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a b s t r a c t 

Dynamic control theory has long been used in solving optimal asset allocation problems, and a number 

of trading decision systems based on reinforcement learning methods have been applied in asset allo- 

cation and portfolio rebalancing. In this paper, we extend the existing work in recurrent reinforcement 

learning (RRL) and build an optimal variable weight portfolio allocation under a coherent downside risk 

measure, the expected maximum drawdown, E(MDD). In particular, we propose a recurrent reinforce- 

ment learning method, with a coherent risk adjusted performance objective function, the Calmar ratio, 

to obtain both buy and sell signals and asset allocation weights. Using a portfolio consisting of the most 

frequently traded exchange-traded funds, we show that the expected maximum drawdown risk based 

objective function yields superior return performance compared to previously proposed RRL objective 

functions (i.e. the Sharpe ratio and the Sterling ratio), and that variable weight RRL long/short portfolios 

outperform equal weight RRL long/short portfolios under different transaction cost scenarios. We further 

propose an adaptive E(MDD) risk based RRL portfolio rebalancing decision system with a transaction cost 

and market condition stop-loss retraining mechanism, and we show that the proposed portfolio trading 

system responds to transaction cost effects better and outperforms hedge fund benchmarks consistently. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

In financial investing, a general goal is to dynamically allocate a

et of assets to maximize the returns over time and minimize risk

imultaneously. For investors it is essential to be able to invest in a

ortfolio that can satisfy their preset goals by building an optimal

ortfolio initially and subsequently rebalancing it optimally. Port-

olio theory began with mean-variance optimization by Markowitz

1952) where he proposed portfolio selection by maximizing the 

xpected return while minimizing risk in the form of covariance

atrices. Rebalancing a portfolio re-optimizes the weights of the

ortfolio over a predefined time horizon. The application of dy-

amic asset allocation using dynamic programming methods was

riginally introduced by Bertsekas (1995) . Due to the curse of di-

ensionality in dynamic programming, automated self learning al-

orithms are normally applied by investors and scholars in de-

igning optimal trading strategies instead. The reinforcement learn-

ng method is a type of approximate dynamic programming and a
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ubcategory of machine learning introduced by Sutton and Barto

1998) , and has been broadly applied by investors and researchers

n building strategic asset allocation decision systems ( Dempster &

eemans, 2006; Feuerriegel & Prendinger, 2016; Gold, 2003a; Tan,

uek, & Cheng, 2011 ). 

In this paper, we apply the recurrent reinforcement learning

RRL) method with a statistically coherent downside risk adjusted

erformance objective function to simultaneously generate both

uy/sell signals and optimal asset allocation weights. Moody, Wu,

iao, and Saffell (1998) introduced recurrent reinforcement learn-

ng in building a trading system where they examined the perfor-

ance effect between using the Sharp ratio vs. several economic

tility functions. They concluded that the Sharpe ratio behaves like

n adaptive utility function, and when maximizing the differential

harpe ratio as immediate rewards in an online learning mode, the

harpe ratio significantly outperforms the ones maximizing profits

irectly. Most of the subsequent work ( Gold, 2003b; Maringer &

amtohul, 2010, 2012; Pu et al., 2016 ) focused on equally weighted

ortfolios. Although both Moody et al. (1998) and Bertoluzzo and

orazza (2008) mentioned potential drawdown effects on RRL per-

ormance, neither thoroughly examined the actual effects. 

http://dx.doi.org/10.1016/j.eswa.2017.06.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.06.023&domain=pdf
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Many practitioners tend to adjust the commonly accepted the-

oretical models to apply them to their particular situations, or

develop measures that focus on their specific interests. They of-

ten neglect the theoretical aspects or assumptions of their adjust-

ments, such as in the safety-first risk measures (i.e. the Sharpe

ratio, the Sortino ratio, the Sterling ratio, and the Calmar ra-

tio). Bhansali (2007) and Zimmermann, Drobetz, and Oertmann

(2003) noted that many risk measures based on estimation of

covariance matrices using historical data failed notoriously when

they are needed the most. They agreed that the difference in

volatility and correlations between up and down market envi-

ronments implies the risk reduction potential is limited leaving

them incapable of foreseeing stress-type events. We argue that

large drawdowns usually lead to fund redemption, and hence they

should lead to very different optimal decisions. In this paper, we

extend the variable weight RRL long only approach by Moody and

Saffell (2001) to a long-short approach and examine the expected

maximum drawdown E(MDD) ( Magdon-Ismail & Atiya, 2004 ) ef-

fect on portfolio performance with joint interaction of transaction

costs. Magdon-Ismail, Atiya, Pratap, and Abu-Mostafa (2003) and

Magdon-Ismail and Atiya (2004) provided a statistically coherent

downside risk measure, the Calmar ratio with the expected maxi-

mum drawdown, which provides a theoretical base for us to apply

this downside risk measure as a differentiable objective function in

RRL. This E(MDD) based Calmar ratio ( Magdon-Ismail et al., 2003 )

is distinctly different from the exponential moving average draw-

down approach used by Moody and Saffell (2001) . 

More specifically, we compare the Calmar ratio 1 with the

Sharpe ratio where the risk adjusted measure of performance is

calculated by the standard deviation of the returns over a pre-

defined time horizon. Furthermore, we use the recurrent rein-

forcement learning method with two different objective func-

tions through which we incorporate different risk considerations.

We show that the recurrent reinforcement learning with variable

weight asset allocation gives a superior performance when applied

to a set of highly liquid exchange-traded funds (ETF) with various

transaction cost considerations over a 5 year period. We also doc-

ument that when the expected maximum drawdowns are consid-

ered, the RRL can generate a superior portfolio to the ones gener-

ated by the average deviation performance measure - the Sharpe

ratio. This confirms the intuition that a reasonably low MDD is

critical to the success of any fund. 

In addition, we propose a portfolio allocation and rebalancing

system using RRL with E(MDD) as the performance measure, and

this trading system jointly considers transaction costs and mar-

ket conditions to automatically retrain the system parameters to

achieve better performances. We show that a trading system with

the stop-loss based on market volatility regime is able to make the

portfolio endure higher transaction costs in that the stop-loss strat-

egy will exit the market when the volatility is high and retrain the

parameters of the signal generating process and generate new sig-

nals to reenter the market. Such a trading decision system is adap-

tive to the market conditions and is more resilient to transaction

cost shocks. 

The rest of the paper is organized as follows. In Section 2 , we

review existing work on dynamic portfolio optimization using re-

inforcement learning methods. We introduce the expected maxi-

mum drawdown and its application to RRL in Section 3 . We apply

the RRL based portfolio rebalancing approach to a set of ETFs to

compare the cost effect of the Sharpe ratio vs. the Calmar ratio us-

ing RRL in Section 4 . Section 5 conducts a final analysis comparing
1 While there exist multiple definitions of the Sterling ratio, it measures return 

over maximum drawdown-10%, versus the Calmar ratio, which is similar to the Ster- 

ling ratio but normally applied to a 3 year period using a maximum drawdown. 

