
Algorithms for Subsequence Combinatorics

Cees Elzinga a,∗, Sven Rahmann b and Hui Wang c

aDept. of Social Science Research Methods, VU University Amsterdam, The
Netherlands

bBioinformatics for High-Throughput Technologies, Computer Science
Department 11, Technical University of Dortmund, Germany

cSchool of Computing and Mathematics, University of Ulster, Northern Ireland,
UK

Abstract

A subsequence is obtained from a string by deleting any number of characters; thus
in contrast to a substring, a subsequence is not necessarily a contiguous part of
the string. Counting subsequences under various constraints has become relevant
to biological sequence analysis, to machine learning, to the analysis of categorical
time series in the social sciences, and to the theory of word complexity. We present
theorems that lead to efficient dynamic programming algorithms to count (1) dis-
tinct subsequences in a string, (2) distinct common subsequences of two strings, (3)
matching joint embeddings in two strings, (4) distinct subsequences with a given
minimum span, and (5) sequences generated by a string allowing characters to come
in runs of a length that is bounded from above.

Key words: subsequence, combinatorics, dynamic programming, algorithm,
distinct, common, span, run, sociology, DNA sequencing, microarray

1 Introduction

Over the last decades, combinatorial theory on sequences of symbols has found
wide application, most notably in computational biology and information sci-
ences, but also in physics and in the social sciences. Usually, the symbols of

∗ Corresponding author
Email addresses: ch.elzinga@fsw.vu.nl (Cees Elzinga),

sven.rahmann@uni-dortmund.de (Sven Rahmann), h.wang@ulster.ac.uk (Hui
Wang).

Preprint submitted to Theoretical Computer Science 10 November 2007

these sequences are called characters or letters, the set of all characters is
called an alphabet and the sequences themselves are called strings or words.
For an overview on word combinatorics, the reader is referred to [19] and [20].

The terminology and notation concerning parts of strings has not yet arrived
at a commonly accepted standard. Therefore, we start by explicitly defining
two basic concepts, substring and subsequence.

A substring is a contiguous (possibly empty) part of a string, i.e., if s = s1...sn

denotes a string, then for any 1 ≤ i ≤ j ≤ n, si...sj is a substring, and so
is the empty string. In other words, a substring is constructed by deleting a
prefix and a suffix from the original string. Often, substrings are also called
factors or subwords in the literature (e.g. [22,7]), but unfortunately they are
sometimes also referred to as subsequences. Substrings play an important role
in the vast literature on approximate string matching (e.g. [14]).

Subsequences are constructed by deleting characters anywhere in the given
string. So, characters that are adjacent in the remaining subsequence are not
necessarily adjacent in the original string. Subsequences are unfortunately also
called subwords or scattered subwords (e.g. [23]).

A string of n characters has
(

n+1
2

)
+ 1 = Θ(n2) substrings but

∑
k

(
n
k

)
= 2n

subsequences. Therefore, we may expect that counting subsequences is much
more involved than counting substrings. However, it will appear that the subse-
quence problems can be solved by dynamic programming algorithms efficiently.
Surprisingly, the problems of counting and enumerating subsequences and vari-
ants thereof have received little attention so far (but see [5,22,17,18,12]).

The number of distinct subsequences of a string can be used to quantify “com-
plexity” of strings: the more distinct subsequences, the more complex. Identi-
fying fixed-length strings that maximize the number of distinct subsequences
is useful to normalize such complexity measures. In the modern life sciences,
DNA microarrays have become an indispensable tool to monitor the activity
of thousands of genes simultaneously in a certain cell or tissue type. They
consist of billions of single stranded DNA molecules of different types. During
the manufacturing process, they are synthesized as subsequences of a common
supersequence of a certain structure and length [21]. Here the question arises,
how many distinct sequences of a given length can be constructed from the
supersequence, and which supersequence maximizes the number of distinct
subsequences. We answer these questions in Section 3.

Different strings may have certain substrings or subsequences in common and
such common objects and their properties are important in pattern match-
ing, especially longest common substrings and longest common subsequences
[15,14,3,4]. Applications arise in the comparison of categorical time series [10]

2

and the computation of string kernels in kernel-based machine learning meth-
ods, where the number of common subsequences is used to define proximity
or similarity between strings [24]. In Section 4, we present a theorem that
enables us to efficiently count common subsequences with a length of at least
k ≥ 0, generalizing results published in [5], [21], [24] and [9]. In order to take
into account the frequency of subsequences in strings, we further consider the
problem of counting matching embeddings, i.e., the frequency weighted com-
mon subsequences. This is relevant for time series in which the repetition of
certain patterns is important, as for example in job careers. A theorem is pre-
sented that implies an algorithm that counts such matches much faster than
a previous algorithm proposed in [8].

In Section 5, we introduce the constraint that the subsequences we consider
must span a certain range in the original sequence. This has again applications
to the analysis of categorical time series in the social sciences, and also allows
to introduce different notions of word complexity.

Finally, we consider the problem of counting sequences that are generated
by length restricted runs. This is a generalization of the subsequence counting
problem, and has an interesting application in high-throughput DNA sequenc-
ing: Some modern DNA sequencing technologies allow that a whole run of a
nucleotide is sequenced at once. A run refers to a contiguous repetition of a sin-
gle letter. For example, the string AACCCTA consists of four runs (A,C,T,A)
of lengths (2,3,1,1), respectively. The sequencing machine tests in turn for each
nucleotide (A,C,G,T) if a run of this type is available to be sequenced. A run
can be reliably sequenced if it is not too long (e.g., at most 4 or 5 characters).
This leads to the question of how many distinct sequences of a given length
can be sequenced in, say 100 turns. The theorems of Section 6 give efficiently
computable answers to such questions.

2 Preliminaries

In this section we define the key concepts formally and introduce the necessary
notation. Refinements and special cases of these concepts will be introduced
when appropriate.

Let Σ = {σ1, . . . , σd} be a finite alphabet, and let Σ? denote the set of finite
strings that are constructed from the characters of Σ by concatenation. We
say that a string x = x1 . . . xn has length |x| = n or that x is n-long. The
empty string or empty sequence, which has a length of zero, is denoted by λ.
The set Σn denotes the set of all n-long strings over Σ. If a string x is n-long, it
has n nonempty prefixes xi = x1 . . . xi (in particular, xn = x), and the empty
prefix x0 = λ.

