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Abstract—Wireless sensor networks have been recognized as
promising tools to collect relevant, in-situ data for a wide range
of application domains. However, such networks suffer from
hard constraints including the allocated resources. Hence, current
research endeavors strive to minimize the amount of data that
has to be transmitted. This is typically achieved via data fusing
or sending some nodes to sleep mode whenever their readings
exhibit a high degree of spatio/temporal correlation. Accordingly,
the degree of correlation can be considered as a metrics for
data filtering. The Dynamic time warping (DTW) algorithm is
a “natural” candidate for data fusion and correlation estimation
at intermediate sensor nodes via matching the various measured
readings. However, the DTW algorithm suffers from the excessive
computational overhead which is ill-suited for the “resources-
taxed” sensor nodes. This work aims at reducing this burden via
refining the implementation procedure of the DTW algorithm.
The liteDTW is a novel version of the DTW algorithm with linear
operations and fuzzy abstraction. The core idea is to reduce
the DTW matrix dimensions via shrinking the input patterns.
Several simulations and real experiments have been conducted
to validate that the liteDTW algorithm excels over the naı̈ve one
in terms of accuracy, time and space overhead. Moreover, the
Cooja simulator of the Contiki OS has been utilized to assess the
energy profit of adopting the liteDTW algorithm for data fusion.

Keywords—Wireless Sensor Networks; Energy Efficiency; Data
Fusion; Dynamic Time Warping; Fuzzy Abstraction; Complexity

I . I N T R O D U C T I O N

Wireless sensor networks (WSNs) paved their way as a
fertile research space with a vivid business window. Their
markets at $552.4 million in 2012 become extremely dilated,
very fast reaching $14.6 billion by 2019 [1]. The WSN
development has been driven by several applications such as
military applications, industrial process monitoring and control
machine health monitoring, and so on. Data redundancy is
an undesired issue in WSN applications, whenever energy
efficiency is of high interest. Data fusion and duty cycling are
typically two methods for eliminating such redundancies. Data
fusion is generally defined as the use of techniques that merge
information from multiple nodes and gathering this information
to achieve inferences [2]. Moreover, data fusion techniques are
recently utilized to overtake sensor failures, spatial and temporal
coverage problems, and technological limitations. Duty cycling,
on the other hand, is a well-known approach to reduce data
redundancy via sending unnecessary nodes to sleep mode. The
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crux here is to exploit the spatio/temporal correlation that exists
among neighboring sensor nodes. Specifically, aggregating
nodes have to discover the correlation degree between the
various received readings. Afterward, they decides about the
redundant nodes which could be switched to sleep mode. Driven
by the demand in WSNs for using data fusion and duty cycling
techniques, we have recently seen a rapidly growing interest in
developing the way to process the collected data and addressing
the pattern matching problem. The pattern matching problem
has been previously addressed in the context of data mining [3].
Here, we will focus on solving the pattern matching problem
by using the dynamic time warping (DTW) algorithm.

Dynamic time warping is a well-known technique to find
an optimal alignment between two sequences under certain
restrictions [4]. It has been widely used for optimal alignment
of two time series through iteratively warping the time axis
until an optimal match between the two sequences is found.
However, such an algorithm is bulky and ill-suited for the
tiny sensor nodes. In this paper, the DTW implementation is
refined to minimize the time/space complexity. We call our
novel algorithm lightweight dynamic time warping (liteDTW).
The main idea of liteDTW is to 1) reduce the required memory
footprint, and 2) simultaneously shrink the length of the input
patterns. For the sake of linear implementations, the DTW
matrix is evaluated over several iterations. At each iteration,
two columns of the matrix are solely considered to determine
the optimal path points. Then, shift operations are executed to
iterate over the rest of the DTW matrix. The second approach
is to slash the window size via using a Fuzzy transform-
based compression (FTC) technique [5]. Accordingly, the data
dimension is decreased prior to the DTW execution. Finally,
some experimental results are conducted to clarify the efficiency
of the liteDTW technique compared to the classical DTW
algorithm.