(  

i  

d  

p  

a  
he performance of the proposed risk-return portfolio optimization

ith that of two hedge fund indices, and Section 6 concludes the

tudy and identifies some future work. 

. Literature review 

Machine learning algorithms are widely used for financial mar-

et prediction and portfolio constructions, especially for automated

rading strategies. Sutton, Barto, and Williams (1992) first intro-

uced the reinforcement learning method (Q-learning) and pro-

ided its analytically proven capabilities for one class of adaptive

ptimal control problems. Recurrent reinforcement learning was

ntroduced by Moody et al. (1998) where it was applied to stock

rading as a learning algorithm and they extended a single stock

rading into a long only portfolio optimization method using the

ecurrent reinforcement learning where they used the deferential

f the Sharpe ratio as the objective function. In Moody and Saf-

ell (2001) with a direct reinforcement alteration, the authors com-

ared their method with Q-learning and temporal difference algo-

ithms using real data and showed that the deferential Sharpe ratio

ecurrent reinforcement learning system outperforms Q-learning.

he researchers also proposed the deferential Sterling ratio as the

erformance criterion. However, this version of Sterling ratio neu-

ralizes the downside risk through exponential smoothing. 

As a result, a number of trading strategies have been proposed

ased on recurrent reinforcement learning methods to address is-

ues such as different asset classes, transaction cost and market

egime change. Gold (2003b) discusses the application of recur-

ent reinforcement learning in the foreign exchange market and

roposed a two layer network. He compared it with a one layer

etwork and found that the one layer network outperformed the

wo layer network due to noisy financial data. Others added differ-

nt algorithms to the recurrent reinforcement learning. Maringer

nd Ramtohul (2010, 2012) added regime switching to the recur-

ent reinforcement learning where regime switching captures the

ifferent movements of the stock price over time. They added an

dditional regime switching model to the recurrent reinforcement

earning to capture the non-linearity of the financial market and

roposed two different methods based on the regime switching:

hreshold recurrent reinforcement learning (TRRL) in Maringer and

amtohul (2010) and the smooth transition recurrent reinforce-

ent learning (STRRL) in Maringer and Ramtohul (2012) . The au-

hors compared TRRL and STRRL with RRL and used different trans-

ction costs to show the performance of the models. They con-

luded that the regime switching recurrent reinforcement learn-

ng matches the normal recurrent reinforcement learning in a

ataset having a single regime but it outperforms the RRL when

he dataset has distinctly different regime characteristics. 

In addition, another strand of literature combines the recur-

ent reinforcement learning method with other machine learning

ethods, such as genetic programming and neural networks. Pu

t al. (2016) used a genetic algorithm to improve recurrent rein-

orcement learning for equity trading where the RRL is population-

ased and the trading system consists of a group of simulation

raders. The genetic algorithm (GA) is the selector and the recur-

ent reinforcement learning is the trading system; the goal is to

chieve the optimal combination where the chosen indicators are

xported to the recurrent reinforcement learning trading system.

he authors find that the GA-RRL system is more stable than the

uy and hold strategy but it did not outperform the buy and hold

trategy in terms of producing positive Sharpe ratio means. Gorse

2010) worked on transforming the recurrent reinforcement learn-

ng into a stochastic learning process by using the stochastic gra-

ient ascent in the optimization and training technique. This im-

rovement helped the process to be less expensive computation-

lly as there is no need to save the previous signals, but only the
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Fig. 1. Recurrent reinforcement learning with portfolio allocation signals. 
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 − 1 signal. Hens and Wöhrmann (2007) applied recurrent rein-

orcement learning on a long-term equity and bond portfolio, as-

uming a rational investor with a constant risk aversion and a

ower utility function. Bertoluzzo and Corazza (2008) developed

n artificial neural network based on reinforcement learning algo-

ithm using the reciprocal of the returns weighted direction sym-

etry index as the measure of profitability. They proposed a pro-

edure for the management of drawdown like phenomena, and

oncluded that one can take into account a drawdown like phe-

omenon in the learning process. 

In general, most of the current studies on trading decision

ystems agree that there are a number of critical components

hat need to be considered in developing such systems in ad-

ition to the core algorithms. If not adequately designed, these

actors can significantly compromise the advantages of any ad-

anced machine learning or artificial intelligence based trading de-

ision systems. Cavalcante, Brasileiro, Souza, Nobrega, and Oliveira

2016) surveyed the computational intelligence methods, proposed

o solve financial market problems, from 2009 to 2015. They spec-

fy a framework to be followed by most computational intelligence

pproaches, consisting of the following major components: a) data

reparation (input variables, output variables, acquisition, prepos-

essing, normalization); b) algorithm definition (choose model,

onfigure architecture); c) training (define algorithm, adjust pa-

ameters, perform training); d) model evaluation (define metrics,

valuate accuracy); e) trading strategies; and f) money evalua-

ion. In this survey, the authors note that Chande (2001) identi-

ed three characteristics of successful trading strategies: a) a rule

et defining entering and exiting trades, b) a risk control method,

nd c) money management. Other characteristics include taking

nto account real world constraints such as backtesting with real

ransaction costs and slippage. Martinez, da Hora, Palotti, Meira,

nd Pappa (2009) developed a trading system based on forecast-

ng where they used an artificial neural network (ANN) to fore-

ast the asset price, and then designed a trading system specifying

he exit and entry rules based on the forecasts. A stop loss strat-

gy based on placing a threshold on negative returns was also in-

orporated to accommodate market condition changes. In a paper

y Beraldi, Violi, and De Simone (2011) , the authors proposed a

rading support system to help investors solving the strategic as-

et allocation problem. They focused on the system and its mod-

les and stages rather than the solution method. The modules in

heir system included data management, statistical analysis, sce-

ario simulation, a model generator, a solution kernel and a so-

utions analysis module. Their decision system integrated many

olution approaches based on statistical and stochastic optimiza-

ion with a Monte Carlo simulation of the scenarios. Eilers, Du-

is, von Mettenheim, and Breitner (2014) developed an automated

rading decision system where they combined an artificial neural

etwork with reinforcement learning (RL) and seasonality. The au-

hors trained the ANN using the value iteration method of the RL

hile only optimizing the immediate reward. This method simpli-

es the optimal value function to be only the immediate reward.

he three layers include input neurons, hidden neurons, and one

utput neuron; and the feed-forward ANN is trained by minimiz-

ng the mean squared error using the back-propagation algorithm.

