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Abstract

Computational intelligence techniques for financial trading systems have always been quite
popular. In the last decade, deep learning models start getting more attention, especially
within the image processing community. In this study, we propose a novel algorithmic trad-
ing model CNN-TA using a 2-D Convolutional Neural Network based on image processing
properties. In order to convert financial time series into 2-D images, 15 different technical
indicators each with different parameter selections are utilized. Each indicator instance gen-
erates data for a 15 day period. As a result, 15x15 sized 2-D images are constructed. Each
image is then labelled as Buy, Sell or Hold depending on the hills and valleys of the original
time series. The results indicate that when compared with the Buy & Hold Strategy and
other common trading systems over a long out-of-sample period, the trained model provides
better results for stocks and ETFs.

Keywords:  Algorithmic Trading, Deep Learning, Convolutional Neural Networks,
Financial Forecasting, Stock Market, Technical Analysis

1. Introduction

Stock market forecasting based on computational intelligence models have been part of
stock trading systems for the last few decades. At the same time, more financial instruments,
such as ETFs, options, leveraged systems (like forex) have been introduced for individual
investors and traders. As a result, trading systems based on autonomous intelligent decision
making models are getting more attention in various different financial markets globally [1].

In recent years, deep learning based prediction/classification models started emerging
as the best performance achievers in various applications, outperforming classical computa-
tional intelligence methods like SVM. However, image processing and vision based problems
dominate the type of applications that these deep learning models outperform the other
techniques [2].
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In literature, deep learning methods have started appearing on financial studies. There
are some implementations of deep learning techniques such as Recurrent neural network
(RNN) [3], convolutional neural network (CNN) [4], and long short term memory (LSTM)
[5]. In particular, the application of deep neural networks on financial forecasting models
have been very limited.

CNNs have been by far, the most commonly adapted deep learning model [2]. Meanwhile,
majority of the CNN implementations in the literature were chosen for addressing computer
vision and image analysis challenges. With successful implementations of CNN models, the
model error rates keep dropping over years. Despite being one of the early proposed models,
AlexNet achieved 50-55% success rate. More recently, different versions of Inception (v3,
v4) and ResNet (v50, v101, v152) algorithms achieved approximately 75-80% success rate
[2]. Nowadays, almost all computer vision researchers, one way or another, implement CNN
in image classification problems.

In this study, we propose a novel approach that converts 1-D financial time series into
a 2-D image-like data representation in order to be able to utilize the power of deep convo-
lutional neural network for an algorithmic trading system. In order to come up with such
a representation, 15 different technical indicator instances with various parameter settings
each with a 15 day span are adapted to represent the values in each column. Likewise, x axis
consists of the time series of 15 days worth of data for each particular technical indicator
at each row. Also the rows are ordered in such a way that similar indicators are clustered
together to accomplish the locality requirements along the y-axis. As a result, 15x15 pixels
sized images are generated and fed into the deep convolutional neural network. To the best
of our knowledge, a 2-D representation of financial technical analysis time series data and
feeding it as the input for a 2-D image classification based deep CNN, namely CNN-TA,
for a financial trading system is novel; since it has not been used not only for any trading
system, but also in any financial prediction model the way we have proposed here. Perfor-
mance evaluation indicates, such an approach actually performs remarkably well even over
long periods. The proposed model outperformed Buy & Hold, common technical indicator
based models, most widely used neural network, namely MLP, and the state of the art deep
learning time series forecasting model, namely LSTM, on short and long out-of-sample pe-
riods. Even though, this is probably one of the first attempts using such an unconventional
technique, we believe, the proposed model is promising. Moreover, parameter optimization
and model fine tuning might even boost the performance even further.

