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Abstract—The problem of similarity measure for time series has 
attracted considerable research interest. Most of the recently 
used algorithms utilize the Dynamic Time Warping (DTW) 
distance for measuring the similarity of time series, in various 
areas such as science, medicine, industry, and finance. DTW is a 
considerably more robust distance measure for time series, which 
allows similar shapes to match even if they are of different 
lengths. Unfortunately however, several serious problems are 
associated with the use of DTW, such as high complexity and 
“one to many” problems. The present study is aimed at 
introducing a novel technique for improving the DTW algorithm, 
known as Jumping Dynamic Time Warping (JDTW). It is proven 
that this approach improves the efficiency with lower omission 
factor and reduces the noise impact of query sequence.  
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I.  INTRODUCTION 
A time series is a sequence of data points, measured 

typically at successive times, and spaced at (often uniform) 
time intervals such as that of stock prices, exchange rates, and 
weather data [1]. One of the key issues of time series analysis 
is similar sequence matching. Similar sequence matching in 
time series databases involves a problem of finding data 
sequences similar to the given query sequence in the database 
[2]. There are two aspects of similar sequence matching: whole 
matching and part matching.   

Most algorithms used for matching time series utilize the 
Euclidean distance [3] or Dynamic Time Warping (DTW) 
distance [4]. However, it has been clearly shown that the 
Euclidean technique is a very brittle distance measure. On the 
other hand, DTW is a flexible distance measure and hence it 
has been widely used in the areas of science, medicine, industry, 
and finance. Unfortunately however, there may be a limitation 
of DTW for performance on very large databases [5]. In order 
to overcome this limitation, some lower bounding distance 
measures of DTW were proposed for improving the efficiency, 
which, however, reduced the precision. It was found that Fast 
search method for dynamic Time Warping (FTW) [6] 
improved the efficiency with the segmented DTW. 
Nevertheless, it faced the problem of “one to many”, which 
would lead to multi-point aggregation.  

In the present study, a novel technique is introduced for 
similar sequence matching of time series known as Jumping 
Dynamic Time Warping (JDTW). In the JDTW technique, 
each point of the query sequence can match in a certain range. 
Thus, after calculating the distances among the points in the 
range, the shortest distance is selected and the longer ones are 
jumped over. There are two main characteristics of JDTW, one 
is the certain range for improving the efficiency, and the other 
is jumping over the further points for reducing the noise impact. 

II. RELATED WORKS 
Similar sequence matching in time series databases is a 

problem of finding data sequences similar to the given query 
sequence from the database. It has been used in several data 
mining applications such as rule discovery [7], clustering [8], 
and classification [9,11]. 

A. DTW Distance 
DTW is a flexible distance measure, which allows warping 

of the time axes in order to better align the shapes of the two 
times series.  

Suppose there are two time series: Q(q1,q2,…,qn) and 
C(c1,c2,…,cm). Then, an n-by-m matrix should be constructed, 
as shown in Fig. 1. The element (ith, jth) of matrix is the 
distance between two points qi and cj. A warping path is a 
continuous set of matrix elements that defines a mapping 
between Q and C. The warping path is typically subject to 
several constraints: boundary conditions, continuity, and 
monotonicity. The shortest warping path is defined as DTW 
distance.  

 

Figure 1.  The n-by-m matrix for DTW distance 
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B. Lower Bounding of DTW 
Search similarity under DTW is a heavily CPU bound. 

Pruning sequences which can not possibly be a best match will 
save a considerable amount of time. Thus the lower bounding 
of DTW is introduced. There are two typical constraints used 
for the lower bounding of DTW, as shown in Fig. 2. With a 
lower bounding technique, the time complexity of DTW can be 
reduced from O(n2) to O(n) [5]. 

 

Figure 2.  Constraints for lower bounding of DTW  

C. Path Constraints of DTW 
Reference [10] presents a commonly used local path 

constraint to set the fan-in of only 27°-45°-63°, as shown in Fig. 
3. It supports the jumping process. If there are noise points, the 
mapping path could ignore the noise points. Since the 
optimum-value function is based on the total distance, the 
mapping path will sometimes take the local paths of 27° or 63° 
instead of 45° in an attempt to minimize the total distance. 

 

Figure 3.  Local path constraints 

With the “anchored beginning and anchored end”, the 
global path restriction can be got, as shown in Fig. 4. 