euerriegel and Prendinger (2016) proposed a trading system based

n news disclosures where the authors design trading strategies

hat utilize textual news to obtain profits on the basis of novel in-

ormation entering the market. They developed a system for auto-

ated decision making using supervised and reinforcement learn-

ng. The system contained two main components: news sentiment

xtraction and trading strategy execution. They concluded that a

rading system can be improved with additional novel market in-

ormation. 
w  
. Data and methodology 

.1. Methodology 

In this paper, we use the recurrent reinforcement method in

ortfolio optimization with different risk considerations through

wo objective functions. Following Moody et al. (1998) , we use the

ifferential Sharpe ratio for dynamic optimization of trading sys-

em performance. We use performance functions both to increase

he convergence of the learning process and to adapt to changing

arket conditions during live trading (see Fig. 1 ). During this pro-

ess, the parameter updates can be done during each forward pass

hrough the training data, and the influence of the performance

easure can be computed at any time point. We also assume a

mall or medium investor who can take fixed or variable sizes of

hares of each asset with no price impact in the market but with

 fixed transaction cost. 

 t = tanh ( x ′ t θ) (1) 

Before describing the recurrent reinforcement learning ap-

roach, we start by comparing the different safety-first risk mea-

ures (i.e. the Sharpe ratio, the Sortino ratio, the Calmar ratio, and

he Sterling ratio). The Sharpe ratio is widely used and it was de-

eloped based on mean-variance optimization; therefore, its risk

easure is the standard deviation of returns. The Sortino ratio

ses the downside deviation and it includes a target for the in-

estment return. The Sterling ratio is used by Moody and Saffell

2001) where the authors differentiated the Sterling ratio using

n exponential moving average. Our definition of the Calmar ra-

io includes the expected maximum drawdown which is defined

y Magdon-Ismail and Atiya (2004) , while the basic definition of

he Calmar ratio is similar to the Sterling ratio in that both use

he maximum drawdown. The issue here is that the Sterling ratio

s purely empirical, depending on the dataset it is applied to, and

acking the analytical properties needed in RRL. We choose to use

he Calmar ratio defined using the expected maximum drawdown

ecause it is consistent, coherent and differentiable by definition

s it can be seen from the definition of the expected maximum

rawdown. The relation between the Sharpe and Calmar ratios is

hown in Figs. 2 and 3 . While Fig. 2 shows the relation between

he Sharpe ratio and the expected maximum drawdown per stan-

ard deviation unit, Fig. 3 shows the relation between the Calmar

atio with different Sharpe ratio values and a moving time step.

rom this construction, the Calmar ratio we use here is consistent

ith Sharpe ratio in a nonlinear way, and it is a statistically coher-
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Fig. 2. E(MDD) per unit σ vs. the Sharpe ratio. 

Fig. 3. Scaling the Calmar ratio with time. 
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ent risk measure as the Sharpe ratio. Its long-term difference from

the Sharpe ratio is evident (see Fig. 3 ). 

The Calmar ratio (CR) is similar to the Sharpe ratio (SR) in that

it is also a risk adjusted measure of performance. However, it is

an MDD risk metric that measures the maximum cumulative loss

from a peak to a following bottom. When the downside losses are

considered rather than the average deviation from mean return,

the trading decisions will certainly be different. Here we derive re-

ward based on this E(MDD) risk based measure, the Calmar ratio.

We use the deferential of the Calmar ratio as our objective func-

tion: 

 T = 

γ T 

E(MDD ) 
(2)

E(MDD ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

2 σ 2 

γ Q p ( 
γ 2 T 

2 σ 2 ) 
T →∞ → 

σ 2 

γ (0 . 63519 

+0 . 5 log T + log γσ ) if γ > 0 

1 . 2533 σ
√ 

T if γ = 0 

−2 σ 2 

γ Q n ( 
γ 2 T 

2 σ 2 ) 
T →∞ → −γ T − σ 2 

γ if γ < 0 
 T = 

T 
2 

Shrp 2 

Q p ( 
T 
2 

Shrp 2 ) 

T →∞ → 

T Shrp 2 

0 . 63519 + 0 . 5 log T + log Shrp 

here C T is the Calmar ratio over the time horizon T, E ( MDD ) is

he expected maximum drawdown. The functions Q n ( x ) and Q p ( x )

re complicated integral expansions that do not have a convenient

nalytical form and they are independent from γ , σ and T . Their

orms can be found in Magdon-Ismail et al. (2003) and in Pratap

2004) . γ is the mean of the returns and σ is the standard devia-

ion of returns, Shrp = 

γ
σ . 

Next, we construct a variable weight portfolio with a reinforce-

ent learning signal. Let F t ∈ {−1 , 1 } be the trading signal with

nly two values. For F t > 0, the investor would take a long po-

ition, and we set F t = 1 . For F t < 0, the investor would then take

 short position, and we set F t = −1 . θ are the parameters that we

ant to train θ ∈ � 

M+2 where M is the time series that we want

o trade in. x t is a vector where x t = [1 ; r t . . . r t−M 

; F t−1 ] , r t is the

og return r t = log(price t ) − log(price t−1 ) . We calculate the return

t time t of our position in Eq. (3) : 

 t = μ ∗ [ F t−1 · r t − δ| F t − F t−1 | ] (3)

is the number of shares that is a constant number and it can be

he maximum number of shares one can trade. δ is the transaction

ost and it is also a constant. Using a risk adjusted measure we

ill maximize the Sharpe ratio in Eq. (4) : 

 T = 

E[ R t ] 

σ
(4)

here E [ R t ] is the mean of the return and σ is the standard devia-

ion of the returns. The objective function is the deferential of the

harpe ratio and it is calculated by using the average of return and

tandard deviation of the return. Using the chain rule we get Eq.

5) : 

 = 

1 

T 

T ∑ 

t=1 

R t 

 = 

1 

T 

T ∑ 

t=1 

R 

2 
t 

dS T 
dθ

= 

T ∑ 

t=1 

{
dS T 
dA 

dA 

dR t 
+ 

dS T 
dB 

dB 

dR t 
} · { dR t 

dF t 

dF t 

dθ
+ 

dR t 

dF t−1 

dF t−1 

dθ

}
(5)

here we have: 

dR t 

dF t 
= −μδ · sgn (F t − F t−1 ) 

dR t 

dF t−1 

= −μ · r t + μδ.sgn (F t − F t−1 ) 

dF t 

dθ
= (1 − tanh ( x ′ t θ) 2 ) ·

(
x t + θM+2 

dF t−1 

dθ

)

he above equations conclude that dF t 
dθ

is recurrent, and the

eights are updated by the gradient ascent θi +1 = θi + ρ. 
dS T 
dθ

, and

is the learning rate. The recurrent reinforcement learning can be

sed to optimize a variable weight portfolio. First we change Eq.