The rest of the paper is structured as follows: After this brief introduction, the related
work is presented in Section 2 followed by the Model features described in Section 3. The
implementation methodology is given in Section 4 where the data, model and the algorithm
details are explained. Financial evaluation of the proposed model is analyzed in Section 5.
Finally we conclude in Section 6.
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2. Related Work

2.1. Time Series Data Analytics

In literature, there are different adapted methodologies for time series data analysis.
These can be listed as follows: statistical and mathematical analysis, signal processing,
extracting features, pattern recognition, and machine learning. Statistical and mathemat-
ical analysis in time series data can be achieved through determining the mathematical
parameters such as maximum, minimum, average, moving average, variance, covariance,
standard deviation, autocorrelation, crosscorrelation and convolution in the sliding window
[6]. Curve fitting, regression analysis, autoregressive moving average (ARMA), autoregres-
sive integrated moving average (ARIMA), Bayesian analysis, Kalman filter methods are the
mathematical methods that are generally used to analyse and forecast time series data in
literature [7]. In addition, signal processing methods such as Fourier and wavelet trans-
forms are used to analyze the time series data. Discrete Fourier Transform (DFT), Discrete
Wavelet Transform (DWT), Piecewise Aggregate Approximation (PAA) are also used to
analyze time series data to extract features and find the similarities within the data [8].
Unlike traditional approaches, machine learning models are also used in analyzing time se-
ries data and predictions. Machine learning algorithms that are mostly used in time series
data analytics are listed as follows: Clustering algorithms [9], hidden markov models [10],
support vector machines (SVM) [11],[12],[13], artificial neural networks (ANNs) [14], [15],
[16], [17] self organizing maps (SOM) [18],[19],[20].

Time-series forecasting is implemented in various fields such as wind speed forecasting,
stock price forecasting, electricity demand forecasting, pollen concentrations forecasting in
airborne, human activity recognition forecasting, user behaviour foracasting in internet of
things applications, and so on. In literature, there are many applications and usage of
machine learning on time series data analytics. Arizmendi [14] used ANN in the time series
data to predict pollens concentrations in the atmosphere and observed that predictions
using ANN performed better than traditional approaches. Srinivasan [15] used a four-layer
feedforward ANN to estimate the hourly electrical charge in the power system. Kaastra and
Boyd [16] developed an eight-step procedure involving an ANN model in predicting financial
and economic time series data. Bezerianos [21] estimated and evaluated the pulse rate change
with radial-based function neural network (RBF). Li [22] used a back-propagation artificial
neural network (BPANN) and autoregressive (AR) models for estimating the highest values
of vibrations in high buildings, which are difficult to measure with instruments. Guan [23]
analyzed the sensor data acquired by 40 motion sensors on human legs, by using ANN. With
this mechanism, human activities (running, walking, lying, jumping, etc.) are estimated with
97% accuracy. Choi [24] used ANN in the learning part of smart home system. Mohandes [13]
applied SVM and MLP on time varying wind speed data and compared the results. In the
field of medicine, Morchen [19] used SOM for the extraction of patterns of muscle activities
and for the identification of extracted patterns. An et al. [25] proposed a new electricity
demand forecasting model called "MFES” that uses feed forward ANN. In their proposal,
after application of filtering and seasonal adjustment process, ANN is used to predict future
demand. In finance, different machine learning models are also used for forecasting future
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values. Next subsection covers the financial time series analytics methods in literature.

2.2. Financial Time Series Data Analytics

For stock market forecasting, traditional machine learning models have been quite pop-
ular. Some researchers directly implemented time-series forecasting based on the financial
data, whereas others used technical and/or fundamental analysis data in order to achieve
good forecasting performance. ANN, genetic algorithms (GA), fuzzy rule-based systems, as
well as hybrid models are among the preferred choices.

Cavalcante et al. [1] surveyed all forecasting model approaches such as ANN, SVM,
hybrid mechanisms, optimization and ensemble methods in their survey. Besides, Krollner
et al. [26] reviewed machine learning based stock market forecasting papers in different
categories such as ANN based models, evolutionary & optimization techniques, and mul-
tiple/hybrid methods. Most of the researchers used ANN models to forecast stock market
index values [27], [28]. Chen et al. [29] proposed a neural network model for forecasting and
trading the Taiwan Stock Index. Guresen et al. [30] evaluated the neural network models in
particular multi-layer perceptron (MLP) and dynamic ANN to predict NASDAQ stock in-
dex. In addition, Sezer et al. [31] proposed an ANN that uses the financial technical analysis
indicators (MACD, RSI, Williams%R) to predict Dow30 stock prices turning points. Dhar
et al. [32] used a classical three layer MLP network in their studies to estimate the closing
values of the Indian Stock Exchange stocks. Researchers also studied various combinations
of network parameters (number of neurons in the input and hidden layers, learning rate) to
find the best MLP configuration. Vanstone et al. [33] used MLP to create a system that can
give buy/sell points for the Australian market. Fundamental analysis data (price earning
ratio, book value, return on equity (ROE) and dividend payout ratio) are used as inputs for
MLP.