3

A string y is a substring of another string x if there exist not necessarily
distinct and possibly empty strings v1, v2 ∈ Σ? such that v1yv2 = x.

A k-long string y = y1 . . . yk is a subsequence of x if there exist k + 1, not
necessarily distinct and possibly empty, strings v1, . . . , vk+1 ∈ Σ? such that
v1y1 . . . vkykvk+1 = x and we write y � x to denote this fact. Clearly, if y =
xi1 . . . xik is a substring of x, then ij+1 − ij = 1 for all j, i.e., the characters
that are adjacent in y are adjacent in x, too. This is not required if y is a
subsequence. The set of all subsequences of x is denoted by S(x). If u � x and
u � y, we write u � (x, y) and we say that u is a common subsequence of x
and y and we will write S(x, y) to denote the set of all common subsequences
of x and y.

A subsequence u � x may be embedded in x more than once. For example
u = ab is embedded three times in x = abab. We will write |x|u = r to denote
the fact that u � x has r distinct embeddings in x. We formally define an
embedding iu(x) of u � x as a sequence of indices 1 ≤ i1 < . . . < i|u| ≤ |x| such
that uj = xij for 1 ≤ j ≤ |u| and we write Iu(x) for the set of embeddings of u
in x. So, |Iu(x)| = |x|u. We say that an embedding ı̂u(x) = ı̂1 . . . ı̂|u| is canonical
(sometimes also called left-most) if each of its indices is as small as possible: for
each iu(x) ∈ Iu(x), ı̂j ≤ ij for 1 ≤ j ≤ |u|. The right-most embedding is defined
similarly. Each u � x has exactly one canonical embedding. Hence, setting
ı̂λ = 0, there exists a bijective mapping of the set of canonical embeddings
Î(x) = {ı̂u(x) : u ∈ S(x)} to the set of subsequences S(x).

If u � (x, y), we say that the pair (̂ıu(x), ı̂u(y)) is the joint canonical embedding

of x and y. There exists a set of such pairs Î(x, y) with
∣∣∣Î(x, y)

∣∣∣ = |S(x, y)|.

The canonical embedding can be considered as resulting from an algorithm
(e.g. [6]) that verifies whether or not u � x: Find the index i1 of the first
appearance of u1 in x, then find the index of the first appearance of u2 after
that, etc. and u � x if the first occurrence of u|u| occurs at or before xn. If the
algorithm fails, u � x. The next lemma provides a straightforward (not the
most efficient) algorithm to determine |x|y and ı̂y(x).

Lemma 1 Let x, y ∈ Σ? with y � x and ı̂y(x) = ı̂1 . . . ı̂|y|. Let E = (eij) be
a (|y| × |x|)-matrix with eij = 1 if and only if yi = xj and eij = 0 otherwise.
Furthermore, let F = (fij) be a (|y| × |x|)-matrix with f1j = e1j and fij =
eij ·

∑
k<j ei−1,k for 1 ≤ j ≤ |x| and 2 ≤ i ≤ |y|. Then

|x|yi =
∑
j

fij,

ı̂j = min {j : fij > 0} .

PROOF. The proof is straightforward by induction once one realizes that fij

4

equals the number of embeddings of yi in xj that end at position j in x. 2

We conclude this section with a note on the complexity of the algorithms put
forward in this paper. Since the number of subsequences may grow exponen-
tially with the length of the input string, storing this number requires Θ(n)
bits for an n-character text, so it is inappropriate to assume that arithmetic
operations can be done in constant time. For example, additions take Θ(n)
time and multiplications Θ(n log n) time. We have, however, measured the
running time of the algorithms in terms of arithmetic operations. In some ap-
plications it is reasonable to assume a constant-size alphabet |Σ| = Θ(1); in
others, however, we may need to allow that |Σ| = Θ(n) to be realistic. Where
necessary, we include |Σ| as a parameter in the complexity analysis.

3 Counting Distinct Subsequences

In this section, we present an efficient solution to the problem of counting
all distinct subsequences of length k ≥ 0 of a given string and study strings
that have maximally many distinct subsequences. We begin with the simple
problem of counting all distinct subsequences of a given string, since this allows
us to introduce a basic proof technique in a simple, straightforward manner.

The number of distinct subsequences of an n-long string x can be computed
with Θ(n) arithmetic operations as follows: When we elongate the prefix xn−1

with a character xn that does not yet occur in xn−1 (we say that xn is new to
xn−1), the number of distinct subsequences doubles: we retain all the subse-
quences already counted for xn−1, and we further generate new subsequences
by elongating all of these subsequences with xn. If xn is not new to xn−1, we
must compensate the doubling by subtracting all the elongated subsequences
that were really new when x` = xn was used to elongate some previous, shorter
prefix x`−1 with ` < n. We repeat this procedure, starting with the first prefix
x1, which elongates λ, elongating it with x2, etc. This reasoning is formalized
in the next lemma.

Lemma 2 [9] Let x ∈ Σn be a nonempty string and let φ(x) := |S(x)| denote
the number of distinct subsequences of x. Furthermore, let `(x, σ) denote the
last position of the character σ ∈ Σ in x: `(x, σ) := max{i : xi = σ} if σ � x
and `(x, σ) := 0 otherwise; for brevity we write ` := `(xn−1, xn). Then

φ(x) =

 2φ(xn−1) if xn � xn−1,

2φ(xn−1)− φ(x`−1) if xn � xn−1.
(1)

5

Algorithm 1. Compute φ(x) for a string x of length |x|
1: `(σ)← 0 for σ ∈ Σ {Initialize `}
2: N(0)← 1
3: for i← 1, . . . , |x| do
4: N(i)← 2 ·N(i− 1)
5: if `(x(i)) > 0 then
6: N(i)← N(i)−N(`(x(i))− 1)
7: end if
8: `(x(i))← i
9: end for

10: return N(|x|)

PROOF. We observe that the set of canonical embeddings can be written as

Î(x) = Î(xn−1) ∪
{
(̂ıu(x

n−1), n) : ı̂u(x
n−1) ∈ Î(xn−1) \ Î(x`−1)

}
.