1) for each asset to Eq. (6) : 

f it = logsig ( x ′ it θi ) (6)

here f it is the action on asset i at time t , and logsig is the log-

igmoid transfer function. This then leads to the following equa-

ion: 

dF t 

dθ
= (1 − logsig ( x ′ t θ) 2 ) ·

(
x t + θM+2 

dF t−1 

dθ

)
(7)
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b  
or a long only portfolio with variable weights, Eq. (8) needs to be

pplied for each asset: 

 it = softmax ( f it ) (8) 

here the softmax function is applied to the actions on all the as-

ets. It will assign weights to each asset and it already includes

he constraint 
∑ n 

i F it = 1 , where n is the number of assets in the

ortfolio. 

The decisions from training the parameters θ with a logsig ac-

ivation function will result in the choice of a number in the in-

erval [0, 1] using a log − sigmoid function. The softmax function is

pplied to all the assets decision at time t , and it will distribute as-

et allocation weights and assign the highest weight to the largest

sset decision and redistribute the weights from high to low ac-

ording to the decision obtained from the logsig activation func-

ion. In our case, the portfolio will act closely to the equal weight

ortfolio except if a decision on an asset is close to zero, then the

oftmax will redistribute the weight among the other assets so we

re switching the weights between the assets as we move forward

ith decisions. The softmax function is recommended for a portfo-

io as discussed in Moody et al. (1998) . Here we are defining clearly

 it and we are using the softmax out of the training model. The

raining and the initial decision are based on the logsig function

ithin the model. This model is sensitive to the number of assets

s with more assets this model will act as an asset selector by as-

igning variable weights. Due to the similar statistical properties as

he Sharpe ratio, the Calmar ratio based recurrent reinforcement

earning as an objective function will be similar but substitute S T 
ith C T in Eqs. (4) and (5) accordingly. 

.2. Portfolio constraints 

In portfolio optimization, practitioners consider some of the

eal world constraints in their optimization process such as car-

inality constraint, floor and ceiling constraint, round-lot con-

traint, pre-assignment constraint and class constraint. The cardi-

ality constraint is used to limit the asset selection in the portfo-

io to a K number of assets. The floor and ceiling constraints limit

he weight of each asset allocation to certain boundaries. The pre-

ssignment constraint allows the investor to pre-select a desired

sset in the portfolio. The round-lot constraint restricts the num-

er of any asset to an exact multiple of the normal trading lots.

he class constraint limits the proportion invested in assets with

ommon characteristics. In Chang, Meade, Beasley, and Sharaiha

20 0 0) , the authors proposed three meta-heuristic algorithms (ge-

etic algorithm, simulated annealing, and particle swarm) to solve

he portfolio constraint problems. 

Many scholars followed Chang et al. (20 0 0) and developed

eta-heuristic methods to solve the constrained portfolio opti-

ization problems. Lwin, Qu, and Kendall (2014) developed a

earning guided multi-objective evolutionary algorithm to solve

he portfolio optimization problem with the cardinality constraint,

oor and ceiling constraint, pre-assignment constraint and round-

ot constraint. The authors discussed that these constraints are

ard to satisfy at any time as the cardinality constraint by-itself

s a mixed quadratic integer NP-hard problem and the portfolio

election with round-lot constraint is an NP-complete problem.

he authors compared the performance of their proposed algo-

ithm with four different well-known multi-objective evolutionary

lgorithms (the Non-dominated Sorting Genetic Algorithm(NSGA-

I), the Strength Pareto Evolutionary Algorithm(SPEA-2), Pareto

nvelope-based Selection Algorithm(PESA-II), Pareto Archived Evo- 

ution Strategy(PAES)). The proposed method is computationally ef-

cient and yields a better result over all the four algorithms. In

 paper by Silva, Neves, and Horta (2015) , the authors solved the

onstrained portfolio optimization problem with cardinality con-
traint, quantity constraint, long only constraint and transaction

ost constraint by combining multi-objective evolutionary (MOEA)

lgorithm with technical indicators, where the indicators are deter-

ined by the MOEA algorithm and the selection method is adap-

ive as the stocks selected are changing with time. The stocks

re selected using fundamental indicators, and the trading deci-

ions are based on technical indicators. During the testing phase on

he S&P 500 stocks, the authors included a 2% of the stock value

s a transaction cost. The proposed method outperforms the in-

ex in terms of returns and variance. Liagkouras and Metaxiotis

2016) suggested that due to the intrinsic multi-objective nature of

he constrained portfolio optimization problem, the multi-objective

volutionary algorithms proved to be very useful and effective in

andling the difficulties imposed by the problem in a reasonable

ime. Chen, Lin, Zeng, Xu, and Zhang (2017) discussed the exact

lgorithms for solving the constrained portfolio optimization prob-

em where they mentioned that the disadvantage of the exact al-

orithm is that it always needs more computational time and can

nd an optimal solution only in a specified time. The authors then

resented a heuristic approach which is an extension to the Non-

ominated Sorting and Local Search (NSLS) based multi-objective

volutionary framework and called it ( e -NSLS) in order to solve the

ardinality constrained portfolio optimization problem. They com-

ared their method with five different algorithms (NSGA-II, SPEA-2,

OEA/D-DE, ABC-FC, GRASP-QUAD) and showed that the proposed

ethod outperforms the other five algorithms in computational re-

ults. Moreover, the authors used the Wilcoxon signed ranks test

nalysis to statistically test the significant performance of e -NSLS

ith the other algorithms where the results show that the pro-

osed method outperformed the other algorithms. 

Although these constrained portfolio optimization problems are

omplex and hard to solve ( Chang et al., 20 0 0; Moral-Escudero,

uiz-Torrubiano, & Suárez, 2006 ), there exist a number of heuristic

earch based approaches in the current literature to help practi-

ioners to address their specific needs. In this paper, we primarily

ocus on developing an effective RRL trading strategy and a trad-

ng system using different objective functions in a dynamic portfo-

io optimization setting. We will direct our attention in an uncon-

trained problem setting in the present study, and yet we do not

oresee major difficulties to combine our proposed approach with

he exiting heuristic portfolio constraint methods to address spe-

ific practical requirements. In fact, one could replace the gradient

scent search in the current RRL optimization with an evolutionary

lgorithm using a desirable objective function (e.g. Sharpe ratio or

almar ratio) as the fitness function to optimize portfolio weights

nd constraints simultaneously. For future work, we will combine

volutionary algorithms with our proposed Calmar RRL model to

nvestigate the benefit of introducing various portfolio constraints. 

.3. Data collection 

In this study, we construct a five asset portfolio using five of the

ost commonly traded exchange-traded funds from different as-

et categories. These assets (identified by their ticker symbols and

und names) are as follows: 

• IWD: iShares Russell 10 0 0 Value 
• IWC: iShares Micro-Cap 

• SPY: SPDR S&P 500 ETF 
• DEM: WisdomTree Emerging Markets High Dividend 

• CLY: iShares 10+ Year Credit Bond 

IWD ETF is an equity fund that holds mid and large-cap US

tocks. This ETF tracks the performance of the Russell 10 0 0 value

ndex. IWC ETF is a fund that seeks to correspond to the perfor-

ance of the Russell micro-cap index. It consists of small cap US

ased companies. SPY ETF tracks the S&P500 index. It represents
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Table 1 

Statistical features of the ETFs. 