The remainder of this paper is organized as follows. Section
II provides a brief overview of existing DTW speed-up methods.
Section III discusses the basic idea behind DTW algorithm.
Moreover, the DTW algorithm is evaluated in terms of accuracy
and cost. Section IV depicts two approaches for mitigating the
DTW complexity including algorithm linearization and FTC-
based abstraction. Section V presents the liteDTW performance
evaluation through simulations as well as real experiments.
Finally, conclusion and outlook are addressed in Section VI.

I I . R E L AT E D W O R K

In literature, several articles have discussed the DTW
algorithm as in [6], [7], [4]. In the last decades, a lot of
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attention has gone to modify the classical DTW algorithm as
it has a quadratic time and space complexity that limits its use
to only small time series data sets. The well-established, yet
still being subject of active research, techniques for making
the DTW faster fall into three categories, constraints [8], [9],
data abstraction [10], [11], and indexing [12], [13]. Constraints
typically limit the number of cells that are evaluated in the cost
matrix. In the second category, data abstraction performs the
DTW algorithm on a reduced representation of the data. Finally,
indexing uses lower bounding functions to shrink the number
of times the DTW algorithm must be executed during time
series classification of clustering. The proposed techniques in
[14] and [15] are promising techniques with some similarities
to our work.

Salvador et al. [14] proposed an approximation of the DTW
algorithm based on the multilevel approach that is used for
graph bisection. The algorithm uses techniques that belong to
the two categories, namely constraints and data abstraction.
For instance, the algorithm uses projection operation to find
the minimum-distance warp path at a lower resolution, and it
uses that warp path as an initial guess for a higher resolution’s
minimum-distance warp path. However, our method linearizes
the DTW algorithm by only retaining two columns each
iteration. Therefore, we avoid the disadvantages of projecting
the warp path from low resolution to higher resolution. This
projection may ignore local variations in the warp path that
can be very significant even after refinement. Moreover, we
use Fuzzy transform-based compression (FTC) to lessen the
data dimension due to its high speed and adequate precision.
This abstraction is more efficient for tiny devices such as in
WSNs than the coarsening operation presented in [14].

Sakurai et al. [15] proposed a fast search method for the
DTW algorithm. The core idea is to use a lower bounding
distance measure with segmentation (LBS) technique. In lieu
of computing the exact time warping distance for all sequences
in the dataset, LBS prunes a significant number of sequences.
Then, it excludes warping paths that will not lead to useful
search result by using dynamic programming. Finally, the
authors have used a search algorithm to enhance the accuracy
of the distance approximations. This technique is significant,
however our technique is much simpler and easy to implement
especially in case of WSN applications. In addition, our
approach has been examined on real datasets via extensive
simulations over the Telosb sky sensor nodes. In the next
section, we introduce the basics of patterns matching using the
DTW algorithm.

I I I . DY N A M I C T I M E WA R P I N G

A. Preliminaries
As aforementioned, the pattern matching problem has been

previously addressed in the context of data mining [3]. Eu-
clidean distance is a well-known linear metric for quantifying
the distance between two vectors. Assume two sequences,
A ∈ Rn and B ∈ Rm to be correlated where

A = 〈a1, a2, a3, . . . , ai, . . . , an〉 (1)

B = 〈b1, b2, b3, . . . , bj , . . . , bm〉 (2)

the Euclidean distance Euc(A,B) is as denoted as follows.

Euc(A,B) = |A−B| iff m = n (3)

Despite its simplicity, the Euclidean metrics is ill-suited for
real-time tasks with sequences of unequal lengths. Moreover, it
is highly sensitive to outliers. The dynamic time warping (DTW)
algorithm, on the other hand, is a classic time series alignment
algorithm. It has been widely used for optimal alignment of two
time series through warping the time axis iteratively until an
optimal match (according to a suitable metrics) between the two
sequences is found. In general, the DTW’s non-linear behavior
produces a more intuitive similarity measure compared with
the Euclidean distance. As shown in Fig. 1, the DTW measure
replaces the one-to-one point comparison, used in the Euclidean
distance, with a many-to-one (and vice versa) comparison. The
green lines represent mapping between points of time series
T and S. The main feature of this distance measure is that it
allows to recognize similar shapes, even if they present signal
transformations, such as shifting and/or scaling.

