, we
choose the median of those values. A finite subset of
the parameterα is chosen, ranging from 0 to 1 with a
fixed step size 0.01.



6 M. Łuczak / Time series classification with parametric integral DTW

% E - time series in the train dataset (cell vector)
% labels - labels of time series (vector)

alpha = 0 : 0.01 : 1; % alpha parameter subset
n = length(N); % number of cross-validation iterations
k = length(alpha); % number of alpha parameters
mistakes(1 : k) = 0; % number of false classifications

for i = 1 : n % cross-validation iteration loop
D(1 : k) = inf; % vector of minimal distances
L(1 : k) = 0; % vector of ‘minimal’ labels
for j = [1 : i-1, i+1 : n] % leave-one-out

d = (1 - alpha) * DTW(E{j}, E{i}) + alpha * IDTW(E{j}, E{i}); % combined distance measure
D(d < D) = d(d < D); % minimal distances computation
L(d < D) = labels(j); % minimal labels computation

end
mistakes = mistakes + (L ~= labels(i)); % updating number of false classifications

end
errors = mistakes / n; % error computation

Fig. 3. Implementation of the optimized algorithm (for univariate and multivariate time series) for the leave-one-outcross-validation routine
(Matlab code).

3.2. Experimental results

The results for one-dimensional time series are pre-
sented in Table 3. The columns of the table (from left)
show: the testing error rate (as a percentage) for the
component methods DTW and IDTW and for the ex-
amined parametric method IDDTW. In Fig. 4 a graphi-
cal comparison of the combined method with the com-
ponent methods is presented.

For statistical confirmation of the performance of
IDDTW, p-values were calculated for the Wilcoxon
test. To statistically compare two classifiers over mul-
tiple data sets, [12] recommends the Wilcoxon signed-
ranks test. The Wilcoxon signed-ranks test is a non-
parametric alternative to the paired t-test, which ranks
the differences in the performances of two classifiers
for each dataset, ignoring the signs, and compares the
ranks for the positive and the negative differences. The
p-values are: 0.0272 for the pair DTW vs. IDDTW and
5.6043× 10−14 for the pair IDTW vs. IDDTW. This
means that the parametric combined distance IDDTW

is better than the compared component distances DTW
and IDTW at a 97% significance level.

For multidimensional time series data, the results
are shown in Table 4. The columns (from left) show the
testing error rate (as a percentage) for the component
distances DTW and IDTW and for the new parametric
combined distance IDDTW. In Fig. 5 a graphical com-
parison of the examined method with the component
methods is shown.

As in the univariate case, we confirm statistically
the superior performance of IDDTW by the Wilcoxon

Fig. 4. Graphical comparison of error rates: DTW vs IDDTW and
IDTW vs IDDTW for one-dimensional time series data.

test. The calculatedp-values are: 0.0703 for the com-
parison of DTW vs. IDDTW and 0.0012 for IDTW vs.
IDDTW. We can see that the combined method IDDTW

outperforms the component methods DTW and IDTW
at a significance level of 93
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Table 1

Characteristics of the one-dimensional datasets used in the experi-
ments (#cl – number of classes, #el – number of elements (size), len
– time series length).