Asset Mean Maximum Average 

name of returns drawdown volume 

IWD 0.0015 0.1996 2,355,230 

IWC 0.0014 0.2714 55,670 

SPY 0.0018 0.1744 78,605,495 

DEM −0.0024 0.5199 315,405 

CLY 0.0 0 02 0.1602 185,953 
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all 500 stocks in the index and pays dividends on a quarterly ba-

sis. DEM ETF is a fund that tracks the price and yield of the Wis-

domTree emerging markets equity income index, and has an inter-

national geographical focus. The CLY ETF is a fixed income asset

class that follows the investment results of an index consisting of

long-term US corporate bonds and dollar dominated bonds with

remaining maturities more than ten years. We extract the weekly

closing prices for each of five assets from Yahoo Finance using the

fetch function in MATLAB. The dates are from January 01, 2011

to December 31, 2015. We use three years of weekly returns for

training and two years for testing. Table 1 shows some statistical

features of the assets selected over the total time horizon of five

years. 

4. Trading algorithms comparison 

In this section, we first compare the performance of three

performance ratios as three different objective functions for the

model. This will result in three trading algorithms producing dif-

ferent trading decisions for the same set of assets, and then we

can readily assess the merits of each performance ratio in gener-

ating trading signals. The resulting portfolio rebalancing methods

are: the Sharpe ratio RRL (SR-RRL), the Sterling ratio RRL (TR-RRL),

and the Calmar ratio RRL (CR-RRL). 

We show the comparison between the portfolios formulated us-

ing recurrent reinforcement learning with the Sharpe ratio as the

objective function vs. the Calmar ratio as the objective function. In

addition, we compare the recurrent reinforcement learning based

portfolios with the buy-and-hold strategy as a baseline benchmark.

We use three years of weekly closing prices (January 01, 2011 - De-

cember 31, 2013) to train our θ for each asset, and two years of

weekly closing prices (January 01, 2014 - December 31, 2015) for

testing. The value of M is set to 104, the number of weeks in the

two years of testing data. In order to generate the signals and the

weights from the recurrent reinforcement learning model, we set

the number of evaluations for the tanh model to a maximum of

10,0 0 0 and for the logsig model to 500. The logsig model at this

stage is given a small alteration to the equally weighted portfolio

weights due to the number of assets. 

4.1. Sharpe ratio recurrent reinforcement learning portfolios 

In this model, the objective function that we need to optimize

is the Sharpe ratio. The Sharpe ratio is a performance measure that

can be maximized by maximizing the mean of the return of the

portfolio and minimizing the standard deviation of the return. In

the SR-RRL we are using the deferential of the Sharpe ratio that is

calculated by averaging the Sharpe ratio. The weights in the model

will be updated with respect to the gradient of the Sharpe ratio.

The standard deviation is used as a measure of volatility. The more

the mean returns of the portfolio vary, the higher the volatility. In

other words, the volatility will increase if the mean of the returns

is varying in a positive or negative direction. 

σ = 

√ 

1 

T 

T ∑ 

t=1 

(R t − γ ) 2 (9)
he standard deviation should not be the only measurement of the

isk of a given portfolio. For example, a fund accumulating a return

etween 4% and 6% on average will have a lower standard devia-

ion than a fund accumulating a return between 4% and 14% on

verage. In a portfolio with different types of assets of different

olatilities, the Sharpe ratio will be a setback to the performance

f the portfolio and the decision making process. 

We use the recurrent reinforcement learning method with the

eferential Sharpe ratio as the objective function to obtain two dif-

erent portfolios: the Sharpe Ratio Equally Weighted (SR-RRL EW)

ong/Short (L/S) Portfolio, and the Sharpe Ratio Variable Weights

SR-RRL VW) Long/Short (L/S) Portfolio. 

We use Eq. (1) as the activation function to get the signals of

ach asset over the training period, and we then use equal weights

nd apply the signals to the equal weights. Let n = the number of

ssets, and the weight w = 1 /n for each asset. This results in: 

n 
 

i 

| F it w it | = 1 (10)

here i is the number of assets at time t . 

In the combination of the above two portfolios, F t in Eq. (10) is

he signal from Eq. (1) and w t is the weight from Eqs. (6) and

8) . We select four portfolios from the Markowitz efficient fron-

ier shown in Fig. 4 and the equally weighted buy & hold portfolio

o compare them with the different RRL portfolios. Fig. 5 shows

he SR-RRL equally weighted and variable weights portfolio com-

ared in terms of cumulative returns with the four portfolios from

he efficient frontier using Markowitz mean-variance optimization

amely (minimum variance, maximum return, maximum Sharpe

atio and a Pareto optimal) and the buy & hold portfolio. Both of

he SR-RRL portfolios are outperformed by the Pareto optimal port-

olio by the end of the investment horizon. In this test we choose

= 100 and δ = 0 bp which is one basis point per stock traded.

hen examining the return per asset of the SR-equally weighted

ong/short portfolio, it shows fluctuation of the asset returns. Since

t is an equally weighted portfolio, the portfolio is affected by each

sset movement equally. The return per asset conclude that the

EM ETF is drawing down our portfolio as it is the only asset that

as strong drawdowns within the portfolio. Fig. 6 shows the asset

eturns in the buy & hold strategy, indicating that the DEM ETF

s causing sharp negative returns. By examining the return of each

sset in the SR-variable weights long/short portfolio we conclude

hat the portfolio acts closely to the equally weighted portfolio.

ince it is based on the same signals, the minor changes are caus-

ng the portfolio to out-perform due to the higher weight of the

PY ETF until week 40 and IWD ETF in weeks 40–100. It is plac-

ng less weight on CLY in weeks 60–80, which minimizes the loss

aused by the ETF. 

.2. Sterling ratio recurrent reinforcement learning portfolios 

TR-RRL is a model with the objective function as the differential

f the Sterling ratio introduced in Moody and Saffell (2001) . The

utput of the model produces trading decisions to maximize the

terling ration in Eq. (11) . The change of the weights in the model

ill be based on the gradient of the Sterling ratio. Let 

 R = 

γ

MDD 

(11)

here TR is the Sterling ratio, γ is the mean of the return, and

DD is the maximum drawdown. The deferential of the Sterling

atio in Moody and Saffell (2001) is calculated empirically by using

he exponential moving average of the ratio. The maximum draw-

own is calculated as follows in Eq. (12) : 

DD T = 

√ 

1 

T 

T ∑ 

t=1 

min [ R t , 0] 2 (12)
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Fig. 4. Efficient frontier portfolios. 

Fig. 5. Portfolio performance RRL with Sharpe ratio (104 weeks). 