Fig. 1: Comparing the behavior of the DTW and the Euclidean
distances [16]

Figure 2 visualizes the matching between a reference and
a test pattern arranged on the sides of a m× n matrix where
the elements are the DTW distances dn,m as expressed in
Eq. 4. Several paths could be drawn from element (1, 1) to
element (n,m) of the matrix. However, the optimum alignment
Popt = 〈p1, p2, . . . , pk〉 minimizes the total inter-distances as
denoted by Eq. 5.
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Fig. 2: Choosing the optimum warping path of length k = 10
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dn,m =

{ |a1 − b1| if n = m = 1
|an − bm|+Wn,m otherwise

Wn,m = min(dn−1,m, dn,m−1, dn−1,m−1)

(4)

Popt = m
P
in

{
k∑

s=1

dn,m

}
(5)

The search space is governed by a set of design constraints
summarized in Table I. First, the path P should continuously
advance one-step at a time to avoid discarding important
features. Moreover, the path should be monotonically non-
decreasing to hamper features recurrence. Finally, the start and
end points should extend from point (1, 1) to point (n,m) to
align the two sequences. In some applications, a global rule
defines a warping window R ⊆ [1 : n]× [1 : m] to speed up
the algorithm. Nevertheless, confining the search space to the
window R is debatable, since the path Popt may traverse cells
outside the specified constraint region. Thereof, we deliberately
ignored this constraint for matching optimization.

TABLE I: A summary of alignment path constraints

Continuity di,j −di−1,j ≤ 1 & di,j −di,j−1 ≤ 1

Monotonicity di−1,j ≤ di,j & di,j−1 ≤ di,j

Boundary Conditions p1 = d1,1 & pk = dn,m

Algorithm 1 shows a description of our recursive implemen-
tation of the DTW algorithm. In lieu of utilizing two matrices
to determine the DTW distance, we modified the procedure
in a recursive way to only process one matrix. At the outset,
the DTW distances are horizontally and vertically determined.
Then, Eq. 4 evaluates the rest of the matrix. Through lines 9-
15, the path Popt – which is initialized to the empty path – is
selected through point-to-point optimization. Since the DTW
has to compare several sensor patterns, each DTW distance
is normalized to the length of Popt, denoted by k, enabling
fair comparisons. To determine the best match, the normalized
distance χmin is chosen as given in line 16. Equation 6, on
the other hand, defines a threshold H via normalizing the
χmin distance. This margin defines a binary similarity decision
between two patterns. Such a decision results in activating or
deactivating sensor nodes with highly correlated data. Moreover,
Eq. 6 normalizes the distance DTW (A,B). Hence, H is
not updated in accordance with φ. Subsequently, we show
experimentally (Sec. III-B) that a fixed value of H = 0.1 is
robust across a wide range of patterns. Next, we evaluate the
performance of the standard DTW in terms of its accuracy and
cost via using real measured vibration patterns.

[χmin] . [χmax]
−1
< H (6)

B. DTW Evaluation
In this section, DTW precision and time/space complexity are

examined. For this purpose, an Arduino UNO board has been
utilized to sample seismic patterns from a LDT piezoelectric
vibration sensor. Different measuring scenarios of speed 0.5
m/sec have been considered and summarized in Table II. For

Algorithm 1 Recursive implementation of the DTW algorithm

Require: Reference pattern A ∈ Rn, and test pattern B ∈ Rm

1: for i such that 1 ≤ i < n do
2: for j such that 1 ≤ j < m do
3: d1,1 ← |a1 − b1|;
4: if !(i)& j == 1 then � Horizontal border

5: d1,j ←
∑j

x=1(|a1 − bx|);
6: else if i & !(j) == 1 then � Vertical border

7: di,1 ← ∑i
y=1(|ay − b1|);

8: else di,j ← |ai − bj |+Wi,j ; � Matrix’s heart

9: while i < 1 & j < 1 do � Optimal path
10: Popt ← Popt + di,j ;
11: if Wi,j == di−1,j then
12: i← (i− 1);
13: else if Wi,j = di,j−1 then
14: j ← (j − 1);
15: else i← (i− 1) & j ← (j − 1) ;

16: χ(A,B)← Popt

k ; � Normalization

comparison purposes, the vibration patterns are classified into
target T and non-target NT patterns.