The two sets are disjoint since the sequences of the first one never end on n,
while the sequences in the second one always do. So,∣∣∣Î(x)

∣∣∣ = 2
∣∣∣Î(xn−1)

∣∣∣− ∣∣∣Î(x`−1)
∣∣∣ .

Using the existence of a bijective map from S(x) onto Î(x) and the fact that∣∣∣Î(x`−1)
∣∣∣ = 0 when xn � xn−1 then yields the required result (1). 2

Lemma 2 implies a simple dynamic programming algorithm with Θ(|x|) arith-
metic operations that is shown in pseudo-code as Algorithm 1.

In Table 1, we show the (|x|+1)-array N as a result of Algorithm 1 operating
on x = abacbca.

Lemma 2 specifies how to count subsequences, irrespective of their length.
However, in some applications (e.g., [21,9]) it is necessary to count subse-
quences that have a length of precisely k. The next lemma is a specialization
of Lemma 2 in the sense that it is about subsequences of a particular length k.

Table 1
Results of applying Algorithm 1 to x = abacbca

i 0 1 2 3 4 5 6 7

xi - a b a c b c a

`(xi) - 0 0 1 0 2 4 3

N(i) 1 2 4 7 14 26 45 86

6

It implies an algorithm that, given a string of length |x|, uses Θ(k |x|) arith-
metic operations.

Lemma 3 [5,9] Let x ∈ Σn be a nonempty string, S(x|k) the set of its k-long
subsequences and φ(x|k) := |S(x|k)|. Then

φ(x|k) =

 φ(xn−1 | k) + φ(xn−1 | k − 1) if xn � xn−1,

φ(xn−1 | k) + φ(xn−1 | k − 1)− φ(x`x−1 | k − 1) if xn � xn−1.

PROOF. The proof is analogous to that of Lemma 2, additionally tracking
the length of the canonical embeddings. 2

Maximizing the number of subsequences. Whenever the number of
distinct subsequences is used to express the complexity of a string, it is in-
teresting to know which string z ∈ Σn maximizes the quantity φ(·) among all
strings of length n. For example, if we define the complexity of a string x ∈ Σn

as φ(x), it becomes relevant to study the relative complexity φ(x)/φ(z) where
|x| = |z| = n. Therefore we concisely discuss some of the properties of this
φ-maximizing z. We let Σ := {σ1, . . . , σd} and z ∈ Σn such that

z = σ1 . . . σdσ1 . . . σdσ1 . . . σmod(n,d),

i.e., z is a repeated permutation of the alphabet. In [5] and [12], it is shown that
φ(z|k) ≥ φ(x|k) for any x ∈ Σn and any k, equality holding for all k ≥ 0 only if
x also consists of a repeated, possibly different permutation of Σ. The reader
notes that we could use Lemma 2 to prove that the repeated permutation
z maximizes the number of distinct subsequences. The next lemma was also
provided in [12]; it shows that φ(z) satisfies a generalized Fibonacci-recurrence.
Because of Lemma 2, the proof has become almost trivial.

Lemma 4 [12] Let zn ∈ Σn be a repeated permutation of an alphabet Σ of
size |Σ| = d. Then

φ(zn) =
d∑

k=1

φ(zn−k) + 1 if n > d,

and φ(zn) = 2n for 0 ≤ n ≤ d.

7

PROOF. Because of Lemma 2 and the fact that z is a repeated permutation
of Σ, we have

φ(zn) =

 2n if 0 ≤ n ≤ d,

2φ(zn−1)− φ(zn−1−d) if n > d.

Using the recursive part of the above equation to repeatedly expand terms of
the form 2φ(zn−j) as

φ(zn−j) + 2φ(zn−j−1)− φ(zn−j−1−d),

and adding ultimately yields

φ(zn) =
d∑

k=1

φ(zn−k) + 2d − 2d−1 − . . .− 20 =
d∑

k=1

φ(zn−k) + 1,

as required. 2

4 Counting Common Subsequences

Next we turn our attention to counting common subsequences of two strings.
We write φ(x, y) := |S(x, y)| and start with a simple lemma, stated in [24].

Lemma 5 [24] Let the strings x, y ∈ Σ? have lengths m and n, respectively.
Let neither of them contain multiple occurrences of any of the characters of
Σ, i.e. |x|σ , |y|σ ∈ {0, 1} for all σ ∈ Σ. Then

φ(x, y) =

 2φ(xm−1, yn−1) if xm = yn,

φ(xm−1, y) + φ(x, yn−1)− φ(xm−1, yn−1) if xm 6= yn.

PROOF. Suppose xm = yn. By assumption, xm � xm−1 and yn � yn−1,
so uxm /∈ S(xn−1, yn−1) but uxm ∈ S(x, y) if u ∈ S(xm−1, yn−1). Therefore,
if xm = yn, then S(x, y) = S(xm−1, yn−1) ∪ {uxm : u ∈ S(xm−1, yn−1)}, so
φ(x, y) = 2φ(xm−1, yn−1), since these sets are disjoint.

Now suppose xm 6= yn. Then either xm � y or xm � yn−1. If xm � y, S(x, y) =
S(xm−1, y) and S(x, yn−1) = S(xm−1, yn−1). On the other hand, if xm � yn−1,
then S(x, y) = S(xm−1, y)∪S(x, yn−1) but these sets may not be disjoint. 2

Evidently, Lemma 5 implies a simple dynamic programming algorithm [24,
Algorithm 3.1]. Equally evident is that the lemma is not correct if a character

8

occurs repeatedly in either string; then φ(x, y) could well be much smaller
than 2φ(xm−1, yn−1) when xm = yn. To obtain a more general result, we must
explicitly account for multiple embeddings. This is exactly what the next
lemma does: for |x| = m, it relates φ(x, y) to φ(xm−1, y) under three different
conditions.

First, if xm � y, elongation of xm−1 with xm does not increase the number
of common subsequences. Under the second condition, we suppose that xm

is contained in y and that xm is new to xm−1. New common subsequences
arise by elongating the common subsequences of (xm−1, y`y−1) with xm where
`y := `(y, xm). Under the third condition, we again assume that xm � y but
now we also suppose that xm is not new to xm−1. We must compensate the
number of new common subsequences that arise by elongation by subtracting
those that were formed when elongating with xm at the previous time we
encountered xm.