Fig. 6. Asset returns buy & hold strategy (104 weeks). 
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n order to train this model to have the same number of cycles

s the others, we need to choose a number close to zero (e.g.

.0 0 01) to avoid division by zero during training when evaluating

he minimum of the return ( R t ) and zero. We developed two port-

olios: the Sterling Ratio Equally Weighted (TR-RRL EW) Long/Short

L/S) Portfolio, and the Sterling Ratio Variable Weight (TR-RRL VW)

ong/Short (L/S) Portfolio. In Fig. 7 , the TR-RRL equally weighted

nd variable weights portfolios are compared with the four port-
olios from the efficient frontier and the buy & hold portfolio. The

R-RRL portfolios outperform all the portfolios by the end of the

nvestment horizon, where μ = 100 and δ = 0 bp. 

.3. Calmar ratio recurrent reinforcement learning portfolios 

As in the previous experiment, the training set is three years of

eekly closing prices and the testing set is two years of weekly

losing prices. We use the Calmar ratio (defined in Eq. (2) ) in-

tead of the Sharpe ratio to obtain the signals and weights of our

ortfolios, and the objective function is the derivative of the Cal-

ar ratio. The difference between the two objective functions is

hat the Calmar ratio is more sensitive to extreme losses while the

harpe ratio considers average deviations. Our goal is to identify

hether the large losses would make differences in the dynamic

ptimization process. Using the expected maximum drawdown in

he Calmar ratio allows us to increase the number of function eval-

ations to 10,0 0 0 because the expected maximum drawdown is

ased on the mean and standard deviation of returns where by

efinition the expected maximum drawdown will not cause a divi-

ion by zero error. On the other hand, the basic Sterling ratio used

y Moody will stop at some point due to a division by zero error.

e need to use a number that is close to zero in the maximum

rawdown evaluation when computing the minimum of the return

 R t ) and zero. In this experiment, we test the following two port-

olios: the Calmar Ratio Equally Weighted (CR-RRL EW) Long/Short

L/S) Portfolio, and the Calmar Ratio Variable Weights (CR-RRL VW)

ong/Short (L/S) Portfolio. 

In Fig. 8 , we show the performance of the portfolios developed

sing the recurrent reinforcement learning and the differential Cal-

ar ratio as the objective function where μ = 100 and δ = 0 bp.

here the CR-RRL portfolio is compared with the four portfolios
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Fig. 7. Portfolio performance RRL with Sterling ratio (104 weeks). 

Fig. 8. Portfolio performance Calmar ratio RRL (104 weeks). 

Table 2 

Model training computation time using eight core pro- 

cessors, 8GB RAM, Windows-64bit, MATLAB. 

Trading strategy Computational time (HH:MM:SS) 

SR-RRL 02:39:39 

TR-RRL 02:37:50 

CR-RRL 02:43:19 
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from the efficient frontier and the buy & hold portfolio. The CR-

RRL portfolios are superior to the other portfolios over most of the

investment horizon till the end of the horizon. 

In Table 2 , we show the training computational time for each

model where we used a computer with multiple cores. The com-

putational times are presented in the hour, minute, and second

format (HH:MM:SS). We observe that the differences between the

methods in terms of computational time is minimal where they

differ only in a few minutes. Nevertheless, the TR-RRL method

has the least computational training time and the CR-RRL method

has the longest training time, and the SR-RRL method sits in be-

tween the other two. Overall, the computational efficiency of all

the strategies are not too far apart from each other since they are

all based on the RRL method with the exception of the objective

function. The choosing of the objective function would affect the

calculation of the gradient and that would then affect the training

of the parameters. In the case that the objective function cannot be

increased in the direction of it’s gradient, the algorithm may stop

at a local maximum with no efficient training of the parameters θ .
.4. Transaction cost sensitivity analysis 

It is well-established that when designing a realistic trading

ystem, one has to account for all transaction costs ( Madhavan,

002; Tetlock, Saar-Tsechansky, & Macskassy, 2008 ). Although prior

tudies have conducted trading simulations, many neglect the in-

uence of transaction costs. The primary reason for such omission

s due to the difficulty in estimating realistically different types of

ransaction costs involved, and these costs most likely differ for

ifferent asset classes and depend on many other market charac-

eristics. In this section, we examine the impact of trading costs

n the profitability of different portfolio strategies. Empirical evi-

ence shows that the average round-trip trading cost of large-cap

tocks on NYSE is at least 20 bps ( Chan & Lakonishok, 1997; Keim

 Madhavan, 1998; Mittermayer, 2004 ). In the cost sensitivity anal-

sis, we applied one-way trading costs of 10, 15, 20, and 25 bps.

ven with realistic transaction costs of 10 bps per round-trip, the

ortfolio strategies are superior to the hedge fund industry index

erformance. For transaction costs of 15 bps, the Calmar ratio RRL

trategy is on average still profitable, but sustains a substantial loss

otential. In general, these strategies cannot compensate transac-

ion costs of more than 20 bps. It requires a system level design

o accommodate high transaction costs and further improve port-

olio performances, which we will discuss in the next section. 

In Fig. 9 , we compare the Calmar ratio RRL portfolios perfor-

ance with the Sharpe ratio RRL portfolios. Due to transaction

osts, the Calmar ratio RRL outperforms the Sharpe ratio RRL in

erms of cumulative returns. We can conclude from the signals

enerated that the Calmar ratio RRL portfolios are changing po-

itions in some assets less frequently than the Sharpe ratio RRL

ortfolios. This is clearer with the CLY ETF where the portfolio suf-
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Fig. 9. Comparison in performance μ = 100 , δ = 0 bp (104 weeeks). 

Fig. 10. CLY ETF Signals generated from RRL-Calmar. 
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ers from losses due to transaction costs. The consistency in sig-

als means that we are holding the asset at the same position for

 longer period of time which reduces the transaction cost. Figs. 10

nd 11 show clearly the differences of signals generated for the CLY

TF using the Calmar ratio and the Sharpe ratio, respectively. This

s reasonable because the Calmar ratio based objective function is

ensitive to large losses which occur less frequently than in the

harpe ratio. As a result, due to the frequent rebalancing signals

enerated from Sharpe ratio objective function, transaction costs

re relatively higher compared with the Calmar ratio portfolios. 