TABLE II: Indexing reference and test patterns

Index Target Patterns Index Non-target Patterns

T1 Straight walking (indoor) NT1 Background

T2 Straight walking (outdoor I) NT2 Finger drumming

T3 Straight walking (outdoor II) NT3 Straight walking by a mobile machine (indoor)

T4 Circle walking (indoor) NT4 Straight walking by a mobile machine (outdoor)

T5 Circle walking (outdoor)

Figure 3 depicts samples of DTW accuracy results obtained
from contrasting some targeted and non-targeted vibration
patterns. In each sub-figure, a vibration pattern is compared
to the other patterns. Knowing that DTW (A,A) = 0, pattern
Aindoor is matched with Aoutdoor to clarify the process of
selecting the best match. Obviously, the DTW algorithm has
successfully matched indoor and outdoor pairs via adopting the
minimum DTW distance. A fixed margin of H = 0.1 (colored
in pink) is utilized to make a decision of similarity between
two patterns whenever the distance exceeds it.

C. Cost Analysis

Generally, manifold cells of a m×n matrix are filled exactly
once throughout the DTW execution, and each cell is filled in
constant time. This yields both a space complexity of O

(
n×m)

.
Initially, the window size of the contrasted patterns is a main
metric which affects the algorithm speed and the memory
footprint. Figure 4 depicts the impact of increasing the window
size on the distance between the pattern T1 and some other
patterns. As it can be seen, the pattern T2 has minimum
distance with T1 for the entire range of window sizes. So,
we conclude that the normalized distance – in these settings –
is distinguishable even with small windows.
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Fig. 3: Examples of the DTW algorithm utilization for vibration pattern matching
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Fig. 4: Window size versus warping distance from T1

However, the above finding is collapsed when other patterns
are examined versus various window sizes to safely adopt a
window size that is adequate for matching the entire patterns.
Figure 5 depicts the minimum window size for each pattern to
be distinguishable in a duty cycling approach. For instance, the
pattern NT2 can be matched easily if the window size is above
200. Obviously, sampling φ up to the maximum value (960)
ensures safe detections for all vibration patterns. However,
this window size burdens the nodes in terms of space/time
complexity. To sum up, the DTW-based duty cycling will
be solely eligible for hardware implementation, whenever we
managed to slash the optimal window size.
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Fig. 5: Optimal window size for the available patterns

I V. L I T E D T W: D T W R E F I N E M E N T

In this section, we explain our proposed procedure for
minimizing the time/space complexity from O

(
n × m

)
to

an extent viable for hardware implementation. The idea is
to integrate two complementary approaches: one for reducing
the code complexity and memory utilization, and the other one
for slashing the window size. Both approaches, as discussed
below, upgrade the standard DTW algorithm into a new version
referred to as the liteDTW algorithm.

1) Linear DTW Algorithm: The first approach is to linearize
the time/space complexity implementation of the DTW algo-
rithm. This is feasible through preserving only the current and

previous columns in memory as the DTW matrix is filled from
left to right. Figure 6 shows a three-iterations matching process
between two sequences. In each iteration, only two columns
are retained and points of the optimal warp Popt (colored in
red) are determined. Then, the first column is discarded, while
the second column is used to estimate the third column. This
process is repeated until covering the entire matrix. Algorithm 2
formalizes the linearization mechanism. Lines 2-5 clarify the
first two columns’ processing. Afterward, the (n×2) sub-matrix
(colored green in Fig. 6) is shifted once to discard the first
column and the variable ρ is set to 1 to compute only one
column during the next iteration. Specifically, the linear DTW
method simplifies the execution overhead from O

(
n×m)

to

merely O
(
n× 2) which highly reduces the required memory

footprint.