Lemma 6 [9] Let x and y be finite, nonempty strings over Σ with lengths
|x| = m and |y|, respectively. For each σ ∈ Σ, let `(x, σ) := max{i : xi = σ}
with `(x, σ) := 0 if σ � x. For brevity, we set `x := `(xm−1, xm) and `y :=
`(y, xm). Then

φ(x, y) =



φ(xm−1, y) if xm � y,

φ(xm−1, y) + φ(xm−1, y`y−1) if xm � y, xm � xm−1,

φ(xm−1, y) + φ(xm−1, y`y−1)

− φ(x`x−1, y`y−1) if xm � y, xm � xm−1.

PROOF. If xm � y then Î(xm−1, y) = Î(x, y) hence φ(x, y) = φ(xm−1, y).

If xm � y and xm � xm−1 then

Î(x, y) = Î(xm−1, y) ∪ C

with

C =
{(

iuxm(x), iuxm(y`y)
)

:
(
iu(x

m−1), iu(y
`y−1)

)
∈ Î(xm−1, y`y−1)

}
,

and these sets are disjoint since the embeddings in C end with m whereas the
embeddings in Î(xm−1, y) do not. Note that the joint embeddings in C are
canonical since xm � xm−1. Hence it follows that

φ(x, y) = φ(xm−1, y) + φ(xm−1, y`y−1),

as required.

9

If xm � y and xm � xm−1 then

Î(x, y) = Î(xm−1, y) ∪D

with

D =
{(

iuxm(x), iuxm(y`y)
)

:
(
iu(x

m−1), iu(y
`y−1)

)
∈ E

}
and

E = Î(xm−1, y`y−1) \ Î(x`x−1, y`y−1).

Therefore

φ(x, y) = φ(xm−1, y) + φ(xm−1, y`y−1)− φ(x`x−1, y`y−1),

as required. 2

Lemma 6 implies a dynamic programming algorithm that is shown as Algo-
rithm 2 and requires Θ(|x||y|) arithmetic operations. The reader notes that
in Algorithm 2, the variables `x and `y are stored as rows `xi and `yj of rect-
angular arrays: one row for each of the prefixes of x and y. Since Lemma 6
only relates φ(x, y) to φ(xm−1, y) and presumes that `x and `y are known, this
is not explicit in the Lemma. The reader further notes that, if x = y, Algo-
rithm 2 reduces to Algorithm 1. In Table 2, we show the results of applying
the algorithm to x = abacbca and y = bcab.

Table 2
Results of applying Algorithm 2 to the pair (x = abacbca, y = bcab). The leftmost
part shows the content of the rectangular array `x as constructed in lines 2 and
5-11. The middle part shows the array `y as constructed in lines 3 and 12-18 and
the rightmost part shows the array N as constructed in lines 21-33, resulting in
φ(x, y) = 13.

`x(i, σ) a b c

i = 0 0 0 0

1 1 0 0

2 1 2 0

3 3 2 0

4 3 2 4

5 3 5 4

6 3 5 6

7 7 5 6

`y(j, σ) a b c

j = 0 0 0 0

1 0 1 0

2 0 1 2

3 3 1 2

4 3 4 2

N(i, j) 0 1 2 3 4

0 1 1 1 1 1

1 1 1 1 2 2

2 1 2 2 3 4

3 1 2 2 4 5

4 1 2 4 6 7

5 1 2 4 6 11

6 1 2 4 6 11

7 1 2 4 8 13

10

Algorithm 2. Count the number φ(x, y) of distinct common subsequences of x ∈ Σm

and y ∈ Σn.

1: {Initialize `x(i, σ) and `y(j, σ):}
2: `x(0, σ)← 0 for σ ∈ Σ
3: `y(0, σ)← 0 for σ ∈ Σ
4: for σ ∈ Σ do
5: for i← 1, . . . , |x| do
6: if σ 6= xi then
7: `x(i, σ)← `x(i− 1, σ)
8: else
9: `x(i, σ)← i

10: end if
11: end for
12: for j ← 1, . . . , |y| do
13: if σ 6= yj then
14: `y(j, σ)← `y(j − 1, σ)
15: else
16: `y(j, σ)← j
17: end if
18: end for
19: end for
20: {Compute N(i, j) = φ(xi, yj):}
21: N(i, 0)← 1 for i← 0, . . . , |x|
22: N(0, j)← 1 for j ← 1, . . . , |y|
23: for i← 1, . . . , |x| do
24: for j ← 1, . . . , |y| do
25: N(i, j)← N(i− 1, j)
26: if `y(j, xi) > 0 then
27: N(i, j)← N(i, j) + N(i− 1, `y(j, xi)− 1)
28: if `x(i− 1, xi) > 0 then
29: N(i, j)← N(i, j)−N(`x(i− 1, xi)− 1, `y(j, xi)− 1)
30: end if
31: end if
32: end for
33: end for
34: return N(|x| , |y|)

Finally, we generalize Lemma 6 to the problem of computing the number

φ(x, y|
−→
k) of all common subsequences that are at least k-long.

Theorem 1 Let x and y be finite, nonempty strings over Σ with lengths |x| =
m and |y| respectively. Furthermore, for each σ ∈ Σ, let `(x, σ) := max{i :
xi = σ} with `(x, σ) := 0 if σ � x. For brevity, we set `x := `(xm−1, xm) and

11

`y := `(y, xm). Then, for 0 ≤ k ≤ min{|x| , |y|},

φ(x, y|
−→
k) =



φ(xm−1, y|
−→
k) if xm � y,

φ(xm−1, y|
−→
k) + φ(xm−1, y`y−1|

−−−→
k − 1) if xm � y, xm � xm−1,

φ(xm−1, y|
−→
k) + φ(xm−1, y`y−1|

−−−→
k − 1)

− φ(x`x−1, y`y−1|
−−−→
k − 1) if xm � y, xm � xm−1.

PROOF. We first define Î(x, y|
−→
k) as the set of all joint canonical embeddings

of x and y that are at least k-long. If xm � y then Î(xm−1, y|
−→
k) = Î(x, y|

−→
k);

hence φ(x, y|
−→
k) = φ(xm−1, y|

−→
k).