Table 3 shows the Sharpe ratio of each portfolio through back-

esting with both the Sharpe ratio, Sterling ratio and the Calmar

atio as objective functions. Overall, the Calmar ratio portfolios

utperform the Sharpe ratio and Sterling ratio portfolios consis-

ently. When the transaction cost increases, the performance of

he Sharpe ratio based portfolios decreases, while the Calmar ra-

io based portfolios maintain almost the same performance (see

ables 4 and 5 ). The Calmar ratio portfolios are actually increasing

r  
n Sharpe ratio measure due to the fact that the transaction cost is

ffecting the standard deviation of the returns more than the mean

f the returns due to the high returns generated by the portfo-

io with a low standard deviation. The Sterling ratio based portfo-

ios perform between the Sharpe ratio and the Calmar ratio portfo-

ios both with and without transaction costs. When the transaction

ost increases to 15 bps, both the Sharpe ratio and Sterling ratio

ortfolios start to generate negative annualized returns. Under no

ransaction cost, the Calmar ratio based portfolio retains high per-

ormance. Under a high transaction cost ( δ = 20 bps), the Sharpe

atio based portfolio suffers a large loss, while the Calmar ratio

ased portfolios performance is impacted only by a slight decrease

n returns. In Section 5 , we propose a stop-loss control to the sys-

em to limit the transaction cost effect (see Table 6 ). 

. Trading system and discussion 

We develop an adaptive trading system based on the recurrent

einforcement learning using three different objective functions.
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Fig. 11. CLY ETF Signals generated from RRL-Sharpe. 

Table 3 

Long-short portfolio comparison with different learning objective functions. Note: EW and VW 

represent Equally Weighted and Variable Weight strategies, respectively. 

L/S portfolio Sharpe Return (%) Maximum Num. 

( δ = 0 bps) ratio accumulative (annualized) drawdown of trades 

Sharpe ratio RRL EW 3.1229 6.31 (3.11) 0.5080 230 

Sharpe ratio RRL VW 2.7630 8.24 (4.04) 0.4363 230 

Sterling ratio RRL EW 2.3780 12.99 (6.29) 0.4699 235 

Sterling ratio RRL VW 2.2816 13.83 (6.69) 0.5262 235 

Calmar ratio RRL EW 2.3245 16.39 (7.88) 0.2721 221 

Calmar ratio RRL VW 2.1781 19.65 (9.39) 0.2675 221 

Table 4 

Long-short portfolio comparison with different learning objective functions and transaction 

costs ( δ = 10 bps). Note: EW and VW represent Equally Weighted and Variable Weight strate- 

gies, respectively. 

L/S portfolio Sharpe Return (%) Maximum Num. 

( δ = 10 bps) ratio accumulative (annualized) drawdown of trades 

Sharpe ratio RRL EW 1.6926 −2.77 ( −1.39) 0.9771 230 

Sharpe ratio RRL VW 2.0105 −1.55 ( −0.78) 0.8575 230 

Sterling ratio RRL EW 1.8071 3.67 (1.82) 0.9968 235 

Sterling ratio RRL VW 1.5061 3.46 (1.71) 1.0 0 0 0 235 

Calmar ratio RRL EW 2.5760 7.63 (3.74) 0.4914 221 

Calmar ratio RRL VW 2.3367 9.75 (4.76) 0.4692 221 

Table 5 

Long-short portfolio comparison with different learning objective functions and transaction 

costs ( δ = 15 bps). Note: EW and VW represent Equally Weighted and Variable Weight strate- 

gies, respectively. 

L/S portfolio Sharpe Return (%) Maximum Num. 

( δ = 15 bps) ratio accumulative (annualized) drawdown of trades 

Sharpe ratio RRL EW 0.4669 −7.31 ( −3.72) 0.9960 230 

Sharpe ratio RRL VW 0.6165 −6.45 ( −3.28) 0.9878 230 

Sterling ratio RRL EW 0.3943 −0.99 ( −0.50) 0.9931 235 

Sterling ratio RRL VW 0.1044 −1.73 ( −0.87) 0.9769 235 

Calmar ratio RRL EW 2.6433 3.25 (1.61) 0.7116 221 

Calmar ratio RRL VW 2.3925 4.79 (2.37) 0.6619 221 
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Table 6 

Long-short portfolio comparison with different learning objective functions and transaction 

costs ( δ = 20 bps). Note: EW and VW represent Equally Weighted and Variable Weight strate- 

gies, respectively. 

L/S portfolio Sharpe Return (%) Maximum Num. 

( δ = 20 bp) ratio accumulative (annualized) drawdown of trades 

Sharpe ratio RRL EW −0.2281 −11.85 ( −6.11) 0.9661 230 

Sharpe ratio RRL VW −0.2551 −11.35 ( −5.84) 0.9630 230 

Sterling ratio RRL EW −0.5334 −5.65 ( −2.87) 0.9973 235 

Sterling ratio RRL VW −0.7198 −6.91 ( −3.52) 0.9869 235 

Calmar ratio RRL EW 2.1424 −1.13 ( −0.57) 0.8966 221 

Calmar ratio RRL VW 2.1320 −0.16 ( −0.08) 0.9990 221 

Fig. 12. RRL based trading decision system. 
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Table 7 

Portfolio comparison with hedge funds and buy & hold strategy. 

Portfolio Sharpe Return (%) Maximum 

ratio Accu. (Ann.) drawdown 

Calmar ratio RRL VW 1.93 28.6 (13.4) 0.1474 

SRUSOGP 1.71 9.29 (4.54) 0.7384 

HFRIEHI 1.17 0.82 (0.41) 0.8745 

Buy & hold 0.62 −5.25 ( −2.66) 0.9728 
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he recurrent reinforcement learning system is a recursive learn-

ng system, where the system learns from every output every time

tep. In this system, the trader can select an objective function that

ould be the best for the assets of his portfolio. The system pa-

ameters are trained based on the objective function desired. We

ave introduced three objective functions and showed the differ-

nce based on a portfolio of five commonly traded ETFs. In a paper

y DeMiguel, Garlappi, and Uppal (2009) , the authors showed that

n equally weighted portfolio can be an efficient portfolio and they

ompared it to other strategies. In our trading system the default

hoice of the portfolio weights is the equally weighted portfolio.

n Fig. 12 , we show the design of the trading system where the

ser will select the objective function (the Sharpe Ratio, the Cal-

ar Ratio, and the Sterling Ratio) that the RRL system will maxi-

ize, and the assets along with the time frame T of the prices. The

ser will also select the number of decision steps M where M < T .

he data of the assets will be gathered from Yahoo Finance. The

RL system will learn and train the parameters using the historical

eturns of time T . After training, the system will allow the user to

efine the asset allocation from two types of strategic asset alloca-

ion (Equally Weighted Portfolio (default), RRL Defined Portfolio).

he RRL system will output the long and short decisions of each

sset along with the strategic allocation. The system will ask the

nvestor if he would like to use the dynamic stop-loss exit strategy

hich will stop the trading and go to retraining the system again.

f the investor does not want to use the stop-loss then the output

ill be stored for the next use of the system where it will continue

o learn from the given outputs. The system is trained with a pre-

efined transaction cost of δ = 10 bps per share and μ = 100 with
o stop-loss during the training phase. In a real trading system, the

nvestor would be able to estimate their transaction costs based on

heir past trading records, and these costs can change from period

o period on the same set of assets. The proposed system will then

e able to adapt to these changes through retraining the system

ith a new cost estimation. The system recommends that the user

tilize the Calmar ratio as the objective function when δ ≥ 15 bps

er share, where using this objective function will help the system

ndure the transaction cost effect. Also, if the investor is concerned

bout the drawdown of the portfolio, the Calmar ratio is perfect

ue to the fact that the system will be trained to minimize the

xpected maximum drawdown. 