0 1 1 2 2 3

1

2

3

0

Iteration 1 Iteration 2 Iteration 3

Fig. 6: Two-columns version of the DTW algorithm

Algorithm 2 Two-columns version of the DTW algorithm

Require: Reference pattern A ∈ Rn, and test pattern B ∈ Rm,
ρ = 0

1: for s such that 0 ≤ s < m− 1 do � (m-1) iterations
2: for i such that 0 ≤ i < n do
3: for j such that ρ ≤ j < 2 do
4: Determine di,j as in Eq. 4

5: Select di,j ∈ Popt;
6: d[n× 2]← left shift(d[n× 2]);
7: ρ← 1; � Evaluating only one column

8: χ(A,B)← ∑
(Popt)/k;

2) Fuzzy Abstraction: The crux here is to lessen the data
dimension prior to DTW execution. Various techniques have
been introduced in the literature for data compression. However,
we prefer our Fuzzy transform-based compression due to its
simplicity while offering adequate precision. The approximation
error – introduced by the compression process – is relative and
has no influence on the correlation decision since it is applied
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to the entire set of contrasted patterns.
The Fuzzy transform is defined as a fuzzy set mapper of

a continuous/discrete function into an n-dimensional vector
[17]. Assume that a time series is confined into an interval
φ = [a, b] as a universe. This domain is fuzzy-partitioned by
Fuzzy sets given by their basic function. Figure 7 depicts an
example of a uniform triangular basic function with equidistant
points given by Eq. 7. The red line implies that summation of
any two vertical points should be equal to 1. Generally, the
shape of basic functions forges the approximating function.
Hence, the F-transform is well-suited for dealing with linear
and non-linear sensor readings.

x1 xk
0

1

x0 = a xn = b

p

1-p

A1 A2 Ak An

Fig. 7: Uniform triangular basic function

xk = a+
(b− a)(k − 1)
(n− 1) (7)

Strictly speaking, the direct F-transform converts the original
signal into an n-dimensional vector, where n corresponds to
the number of triangular functions applied. Inverse F-transform,
on the other hand, approximates the original signal utilizing the
Fuzzy vector. The F-transform is explicitly defined for discrete
as well as continuous functions.

Definition 1. Assume a fuzzy partition of φ be given by basic
functions A1, ..., An ⊂ φ and n > 2. If a F-transformer has
been triggered with a discrete function f : φ → R known at
nodes x1, ..., xl such that for each k = 1, ..., n, there exists
j = 1, ..., l : Ak(xj) > 0. Then, the n-tuple of real numbers
[F1, ..., Fn] is given by

Fk =

∑l
j=1 f(xj)Ak(xj)∑l

j=1Ak(xj)
. (8)

The Fuzzy control theory is crucial for understanding the F-
transform essence. Specifically, the direct F-transform resembles
a defuzzification process (Center of gravity) through which
linguistic variables (“low”, “medium”, “high”, etc.) are mapped
onto real numbers. This implies that each vector element Fk

constitutes the weighted average of the data points f(xj) ∈
[xk−1, xk+1].

Definition 2. Suppose a fuzzy vector Fn[f ] = [F1, ..., Fn] w.r.t.
A1, .., An has been applied to an inverse F-transformer. The
recovered signal is given by

fF,n(x) =
n∑

k=1

FkAk(x). (9)

The basic function’s characteristics such as their shape and
length, devote a fine-grained control over the recovery process.
Therefore, they have to be carefully designed to avoid imperfect

transformation. The interested readers can find more properties
and proofs in [17].

V. P E R F O R M A N C E E VA L U AT I O N

In this section, the liteDTW algorithm is evaluated and
compared to the recursive procedure of the DTW algorithm.
Two sets of evaluations have been conducted. The simulations
have been devoted to evaluate accuracy, time, and space
complexity of both algorithms in a sample setting. In order to
validate the profit of adopting the liteDTW algorithm for data
fusion, a network of TelosB sensor nodes has been simulated
in a Cooja environment.