 

Figure 4.  Global path constraints 

The global path constraints shown in Fig.4 are deduced 
from the local path constraints of 27°-45°-63° shown in Fig. 3. 
The global path constraints serve two purposes: (1) reduce the 
computation load; and (2) limit the mapping path to be a 
reasonable one. 

III. JUMPING DYNAMIC TIME WARPING 
The present study presents a similarity measure of jumping 

dynamic time warping (JDTW). In JDTW, each point of a 
sequence is allowed to match with several points of another 
sequence. Subsequently, the nearest matched distance is chosen, 
and the further distances are jumped over. Thus, JDTW has the 
characteristic of reducing noise impact.  

A. Local Path Constraints of JDTW 
In reference [10], the mapping path will jump only one 

point each time. Subsequently, the length ratio of the two time 
series should be limited from 0.5 to 2, otherwise, the method 
will invalidate. For this purpose, in JDTW a point matching 
range r is presented. Suppose there are two time series 
X(x1,x2,…,xn) and Y(y1,y2,…,ym), then, r can be formulized as: 

 
n m n m

r
m n n m

⎧ ≥ ⎫⎢ ⎥⎪ ⎪⎣ ⎦= ⎨ ⎬<⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
 (1) 

With the point matching range, the mapping path of JDTW 
can jump over more than one point. Each point can be matched 
with several points, shown in Fig. 5. 

 

Figure 5.  The range limitation of point matching 

The local path constraints shown in Fig. 6 can be obtained 
with the point matching range r. Subsequently, the fan-in can 
be set from arctan(1/r) to arctan(r) for the local path 
constraints. The nearest matched distance is chosen, and the 
further distances are jumped over. 

Similar to DTW, JDTW presents an n-by-m matrix for 
calculating the distance between two time series, as shown in 
Fig. 7. 
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Figure 6.  Local path constraints of JDTW 

 

Figure 7.  The mapping path supporting jumping 

A mapping path W is a correspondingly contiguous set of 
matrix elements that defines a mapping between Q and C. The 
k-th element of W is wk=(ik,jk), then W can be formulized as: 

 1 2( , , , , , ) max( , ) / max( , )k KW w w w w n m r K n m= ≤ ≤… …    (2) 

Where, the mapping path should satisfy the following 
conditions: 

(1) Bounding condition: w1=(1,1) and wK=(n,m). 

(2) Continuity: If wk=(a,b), and wk-1=(a',b'), then (a-a'≤r) 
&&(b-b'=1) or (b-b'≤r)&& (a-a'=1). 

(3) Monotonicity: If wk=(a,b), and wk-1=(a',b'), then a-
a'≥1 and b-b'≥1. 

The shortest mapping path is defined as JDTW distance 
which formulized as: 

 
1

( , ) min( )
K

jdtw k
k

D X Y w
=

= ∑  (3) 

The shortest mapping path can be calculated by dynamic 
programming by defining the cumulative distance Ddist(i,j) as 

the distance d(i,j) found in the current cell and the minimum of 
the cumulative distances of the adjacent elements. 

( , ) ( ) min{ ( 1, 1), ( 1, 2),

, ( 1, ), ( 2, 1), , ( , 1)}
dist i j dist dist

dist dist dist

D i j d x y D i j D i j

D i j r D i j D i r j

= − + − − − −

− − − − − −… …
 (4) 

where, d(xi,yj) is the distance between the i-th point of X and 
the j-th point of Y.  

The 27-45-63 local paths in reference [10] can be taken as a 
special case of JDTW when r=2. 

B. Global Path Constraints of JDTW 
Since the required mapping path is "anchored beginning, 

anchored end", the local path constraints can induce the global 
path constraints, as shown in Fig. 8. The global path constraints 
are addressed from arctan(1/r) to arctan(r), and thus the 
mapping path can be limited to be a reasonable one. 

 

Figure 8.  Global path constraints of JDTW 

The feasible region for the mapping path is a trapezoid, as 
shown in Fig. 8. The computation time can be saved by the use 
of global path constraints. It is not required to calculate the 
white area. The non-calculated area can be formulized as: 

1( ,1) ( , ) ( 2 )

1( , 1) ( , ) ( 2 )

1(1, ) ( , ) ( 2 )

1( 1, ) ( , ) ( 2 )

iw i w i i n
r

n iw i m w i m i n
r

jw j w j j m
r

m jw n j w n j j m
r

⎧ −⎡ ⎤ =⎪ ⎢ ⎥⎢ ⎥⎪
⎪ − +− + =⎪⎪
⎨

−⎡ ⎤⎪ =⎢ ⎥⎪ ⎢ ⎥
⎪

− +⎪ − + =⎪⎩

" "

" "

" "

" "

 (5) 

In summary, there are two aspects of global path constraints:    

(1) To reduce the computation load.   