If xm � y and xm � xm−1 then

Î(x, y|
−→
k) = Î(xm−1, y|

−→
k) ∪ C

with

C =
{(

iuxm(x), iuxm(y`y)
)

:
(
iu(x

m−1), iu(y
`y−1)

)
∈ Î(xm−1, y`y−1|

−−−→
k − 1)

}
;

and these sets are disjoint since the embeddings in C end with m whereas the
embeddings in the first set do not. Note that the joint embeddings in C are
canonical since xm � xm−1. Hence it follows that

φ(x, y|
−→
k) = φ(xm−1, y|

−→
k) + φ(xm−1, y`y−1|

−−−→
k − 1),

as required.

If xm � y and xm � xm−1 then

Î(x, y|
−→
k) = Î(xm−1, y|

−→
k) ∪D

with
D =

{(
iuxm(x), iuxm(y`y)

)
:
(
iu(x

m−1), iu(y
`y−1)

)
∈ E

}
and

E = Î(xm−1, y`y−1|
−−−→
k − 1) \ Î(x`x−1, y`y−1|

−−−→
k − 1).

Therefore,

φ(x, y|
−→
k) = φ(xm−1, y|

−→
k) + φ(xm−1, y`y−1|

−−−→
k − 1)− φ(x`x−1, y`y−1|

−−−→
k − 1),

as required. 2

Clearly, Theorem 1 implies a dynamic programming algorithm with Θ(k · |x| ·
|y|) arithmetic operations. Obviously, the possibility to compute the quantity

12

φ(x, y|
−→
k) suffices to compute the related quantities

φ(x, y|k) = φ(x, y|
−→
k)− φ(x, y|

−−−→
k + 1)

and
φ(x, y|

←−
k) = φ(x, y)− φ(x, y|

−→
k),

where φ(x, y|
←−
k) denotes the number of common subsequences with a length

that is smaller than k.

Counting matching embeddings. In the analysis of categorical time se-
ries, it may be important to account for the fact that certain subsequences
have, or do not have, multiple embeddings. For example, consider a set of
job career sequences, built from three characters: E for being employed, U
for being unemployed and T for a spell of government supported vocational
training. Then the subsequence u = TEU both occurs in x = TEUTEUTEU
and in y = TEUE. But the fact that this “failure”-subsequence occurs many
times in x and only once in y is not accounted for if one just counts common
subsequences. This example illustrates that it is often useful to account for
the number of embeddings, too. This is achieved by evaluating the number
µ(x, y) of matching nonempty embeddings,

µ(x, y) :=
∑

u∈S(x,y), u 6=λ

|x|u · |y|u .

So, in µ(x, y), each nonempty common subsequence is weighted according to
the number |x|u · |y|u of its joint embeddings (iu(x), iu(y)). In other words each
nonempty common subsequence is weighted by the product of the frequencies
of it in either of the sequences.

Let us write µ(x, y|k) for the number of matching embeddings of length k.
Clearly then, we have that µ(x, y) =

∑
k≥1 µ(x, y|k). The next lemma implies

that we first calculate µ(x, y|1), then the 1-long subsequences are, if possible,
elongated to 2-long common subsequences upon which µ(x, y|2) is calculated,
etc.

Lemma 7 [8] Let x, y ∈ Σ?, and let E(k) = {e(k)
ij } denote |x| × |y|-matrices

as follows. We set e
(1)
ij := 1 if xi = yj, and e

(1)
ij := 0 otherwise. For 2 ≤ k ≤

min{|x| , |y|} =: M , we set e
(k)
ij := e

(1)
ij

∑
a>i,b>j e

(k−1)
ab . Furthermore, we set

Sk :=
∑

ij e
(k)
ij . Then, for k ≥ 1,

µ(x, y|k) = Sk.

PROOF. By induction over k, e
(k)
ij equals the number of k-long joint embed-

dings that start a position i in x and at position j in y and spell the same

13

string. Hence also Sk = µ(x, y|k). 2

To calculate µ(x, y), we need µ(x, y|k) for each 1 ≤ k ≤ M and this requires
that we construct each E(k) and add its elements. So, the implied algorithm
needs Θ(M · |x| · |y|) arithmetic operations. The algorithm uses only little
information in each of its M steps so we suspect the existence of a faster
algorithm. Indeed, the next theorem implies an algorithm requiring only Θ(|x|·
|y|) operations.

Theorem 2 Let x ∈ Σm and y ∈ Σn. Then

µ(x, y) =

 µ(xm−1, y) + µ(x, yn−1)− µ(xm−1, yn−1) if xm 6= yn,

µ(xm−1, y) + µ(x, yn−1) + 1 if xm = yn.

PROOF. We need the concept of a final embedding : iu(x) is a final embedding
if it ends with |x|; this is obviously only possible if the last character of u
equals the last character of x. We write Fu(x) ⊂ Iu(x) for the subset of all
final embeddings of u in x. Next, we define the set of all common subsequences
of x and y that have a final embedding in both x and y:

F(x, y) := {u ∈ S(x, y) : |Fu(x)| > 0 and |Fu(y)| > 0} .

For brevity, we set S+(x, y) = S(x, y) \ {λ} and write

S+(x, y) = S+(xm−1, y) ∪ S+(x, yn−1) ∪ F(x, y).

We note that F(x, y) is disjoint from the other two sets, whereas these have
the possibly non-empty intersection S+(xm−1, yn−1). Thus

∑
u∈S+(x,y)

|x|u · |y|u =
∑

u∈S+(xm−1,y)

∣∣∣xm−1
∣∣∣
u
· |y|u +

∑
u∈S+(x,yn−1)

|x|u ·
∣∣∣yn−1

∣∣∣
u

−
∑

u∈S+(xm−1,yn−1)

∣∣∣xm−1
∣∣∣
u
·
∣∣∣yn−1

∣∣∣
u

+
∑

u∈F(x,y)

|x|u · |y|u .

Now suppose that xm 6= yn. Then F(x, y) is empty and the above equation is
equivalent to

µ(x, y) = µ(xm−1, y) + µ(x, yn−1)− µ(xm−1, yn−1).

Next, suppose xm = yn. Now F(x, y) is nonempty and

u ∈ F(x, y) ⇔ u = u|u|−1xm = u|u|−1yn (2)

14

with u|u|−1 ∈ S+(xm−1, yn−1). Therefore,

∑
u∈F(x,y)

|x|u · |y|u =
∑

u∈S+(xm−1,yn−1)

∣∣∣xm−1
∣∣∣
u
·
∣∣∣yn−1

∣∣∣
u

+ 1

= µ(xm−1, yn−1) + 1

since xm = yn generates one extra match. 2

A dynamic programming algorithm follows immediately from Theorem 2. In
Table 3, we show the result of applying this algorithm to the pair of strings
x = abacbca, y = bcab.