dataset #cl #el len dataset #cl #el len

50Words 50 905 270 MedicalImages 10 1141 99
Adiac 37 781 176 MiddlePhalanxOutlineAgeGroup 3 554 80
ArrowHead 3 211 251 MiddlePhalanxOutlineCorrect 2 891 80
Beef 5 60 470 MiddlePhalanxTW 6 553 80
BeetleFly 2 40 512 MoteStrain 2 1272 84
BirdChicken 2 40 512 NonInvasiveFatalECG Thorax1 42 3765 750
Car 4 120 577 NonInvasiveFatalECG Thorax2 42 3765 750
CBF 3 930 128 OliveOil 4 60 570
ChlorineConcentration 3 4307 166 OSU Leaf 6 442 427
CinC ECG torso 4 1420 1639 PhalangesOutlinesCorrect 2 2658 80
Coffee 2 56 286 Phoneme 39 2110 1024
Computers 2 500 720 ProximalPhalanxOutlineAgeGroup 3 605 80
Cricket X 12 780 300 ProximalPhalanxOutlineCorrect 2 891 80
Cricket Y 12 780 300 ProximalPhalanxTW 6 605 80
Cricket Z 12 780 300 RefrigerationDevices 3 750 720
DiatomSizeReduction 4 322 345 ScreenType 3 750 720
DistalPhalanxOutlineAgeGroup 3 539 80 ShapeletSim 2 200 500
DistalPhalanxOutlineCorrect 2 876 80 ShapesAll 60 1200 512
DistalPhalanxTW 6 539 80 SmallKitchenAppliances 3 750 720
Earthquakes 2 461 512 SonyAIBORobot Surface 2 621 70
ECG200 2 200 96 SonyAIBORobot SurfaceII 2 980 65
ECG5000 5 5000 140 StarLightCurves 3 9236 1024
ECGFiveDays 2 884 136 Strawberry 2 983 235
ElectricDevices 7 16637 96 Swedish Leaf 15 1125 128
FaceAll 14 2250 131 Symbols 6 1020 398
FaceFour 4 112 350 Synthetic Control 6 600 60
Fish 7 350 463 ToeSegmentation1 2 268 277
FordA 3 4921 500 ToeSegmentation2 2 166 343
FordB 3 4446 500 Trace 4 200 275
Gun Point 2 200 150 Two Patterns 4 5000 128
Ham 2 214 431 TwoLeadECG 2 1162 82
HandOutlines 2 1370 2709 uWaveGestureLibrary X 8 4478 315
Haptics 5 463 1092 uWaveGestureLibrary Y 8 4478 315
Herring 2 128 512 uWaveGestureLibrary Z 8 4478 315
InlineSkate 7 650 1882 UWaveGestureLibraryAll 8 4478 945
InsectWingbeatSound 11 2200 256 Wafer 2 7174 152
ItalyPowerDemand 2 1096 24 Wine 2 111 234
LargeKitchenAppliances 3 750 720 WordsSynonyms 25 905 270
Lightning-2 2 121 637 Worms 5 258 900
Lightning-7 7 143 319 WormsTwoClass 2 258 900
MALLAT 8 2400 1024 Yoga 2 3300 426
Meat 3 120 448

We can present the contribution of the component
distances to the combined distance IDDTW. Fig. 6
shows graphs of the parameterα for example univari-
ate time series. Theα corresponding to the minimal
error rate is different for each data set but we can see
that the minimum of the error is well-positioned —
there is only one minimum for each error curve. The
testing error rate generally corresponds to the cross-
validation training error rate, so we can predict quite

well the best value of the parameterα. The combined

method adapts well to different data sets without show-

ing signs of overfitting. Similar behavior can be ob-

served for multivariate time series.
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Table 2

Summary of multidimensional datasets used in the experiments.

Data sets Variables Max length Min length Classes Size Source

Arabic Digits 13 93 4 10 8800 UCI
Australian Language 22 136 45 95 2565 UCI
BCI 28 500 500 2 416 Blankertz
Character Trajectories 3 205 109 20 2858 UCI
CMU Subject 16 62 580 127 2 58 CMUMC
ECG 2 152 39 2 200 Olszewski
Graz 3 1152 1152 3 140 Leeb
Japanese Vowels 12 29 7 9 640 UCI
Libras 2 45 45 15 360 UCI
Non-Invasive Fetal ECG 2 750 750 42 3765 UCR
Pen Digits 2 8 8 10 10992 UCI
Robot Failure LP1 6 15 15 4 88 UCI
Robot Failure LP2 6 15 15 5 47 UCI
Robot Failure LP3 6 15 15 4 47 UCI
Robot Failure LP4 6 15 15 3 117 UCI
Robot Failure LP5 6 15 15 5 164 UCI
uWaveGestureLibrary 3 315 315 8 4478 UCR
Wafer 6 198 104 2 1194 Olszewski

Table 4

Test errors of the compared methods (in %) for multivariate time series.