(2) To limit the mapping path to be a reasonable one.  

IV. EXPERIMENTAL EVALUATION 
Thirty thousand CBF (Cylinder-Bell-Funnel) data were 

selected as the test data. Subsequently, noise data were injected 
into the original CBF data to create the test database. The 
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samples of the original CBF data are shown in Fig. 9, and the 
samples of processed CBF data are shown in Fig. 10. 

 
a. Cylinder 

 
b. Bell 

 
c. Funnel 

Figure 9.  Samples of original CBF (Cylinder-Bell-Funnel) dataset 

 
a. Cylinder 

 
b. Bell 

 
c. Funnel 

Figure 10.  Samples of processed CBF (Cylinder-Bell-Funnel) dataset 

In the present study, comparison experiments were 
performed with the k-nearest neighbor (k-NN) algorithm 
(k=5000). Two similarity measures (JDTW and DTW) were 
compared in the same k-NN algorithm, and the measure quality 
was evaluated by precision. Precision is the proportion of the 
returned sequences that are correctly matched. In JDTW, the 
computation time can be saved by skipping the elements 
outside the parallelogram, whereas in DTW, the whole matrix 
must be computed. Thus, the improvement in efficiency is 
obvious, and therefore, the cost time is not included in the 
comparison experiment.  

In reference [10], the length ratio of the two time series 
should be limited from 0.5 to 2; otherwise, the method will 
invalidate. It should be noted that a comparison experiment 
between JDTW and the method in reference [10] has not been 
designed because it can be seen as a special case of JDTW.   

A. Comparison Experiment with Original CBF Data 
In this experiment, the original CBF data is used, and the 

lengths of data sequence and query sequence are both equal to 
128. There are three aspects of this experiment: 

• Data sequences use the original CBF data, and query 
sequences use random sequence data. 

• Data sequences use the processed CBF data, and query 
sequences use random non-noise sequence data. 

• Data sequences use the processed CBF data, and query 
sequences use random noise sequence data. 

Each aspect of the experiment includes ten query sequences. 
The experimental results are shown in Table 2. The JDTW 
achieves nearly the same results when non-noise sequence is 
used. When the noise sequence is used, it is found that the 
precision of JDTW is 9 percent higher than that of DTW. 

TABLE I.  PRECISION COMPARISON BETWEEN DTW AND JDTW 

Query Sequence DTW JDTW 

Random sequence from original CBF database 0.9969 0.9859 
Random non-nosie sequence from  processed CBF 
database 0.9980 0.9988 

Random nosie sequence from processed CBF database 0.8035 0.8926 

B. Comparison Experiment with Processed CBF Data 
In this experiment, we used the processed CBF data. There 

are two aspects of this experiment: 

• Data sequences use the processed CBF data with 
length of 128, and query sequences use random non-
noise sequence data with length of 32, 64, 96, and 128. 

• Data sequences use the processed CBF data with 
length of 128, and query sequences use random noise 
sequence data with length of 32, 64, 96, and 128. 

Each aspect of the experiment includes ten query sequences. 
The precisions of DTW and JDTW under different query 
sequence lengths are shown in Figs. 11 and 12. Different length 
ratios require different constraints; precision comparisons 
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among all kinds of different constraints are shown in Figs. 11 
and 12. 

 
Figure 11.  Precision comparision with  non-noise query sequence 

 

Figure 12.  Precision comparision with  noise query sequence 

As seen in Fig. 11, JDTW and DTW achieve similar 
precisions with non-noise query sequence. However, it can be 
clearly seen that JDTW has an advantage over DTW in the 
noise condition, as shown in Fig. 12, since JDTW can reduce 
the noise impact. In summary, the novel approach improved the 
efficiency with lower omission factor and reduced the noise 
impact of query sequence. 

V. CONCLUSIONS 
This study was aimed at presenting a similarity measure of 

jumping dynamic time warping. The advantage of the new 
measure, of being able to jump over noise points, was proven.  
It is thus evident from the results of the experiments that the 
measure is effective in the noise condition. However, to make 

the technique more effective for the real world data, the 
constraints optimization algorithm must be further developed. 
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