Unpublished work by Greenberg [13] shows how to compute the number of
distinct longest common subsequences and the number of matching embed-
dings.

We finally note that by choosing y = (1, 2, . . . , |Σ|) as one of the sequences and
x arbitrarily, the algorithms presented in this section compute the number of
strictly increasing subsequences of x.

5 Span of subsequences

In this section, we examine a property of subsequences that we call the span.
Let x be an n-long string and u � x with embedding iu(x) = i1 . . . i|u|. Then
we say that the span of this embedding equals

îu(x) := i|u| − i1 + 1.

Table 3
µ(xi, yj) as a result of applying the dynamic programming algorithm implied by
Theorem 2 to the pair of strings x = abacbca, y = bcab, resulting in µ(x7, y4) =
µ(x, y) = 27.

- a b a c b c a

- 0 0 0 0 0 0 0 0

b 0 0 1 1 1 2 2 2

c 0 0 1 1 3 4 7 7

a 0 1 2 4 6 7 10 18

b 0 1 4 6 8 16 19 27

15

Since a subsequence u may have multiple embeddings in x, we define the span
of a subsequence as the largest span of its embeddings:

û � x := max
{
îu(x) : iu ∈ Iu(x)

}
.

We furthermore define the span of the empty embedding as zero, and conse-

quently also λ̂ � x := 0.

As an example, the span of u = ac in x = abacbca is âc � x = 6− 1 + 1 = 6,

the maximum of (̂1, 4), (̂3, 4), (̂1, 6), and (̂3, 6):

a b a c b c︸ ︷︷ ︸
âc�x=6

a.

Note that |u| ≤ û � x ≤ |x|, the lower bound being attained if and only if u
has a unique embedding in x and is a substring of x. If a subsequence has a
span of m we call it an m-span subsequence.

The span is an interesting property in at least two contexts. First, in the social
sciences, one may not want to consider subsequences that consist of states that
are too remote, i.e., that have too big a time lapse or too many other states in
between. For example, consider a categorical time series that represents a job
career and that contains short spells of unemployment. Such spells may affect
the kinds of jobs directly following the unemployment but this effect will fade
away with jobs that are more remote from the the unemployment spells. So,
it may be interesting to consider only subsequences of labor market statuses
that have limited span.

A second context is that of complexity of finite strings (e.g. [7]). Normally,
the (subword) complexity of a finite string can be expressed as the number of
distinct substrings that it contains. [16] and [17] proposed a special kind of
subsequence, the d-substring, and a class of complexity measures that relies
on it. A d-substring from x is a subsequence u = xi1 . . . xi|u| such that 1 ≤
ij+1− ij ≤ d for all 1 ≤ j ≤ |u|−1 or such that |u| ∈ {0, 1}. Indeed, for d = 1,
these objects are the ordinary substrings and for d > 1, objects arise that are
subsequences with bounded gaps (gaps of at most d). The d-complexity Kd(x)
is then taken to be the number of distinct d-substrings of x.

If no character occurs twice in x, it is not difficult to see that

Kd(x) = Kd(x
n−1) + [Kd(x

n−1)−Kd(x
n−1−d)] + 1.

For by elongating xn−1 with xn, new d-substrings arise by appending xn to all
substrings that have their last characters in {xn−d, . . . , xn−1}, and xn is new,

16

too. Unfortunately, we were unsuccessful in finding a recurrence that extends
to the general case.

The concept of an m-span subsequence is related to that of a d-substring in
the sense that d fixes the maximal gap size, whereas m fixes the average gap
size for a subsequence. While no efficient algorithm for counting d-substrings
is known to us, it is comparatively easy to count the subsequences of any given
span.

We first note that the span of a subsequence is completely determined by the
position of its first character in its canonical (left-most) and of its last character
in its right-most embedding. The following lemma makes this precise.

Lemma 8 Let a, b ∈ Σ be two (not necessarily distinct) characters and v ∈ Σ?

(possibly empty) such that avb � x. Then

̂avb � x = âb � x.

PROOF. Clearly âb � x ≥ ̂avb � x, because the first and last position in
any embedding of avb are an embedding of ab with the same span. Assume
that the leftmost a in x occurs at position i and that the rightmost b in x

occurs at position j, thus âb � x = j − i + 1. We show that there exists an
embedding of avb that starts at i and ends at j, too. This then implies that
̂avb � x ≥ âb � x. In other words, we have to show that v is a subsequence of

xi+1 . . . xj−1. Assume it is not. Since there is no a to the left of i and no b to the
right of j, it follows that avb cannot be a subsequence of x, a contradiction. 2

Let us write Ŝ(x|m) for the set of subsequences of a string x that have a span
of exactly m, and let ϑ(x|m), denote the cardinality of this set.

Clearly, Ŝ(x|0) = {λ}, so ϑ(x|0) = 1 for any string x. Also, Ŝ(x|1) is simply the
set of characters that occur in x, so ϑ(x|1) = |{σ : `(x, σ) > 0}|. The following
theorem states how to compute Ŝ(x|m) and ϑ(x|m) for m ≥ 2 and is a direct
consequence of the fact that the first and last character determine the span
of a subsequence. The theorem translates again into a dynamic programming
algorithm, shown as Algorithm 3. It needs Θ(|Σ||x|) arithmetic operations,
assuming |Σ| ∈ O(|x|).

Theorem 3 As before, let `(x, σ) = `σ denote the rightmost position of σ ∈ Σ
in x ∈ Σ?, or `(x, σ) := 0 if σ � x. Conversely, let f(x, σ) = fσ denote the
leftmost position of σ in x, or f(x, σ) := 0 if σ � x. Let m ≥ 2. Then

Ŝ(x|m) =
⋃

(a,b)∈Σ2:
`b−fa+1=m

{avb : v ∈ S(xfa+1 . . . x`b−1)}.