Dataset DTW IDTW IDDTW

ArabicDigits 0.22 2.23 0.22
AUSLAN 23.20 47.72 22.11
BCI 46.54 45.22 51.23
CharacterTrajectories 1.50 0.87 0.74
CMUsubject16 0.00 1.67 0.00
ECG 16.00 28.00 17.00
Graz 34.29 46.43 40.71
JapaneseVowels 36.09 22.50 19.84
Libras 18.61 17.50 11.67
NonInvasiveFetalECG Thorax 9.99 21.04 10.01
PenDigits 0.63 1.70 0.62
RobotFailure LP1 28.06 22.64 14.58
RobotFailure LP2 34.00 45.50 28.00
RobotFailure LP3 48.00 33.50 25.50
RobotFailure LP4 16.21 22.88 13.64
RobotFailure LP5 36.54 34.19 33.53
uWaveGestureLibrary 1.90 4.20 1.92
Wafer 3.85 4.18 3.68

4. Conclusions and future work

In this paper we have proposed and examined a
parametrical distance measure based on a convex com-
bination of the dynamic time warping distance mea-
sure (DTW) and the integral dynamic time warping
distance measure (IDTW). The distance IDTW, com-
puted as DTW on the integrated data, when used sep-
arately does not give good results in the process of
time series classification. However, there exist quite
a large group of datasets for which using the IDTW

Fig. 5. Graphical comparison of error rates: DTW vs IDDTW and
IDTW vs IDDTW for multidimensional time series data.

distance is very favorable. The experiments performed
show that the parametrical combination IDDTW out-
performs the component distance measures DTW and
IDTW in the case of both univariate and multivariate
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Table 3

Test errors of the compared methods (in %) for univariate time series.

Dataset DTW IDTW IDDTW Dataset DTW IDTW IDDTW

50words 30.99 49.67 26.59 MedicalImages 26.32 36.84 26.05
Adiac 39.64 64.19 39.13 MiddlePhalanxOutlineAgeGroup 25.00 28.00 25.00
ArrowHead 29.71 38.29 26.86 MiddlePhalanxOutlineCorrect 35.17 31.00 29.50
Beef 36.67 50.00 33.33 MiddlePhalanxTW 41.60 39.85 42.36
BeetleFly 30.00 40.00 25.00 MoteStrain 16.53 25.24 23.80
BirdChicken 25.00 35.00 25.00 NonInvasiveFatalECG Thorax1 20.97 43.66 20.15
Car 26.67 41.67 31.67 NonInvasiveFatalECG Thorax2 13.54 36.28 12.98
CBF 0.33 1.11 0.11 OliveOil 16.67 16.67 20.00
ChlorineConcentration 35.16 44.69 36.33 OSULeaf 40.91 66.12 40.08
CinC ECG torso 34.93 43.62 32.68 PhalangesOutlinesCorrect 27.16 30.77 27.27
Coffee 0.00 14.29 0.00 Phoneme 77.16 83.44 77.00
Computers 30.00 48.40 34.40 Plane 0.00 15.24 0.00
Cricket X 24.62 57.69 24.62 ProximalPhalanxOutlineAgeGroup 19.51 23.90 23.41
Cricket Y 25.64 49.49 25.64 ProximalPhalanxOutlineCorrect 21.65 25.43 22.68
Cricket Z 24.62 55.64 24.10 ProximalPhalanxTW 26.25 30.00 26.00
DiatomSizeReduction 3.27 13.73 2.61 RefrigerationDevices 53.60 59.47 53.60
DistalPhalanxOutlineAgeGroup 20.75 22.50 20.00 ScreenType 60.27 63.47 58.13
DistalPhalanxOutlineCorrect 23.17 29.50 23.17 ShapeletSim 35.00 47.22 41.67
DistalPhalanxTW 29.00 29.75 28.00 ShapesAll 23.17 41.67 21.17
Earthquakes 25.78 35.71 25.78 SmallKitchenAppliances 35.73 36.53 31.47
ECG200 23.00 22.00 19.00 SonyAIBORobotSurface 27.45 27.1226.79
ECG5000 7.56 10.29 7.78 SonyAIBORobotSurfaceII 16.89 19.73 17.94
ECGFiveDays 23.23 27.29 22.42 StarLightCurves 9.34 13.82 9.06
ElectricDevices 40.42 38.65 35.52 Strawberry 6.04 14.19 6.85
FaceAll 19.23 24.38 19.29 SwedishLeaf 20.80 45.44 17.60
FaceFour 17.05 23.86 15.91 Symbols 5.03 17.69 5.73
FacesUCR 9.51 15.76 9.90 synthetic control 0.67 3.33 0.67
FISH 17.71 50.29 21.14 ToeSegmentation1 22.81 29.82 29.39
FordA 43.79 41.66 41.21 ToeSegmentation2 16.15 21.54 14.62
FordB 40.59 38.81 40.04 Trace 0.00 26.00 0.00
Gun Point 9.33 9.33 10.67 Two Patterns 0.00 0.00 0.00
Ham 53.33 41.90 51.43 TwoLeadECG 9.57 32.13 9.83
HandOutlines 20.20 23.70 20.10 uWaveGestureLibrary X 27.25 33.84 24.09
Haptics 62.34 68.18 57.14 uWaveGestureLibrary Y 36.60 41.71 32.52
Herring 46.88 51.56 48.44 uWaveGestureLibrary Z 34.17 43.44 32.72
InlineSkate 61.64 72.18 62.18 UWaveGestureLibraryAll 10.83 10.47 4.83
InsectWingbeatSound 64.49 56.46 51.92 wafer 2.01 1.56 1.23
ItalyPowerDemand 4.96 9.14 4.86 Wine 42.59 50.00 42.59
LargeKitchenAppliances 20.53 42.40 20.53 WordsSynonyms 35.11 53.61 31.82
Lighting2 13.11 24.59 13.11 Worms 53.59 67.40 53.59
Lighting7 27.40 39.73 24.66 WormsTwoClass 33.70 43.65 37.02
MALLAT 6.61 16.12 5.97 yoga 16.33 23.33 15.57
Meat 6.67 10.00 6.67