Both of DTW and liteDTW algorithms have been imple-
mented using the C language. The simulator runs on a machine
with 2.5 GHz processor and 8 GB RAM with Windows 7
OS. These kind of simulations are utilized to prove the excel
of liteDTW over the naı̈ve algorithm regarding time/space
complexity. Moreover, the liteDTW’s accuracy is examined
relative to the recursive algorithm. Figures 8 and 9 depict
samples of comparison between the standard DTW algorithm
and the liteDTW for comparing the patterns NT4 and T1 of
Section III-B with other patterns utilizing a thousand data points.
Obviously, liteDTW has an identical precision as the naı̈ve
DTW although liteDTW solely matches fifty fuzzy-compressed
samples. For instance, both algorithms generate a minimum
correlation between the patterns T1 and T2 as shown in Fig. 9.
Nevertheless, liteDTW has a memory footprint of 800 bytes
whereas the naı̈ve DTW demands 7.6 MByte using the same
data points. Thus, the liteDTW algorithm is an efficient tool
for detecting correlations.
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Fig. 8: Precision of liteDTW versus DTW for NT4 matching
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Fig. 9: Precision of liteDTW versus DTW for T1 matching

The execution time of an algorithm is another significant
metrics for recognizing the algorithm’s complexity. This set
of experiments has not been run on typical sensor nodes –
due to complexity of the naı̈ve DTW. However, it gives us a
“good” indication about the difference in complexity between
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these two implementations. Table III lists the obtained results
of running the two algorithms. For the liteDTW algorithm,
it has been tested for different compression ratios including
10%, 25%, 50%, and 75%. Each of these delay values repre-
sents an average of several executions. Clearly, both algorithms
have an exponential growth with increasing the window size.
However, the liteDTW has much smaller delay than that of the
naı̈ve DTW even with low compression ratio.

TABLE III: CPU time consumption (in sec) of the DTW and
the liteDTW

Window Size DTW liteDTW

10% 25% 50% 75%

200 0.43 0.01 0.02 0.03 0.06

400 0.82 0.02 0.04 0.11 0.24

600 1.88 0.03 0.06 0.26 0.55

800 3.25 0.03 0.12 0.42 0.98

1000 5.54 0.04 0.18 0.69 1.52

2000 21.77 0.13 0.69 2.63 6.11

In the sequel, the liteDTW is ported to an aggregating node
which executes data fusion. The setup involved a network under
the ConikiMAC radio duty cycling protocol with the collect
communication primitive in the Rime stack of the Contiki OS.
The run-time power consumption was estimated utilizing the
powertrace module as denoted in Eq. 10. The power in milliwatt
is a function of the activity (ψ) start and end times, the operating
current (I) which can be obtained from the datasheet, the supply
voltage (Vsupply), the number of ticks per second (α), and the
experiment runtime (τ) in seconds. Table IV lists the radio and
CPU power consumption of the aggregating node in one round.
The power consumption is determined for several network sizes
(excluding the aggregating node). For instance, the aggregating
node consumes 260.56 mW by the radio module for transmitting
and receiving packets from different 4 child nodes. Alternatively,
it can only consumes 135.98 mW if the liteDTW algorithm is
adopted. To sum up, radio power consumption is drastically
reduced with data aggregation at the expense of slight increase
in the CPU power consumption.

TABLE IV: Power consumption (in mW) of an aggregating
sensor node

Network Size Without data fusion With data fusion

Radio CPU Radio CPU

2 130.29 12.16 130.29 24.33

3 195.44 19.12 119.59 30.37

4 260.59 31.25 135.98 41.02

5 325.74 35.68 104.98 58.43

Pψ =
(ψend − ψstart)× I × Vsupply

α× τ (10)

V I . C O N C L U S I O N

In this work, a novel approach, referred to as liteDTW,
has been proposed to speed up the DTW pattern matching

algorithm. It utilizes the FTC compressor for reducing the
input pattern lengths. Hence, the number of cells in the
DTW matrix is drastically reduced. Moreover, the liteDTW
algorithm reduces the required memory footprint via dividing
the implementation process into several iterations. Thus, the
complexity is reduced from O

(
n2

)
to only O

(
2n

)
. Accordingly,

the liteDTW algorithm has been shown as a comprehensive
solution for solving the redundancy problem via data fusion and
duty cycling. A set of experiments proved that the liteDTW is an
efficient method in terms of accuracy, time/space complexity,
and energy consumption. For the future work, we plan to
conduct an experimental comparative analysis between the
liteDTW and other speeding up mechanisms.
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