17

Algorithm 3. Compute T (m) := ϑ(x|m), the number of m-span subsequences of x,
for all m = 0, . . . , |x|
1: Compute f(σ) and `(σ) for all σ ∈ Σ
2: Set T (0)← 1
3: Set T (1)← |{σ : `(σ) > 0}|
4: Set T (m)← 0 for m = 2, . . . , |x|
5: for a ∈ Σ do
6: Compute N(i)← φ(xfa+1, . . . , xfa+i) for all i = 0, . . . , |x| − fa

by applying Algorithm 1 to the suffix xfa+1, . . . , x|x|.
7: for b ∈ Σ do
8: m← `b − fa + 1
9: if m ≥ 2 then

10: T (m)← T (m) + N(m− 2)
11: end if
12: end for
13: end for
14: return T = (T (0), . . . , T (|x|))

Consequently,

ϑ(x|m) =
∑

(a,b)∈Σ2:
`b−fa+1=m

φ(xfa+1 . . . x`b−1).

PROOF. Obviously, ab belongs to Ŝ(x|m) if and only if `b − fa + 1 = m.
By Lemma 8, the same holds for any subsequence of the form avb with v �
xfa+1 . . . x`b−1. Since the sequence sets are disjoint for distinct (a, b), the set
recurrence immediately translates to the sum formula. 2

As an example, x = abacbca has the following number of m-span subsequences.

m 0 1 2 3 4 5 6 7

ϑ(x|m) 1 3 1 2 8 16 29 26

We conclude this section by noting that it is equally easy to keep track of the
length of the m-span subsequences; this follows as in Theorem 3.

Corollary 1 Let Ŝ(x|m; k) denote the set of m-span subsequences of length k

18

and ϑ(x|m; k) its cardinality. Then for m ≥ 2 and k ≥ 2,

Ŝ(x|m; k) =
⋃

(a,b)∈Σ2:
`b−fa+1=m

{avb : v ∈ S(xfa+1 . . . x`b−1 | k − 2)},

ϑ(x|m; k) =
∑

(a,b)∈Σ2:
`b−fa+1=m

φ(xfa+1 . . . x`b−1 | k − 2).

6 Sequences generated by length-restricted runs

Consider the string x = x1 . . . xr with xi = σ ∈ Σ for each 1 ≤ i ≤ r, i.e., a
string that consists of a run of r repetitions of the character σ. In this section,
we will denote such runs as σ(r) and in particular, σ(0) = λ for all σ ∈ Σ. Now
consider an n-long string x and let y � x. Then there exists a sequence of
integers r1, . . . , rn with ri ∈ {0, 1} for all 1 ≤ i ≤ n such that

y = x
(r1)
1 x

(r2)
2 . . . x(rn)

n .

In fact, the sequence (ri) is a binary representation of an embedding of y in
x. It is natural to say that y is generated from x and with run-lengths ri. An
obvious generalization is to allow the ri to take a wider range {0, . . . , ρ} and
call the resulting objects the ρ-generated sequences of x. We will write y �ρ x
to denote that y is ρ-generated from x. With ρ = 1, these objects are the
ordinary subsequences of x and the relation �1 is the same as �.

Although in a ρ-generated sequence y from x, the individual runs are confined
to lengths {0, . . . , ρ}, this does not imply that the runs in y cannot exceed
ρ. For example, with x = aba, we can 2-generate a(2)b(0)a(1) = a(3) �2 aba.
Motivated by modern DNA sequencing technology that can sequence a whole
run at a time, but only reliably so when the run is not too long (about 4 or
5 characters), we are interested in counting sequences in which no run-length
exceeds ρ. Therefore we define the set Σk

ρ of k-long ρ-restricted sequences

Σk
ρ :=

{
u = u

(r1)
1 . . . u(rm)

m : ui+1 6= ui and 1 ≤ ri ≤ ρ for all i;
∑m

i=1 ri = k
}

.

Now we define the set of k-long, ρ-restricted sequences that are ρ-generated
from x ∈ Σn as

Sρ(x|k) :=
{
u ∈ Σk

ρ : u �ρ x
}

,

and we wish to count the sequences in this set. We subdivide Sρ(x|k) into

Sρ(x|k; σ) := {u ∈ Σk
ρ : u �ρ x and xk = σ},

19

i.e., we condition on the last letter of the subsequence. Furthermore we set

Sρ(x|k; σ) := Sρ(k) \ Sρ(x|k; σ).

Note that for k > 0 we have Sρ(x|k) = ∪σ Sρ(x|k; σ) as a disjoint union.
However, for k = 0 we have Sρ(x|0) = {λ} 6= {} = ∪σ Sρ(x|k; σ). We write
φρ(x|k), φρ(x|k; σ), and φρ(x|k; σ) for the respective cardinalities of the above
sets.

The next theorem [21] again implies a dynamic programming algorithm to
compute these quantities.

Theorem 4 [21] Let x ∈ Σn and k ≥ 1. Then

φρ(x|k; σ) =


φρ(x

n−1|k; σ) if σ 6= xn,
min{ρ,k}∑

r=1

φρ(x
n−1|k − r; σ) if σ = xn.

PROOF. If xn 6= σ, then the sequences in Sρ(x|k; σ) cannot end at xn; hence
they are already in Sρ(x

n−1|k; σ). Hence the cardinalities of these sets are
equal.

If, on the other hand, xn = σ, we may take any u ∈ S(xn−1|k − r; σ) and
append a σ-run σ(r) for any 1 ≤ r ≤ ρ (unless r > k); this yields a distinct
uσ(r) ∈ S(x|k; σ) in each case. Conversely, every string in this set is obtained by
appending a σ-run to such a prefix. Hence S(x|k; σ) = ∪1≤r≤min{ρ,k} S(xn−1|k−
r; σ), and since the union is disjoint, the cardinalities sum up. 2

We point out the special case ρ = 1, which counts the number of k-subsequences
of x, in which no two adjacent characters are equal:

φ1(x|k; σ) =

φ1(x
n−1|k; σ) if σ 6= xn,

φ1(x
n−1|k − 1; σ) if σ = xn.

In fact, the formula for general ρ can be derived from this special case by the
identity

φρ(x|k) =
∑
m≥0

φ1(x|k) · c(k, m, ρ),

where c(k,m, ρ) denotes the number of compositions [1] of k with m summands
that do not exceed ρ.