time series data and significantly reduces the classifi-
cation error rate. This is confirmed by graphical and
statistical comparison. The parametric approach used
in the IDDTW method makes it possible to combine the
advantages and avoid the disadvantages of the compo-
nent methods. The new distance can be adapted to in-
dividual datasets giving the best classification perfor-
mance without showing signs of overfitting. We can
see a very good correspondence between the values of
the distance parameter on the training and testing data

subsets. The method seems to be easily implemented
and interpreted. There exist methods of computational
complexity reduction resulting both from the existence
of lower bounds and directly from the structure of the
distance measure IDDTW. The main motivation of the
paper is to show that that the simple transformation
as the integral transform can include a bit information
about examined time series data and can be used to
significantly improve performance of the classification
process.
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50words

α

Haptics

α

Fig. 6. Correspondence of the parameterα and error rates for the
IDDTW method on some univariate datasets. Dashed line: training
subset (CV) error; solid line: test subset error.

A disadvantage of the examined method is that its
computational complexity is higher than that of the
component methods DTW and IDTW. Tuning the dis-
tance parameter requires some additional computation
in the learning phase. However, in the testing phase,
the computational complexity is the same as for the
component distances. The new parametric combined
method seems to be especially interesting in cases
where we have precomputed integral data of the exam-
ined time series or where the computation time of in-
tegrals is negligible, for example in systems with fast
software or even hardware integrators.

Future investigation of the parametric integral dy-
namic time warping distance measure IDDTW may take
several directions. We may try to adapt the method to
the unsupervised classification case. Clustering meth-
ods often require a different approach (to address cer-
tain specific problems) than for supervised methods
([24]). We can also construct a parametrical distance

measure for higher degrees of integrals, similarly as
for derivatives in the paper [15]. It may be interesting
to examine different definitions of the discrete integral
and their influence on the performance of the distance
measure. We may also seek further methods of reduc-
ing computational complexity in the training phase of
classification.
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