In Fig. 13 , we compare the performance of the CR-RRL variable

eights (L/S) portfolio with Hedge Fund Research’s HFRI Equity

edge Index (HFRIEHI) and Sunrise’s U.S. Equity Optimized Growth

rogram (SGUSOGP) hedge fund, on a monthly basis over two

ears (2014–2015) with δ = 1 bp and μ = 100 . Table 7 shows the

omparison in performance between the CR-RRL variable weights

ong/short portfolio, the HFRI Equity Hedge Index, and the Sunrise
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Fig. 13. CR-RRL variable weights portfolio vs. hedge funds (24 months). 

Fig. 14. CR-RRL variable weightes with stop-loss (104 weeks). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Calmar ratio recurrent reinforcement learning (CR-RRL) portfolio compar- 

ison with/without stop-loss and different transaction costs ( δ). 

Portfolio Sharpe Return (%) Maximum Num. 

( δ = 0 bps) ratio accu. (ann.) drawdown of trades 

Stop-Loss 1.9915 29.65 (13.87) 0.2279 230 

No Stop-Loss 2.1781 19.65 (9.39) 0.2675 221 

Portfolio Sharpe Return (%) Maximum Num. 

( δ = 10 bps) ratio accu. (ann.) drawdown of trades 

Stop-Loss 2.0852 19.27 (9.21) 0.3628 230 

No Stop-Loss 2.3367 9.75 (4.76) 0.4692 221 

Portfolio Sharpe Return (%) Maximum Num. 

( δ = 15 bps) ratio accu. (ann.) drawdown of trades 

Stop-Loss 2.1752 14.08 (6.81) 0.5083 230 

No Stop-Loss 2.3925 4.79 (2.37) 0.6619 221 

Portfolio Sharpe Return (%) Maximum Num. 

( δ = 20 bps) ratio accu. (ann.) drawdown of trades 

Stop-Loss 2.2958 8.90 (4.35) 0.7844 230 

No Stop-Loss 2.1320 -0.16 (-0.08) 0.9990 221 

Portfolio Sharpe Return (%) Maximum Num. 

( δ = 25 bps) ratio accu. (ann.) drawdown of trades 

Stop-Loss 2.1382 3.71 (1.84) 0.9550 230 

No Stop-Loss 1.0273 −5.11 ( −2.59) 0.9550 221 

 

t

2  

v  

t  
U.S. equity hedge fund. This table shows that the CR-RRL portfolio

is outperforming in terms of Sharpe ratio, annualized return and

maximum drawdown. In this comparison, we highlight the perfor-

mance of the Calmar ratio RRL system for investors’ portfolio de-

signs. 

5.1. Dynamic stop −loss strategy 

The stop-loss strategy used in the RRL trading decision sys-

tem is a simple dynamic stop-loss strategy. The notion of the sim-

ple dynamic stop-loss is introduced by Chevallier, Ding, and Ielpo

(2012) where they applied it to a long-only portfolio. Here we ap-

ply the concept in our trading system using the cumulative return

in Eq. (13) : 

r t−1 

σt−1 

≤ −n (13)

where r t−1 is the cumulative return up to time t − 1 , σt−1 is the

moving volatility up to time t − 1 , and n is the number of volatil-

ity days prompting stop-loss. The stop-loss is applied only during

the testing phase at the decision making process; it is not used

for training the parameters of the recurrent reinforcement learn-

ing model. In Fig. 14 , we show the stop-loss strategy effect on

returns of the CR-RRL portfolio where the CR-RRL portfolio with

stop-loss exits the market in week 91 and stops trading. The sys-

tem will retrain the parameters based on the latest market move-

ments. In Table 8 , we show the Sharpe ratio with a stop-loss for

CR-RRL equally weighted portfolio with different transactions costs

compared. 
From Table 8 , we see that the stop-loss will be able to make

he portfolio endure higher transaction costs in the case that δ ≥
5 bps as the stop-loss strategy will exit the market when the

olatility is high, and retrain the parameters of the model, and

hen generate new signals to reenter the market. The training of
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Z  
he new parameters will be done using the latest returns until the

xit point to handle changing market conditions. 

. Conclusion 

In this paper, we use the recurrent reinforcement learning

ethod to solve a dynamic portfolio optimization problem where

e develop four portfolios using the RRL and compare them with

ach other and the buy & hold portfolio. We use RRL methods to

ptimize the portfolio weights and rebalance the portfolio over a

redefined time horizon. We compare the deferential of the Sharpe

atio and the Calmar ratio as the objective functions in the recur-

ent reinforcement learning process and examine the performance

ffect by the transaction costs. We compare the performance dif-

erences between the Sterling ratio proposed by Moody and Saf-

ell (2001) where they defined the downside risk as an exponen-

ial moving average of drawdown. Due to its lack of necessary sta-

istical properties, the Sterling ratio based RRL suffers computa-

ional breakdowns during the optimization process. More impor-

antly, it neutralizes the downside risks and therefore it is lim-

ted in reaching an optimal trading strategy. Through backtesting

f the constructed portfolio using ETFs, we conclude that: a) vari-

ble weight long/short portfolios outperform the equally weighted

ong/short portfolios; b) the RRL Calmar ratio based portfolios out-

erform the RRL Sharpe ratio based portfolios consistently; c) the

(MDD) RRL based trading system with market condition stop-loss

etraining responds to transaction cost effects better and outper-

orms hedge fund benchmarks consistently. Overall, we show that

he portfolios constructed using RRL with the expected maximum

rawdown based Calmar ratio result in a significantly superior per-

ormance and are more transaction cost resilient than the portfo-

ios constructed with the Sharpe ratio. 

In addition, we propose an adaptive trading decision system

ased on the proposed RRL portfolio rebalance strategies with both

ransaction costs and market condition changes, and we show that

he system consistently outperforms the benchmark and hedge

und industry average index. We specifically demonstrate how this

xpected maximum drawdown based reinforcement learning ap-

roach can filter market noise and identify the significant trading

ignals, and how the trading decision system with transaction cost

nd stop-loss retraining can adapt to different market conditions. 

For future studies, we plan to define a relative strength perfor-

ance measure using the expected maximum drawdown to mini-

ize tracking errors with respect to certain benchmarks. We also

elieve that logsig, softmax RRL model can be extended by adding

ayers to the model in order to help make a good variable weight

ecision. The Calmar ratio using the expected maximum draw-

own can be applied in other reinforcement learning models and

n a large set of asset classes. 
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