20

Table 4
Subsequence counting problems solved in this paper, along with their Java imple-
mentation

Object Symbol Reference Java method: count...

distinct subseq of x φ(x) Lemma 2 Subsequences(x)[|x|]

— of length k φ(x|k) Lemma 3 Subsequences(x)[|x|][k]

common subseq of x, y φ(x, y) Lemma 6 CommonSubsequences(x,y)[|x|][|y|]

— of length ≥ k φ(x, y|k) Theorem 1 not presently implemented

matching embeddings µ(x, y) Theorem 2 MatchingEmbeddings(x,y)[|x|][|y|]

— of length k µ(x, y|k) Lemma 7 not presently implemented

subseq with span m ϑ(x|m) Theorem 3 SubsequencesSpan(x)[m]

— of length k ϑ(x|m; k) Corollary 1 SubsequencesSpan(x)[m][k]

ρ-gen. ρ-restricted seq φρ(x) Theorem 4
∑ρ|x|

k=0
GeneratedSequences(x)[|x|][k]

— of length k φρ(x|k) Theorem 4 GeneratedSequences(x)[|x|][k]

7 Conclusion

Up to now, the systematic study of subsequences of one or several strings
has received relatively little attention, compared to the study of substrings.
With the present paper, we have collected and extended efficient algorithms
to count subsequences under different constraints; each problem we consider
is motivated by at least one application field (e.g., the study of categorical
time series in the social sciences, biological sequence analysis in bioinformat-
ics, string complexity considerations and string kernel construction in machine
learning). We provide a Java implementation using exact arithmetic of the al-
gorithms contained in this paper at http://ls11-www.cs.uni-dortmund.de/
people/rahmann/research/subseq. Table 4 summarizes the counting prob-
lems considered in this paper, along with the respective Java function call.

It remains open to find an efficient algorithm to count d-substrings (see Sec-
tion 5) or prove that this problem is NP-hard. We have noted that by choosing
y = (1, 2, 3, . . .) in the algorithms that count common subsequences or match-
ing embeddings, we can count increasing subsequences or embeddings in x, but
possibly for this problem, more efficient algorithms exist.

21

References

[1] G.E. Andrews, The Theory of Partitions, Cambridge University Press,
Cambridge, UK, 1998.

[2] M-C. Anisiu, Z. Blázsik, Z. Kása, Maximal Complexity of Finite Words, Pure
Mathematics and Applications, 13(1-2), (2002) 39-48.

[3] L. Bergroth, H. Hakonen, T. Raita, A survey of longest common subsequence
algorithms., in: Proceedings of the Seventh International Symposium on String
Processing and Information Retrieval (SPIRE’00), IEEE Computer Society,
2000, pp. 39-48.

[4] L. Bergroth, H. Hakonen, J. Väisänen, New refinement techniques for longest
common subsequence algorithms, in: M.A. Nascimento, E. Silvo de Moura, A.L.
Oliveira (eds.), String processing and Information Retrieval, 10th International
Symposium, SPIRE 2003, Springer, New York, 2003, pp. 287-303.

[5] P. Chase, Subsequence numbers and logarithmic concavity, Discrete
Mathematics 16 (1976) 123-140.

[6] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, New
York, 1994.

[7] A. de Luca, On the combinatorics of finite words, Theoretical Computer Science
218, (1999) 13-39.

[8] C.H. Elzinga, Combinatorial representation of token sequences, Journal of
Classification 22 (1) (2005) 87-118.

[9] C.H. Elzinga, Turbulence in categorical time series, Journal of Mathematical
Sociology (submitted).

[10] C.H. Elzinga, A.C. Liefbroer, De-standardization and differentiation of family
life trajectories of young adults: A cross-national comparison using sequence
analysis, European Journal of Population 23(3-4) (2007) 225-250.

[11] S. Ferenczi, Z. Kása, Complexity for finite factors of infinite sequences,
Theoretical Computer Science 218 (1999) 177-195.

[12] A. Flaxman, A.W. Harrow, G.B. Sorkin, Strings with maximally many distinct
subsequences and substrings, The Electronic Journal of Combinatorics 11 (2004)
8.

[13] R.I. Greenberg, Computing the number of longest common subsequences,
Computational Science Research Repository, arXiv:cs/0301034v1[cs.DS]
(http://arxiv.org/abs/cs/0301034), 2003.

[14] D. Gusfield, Algorithms on Strings, Trees and Sequences, Computer Science and
Computational Biology, Cambridge University Press, Cambridge, UK, 1997.

[15] D.S. Hirschberg, Algorithms for the longest common subsequence problem,
Journal of the ACM 24 (4) (1977) 664-675.

22

[16] A. Iványi, On the d-complexity of words, Annales Universitates Scientiarum
Budapestinensis de Rolando Eötvös, Sectio Computatorica 8 (1987) 69-90.

[17] Z. Kása, On the d-complexity of strings, Pure Mathematics and Applications 9
(1-2) (1998) 119-128.

[18] F. Levé, P. Séébold, Proof of a conjecture on word complexity, Bulletin of the
Belgian Mathematical Society Simon Stevin 8 (2) (2001) 277-291.

[19] M. Lothaire, Combinatorics on Words, vol. 17 of The Encyclopedia of
Mathematics and its Applications, Addison-Wesley, Reading, Mass., 1983.

[20] M. Lothaire, Algebraic Combinatorics on Words, vol. 90 of The Encyclopedia
of Mathematics and its Applications, Cambridge University Press, Cambridge,
UK, 2002.

[21] S. Rahmann, Subsequence combinatorics and applications to microarray
production, DNA sequencing and chaining algorithms., in: M. Lewenstein,
G. Valiente (eds.), Combinatorial Pattern Matching (CPM), Lecture Notes in
Computer Science (LNCS), vol. 4009, Springer, New York, 2006, pp. 153-164.

[22] J. Sakarovitch, I. Simon, Subwords, in: M. Lothaire (ed.), Combinatorics on
Words, chap. 6, Addison-Wesley, Reading, Mass., 1983.

[23] A. Salomaa, Counting (scatterred) subwords, Bulletin of the European
Association for Theoretical Computer Science (81) (2003) 165-179.

[24] H. Wang, All common subsequences, in: M.M. Veloso (ed.), IJCAI 2007,
Proceedings of the 20th International Joint Conference on Artificial Intelligence,
Hyderabad, India, 2007.

23