In addition, genetic and evolutionary approaches are used to predict stock prices and
trends [34], [35]. Kwon [36] et al. proposed a RNN with GA optimization to forecast stock
values. They tested their proposals with 36 companies in NYSE and NASDAQ from 1992
to 2004. Sezer et al. [37] proposed a deep MLP approach with GA optimization to predict
Dow Jones 30 companies’ stock prices. In their studies, RSI parameters (buy value, buy
interval, sell value, sell interval) are determined with GA. Best points are used as training
data set in deep MLP. Evans et al. [38] used a GA to correct prediction errors and find the
best network topology of MLP for forecasting foreign exchange (FOREX) data. Huang [39]
used GA to optimize the Support Vector Regression (SVR) parameters and to find which
stock should be used as input for method. Pulido [40] used particle swarm optimization
(PSO) for the MLP network structure parameters (number of hidden layers and number of
neurons in layers and linkage) for time series prediction of the Mexican Stock Exchange.

Also, hybrid machine learning models are proposed to analyze financial time series data.
Wang et al. [41] proposed a hybrid SVR model that is combined with principal component
analysis (PCA) and brain storm optimization (BSO) to forecast stock prices. In their pro-
posal, 20 different technical indicators are chosen as input to their model. After processing
of PCA and BSO, SVR is applied on technical indicators. Mabu et al. [42] proposed the
use of an ensemble learning mechanism that combines MLP with a rule-based evolutionary
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algorithm to be able to determine buy/sell points in stock prices. Ballings et al. [43] com-
pared the performances of ensemble solutions (random forest, adaboost and kernel factory)
with classifier models (ANN; logistic regression, SVM and KNN) to estimate movements of
stocks in the market.

In financial time series analytics, new approaches started appearing with increasing com-
putational intelligence capacity. In the following subsection, deep learning models used for
financial time series analytics in literature will be mentioned.

2.83. Deep Learning

A neural network that utilizes Deep Learning is a specific type of ANN that consists
of multiple layers which have different contributions at each layer in such a way that the
overall network performs better than its shallow counterparts [44]. There are different types
of deep learning models namely Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), Deep Belief Networks (DBN), Restricted Boltzmann Machines (RBMs),
and Long Short Term Memory (LSTM) networks. Proposed deep learning models are used
for different purposes. In literature, CNNs, DBN, RBM are mostly used for classification and
recognition of the images. RNNs and LSTMs are used for analysis of the sequential data,
natural language processing, speech recognition and time-series data analytics. In addition,
CNNs are mostly used in image/video processing, classification and recognition processes
[45], [46], [47], [48], but also used in natural language processing and sentence classification
49], [50].

Even though deep learning models, in particular deep CNNs have been among the most
popular choices in recent years, there are only a limited number of implementations of deep
neural networks for financial problems. Ding et al. [51] proposed deep learning method for
event driven stock market prediction to extract news texts, information from internet and
newspapers. They also used a deep CNN and neural tensor network to model short-term
and long-term impacts of circumstances on stock price changes. They used S&P 500 stock
historical data to test their models. Langkvist et al. [52] surveyed the methods for analyzing
the time-series data in terms of RBM, autoencoder, RNN, deep learning, convolution and
pooling, and hidden markov model (HMM). In addition, they mentioned and surveyed the
deep learning methods to evaluate stock market indexes and prices in their review. Fischer
et al. [5] used LSTM to forecast the direction of trend for stocks of the S&P 500 between
1992-2015. Krauss et al. [3] compared deep neural nets, gradient-boosted-trees, random
forests in their research. They used deep neural network model to forecast stock prices in
S&P 500 between 1992 and 2015.

In addition, Yoshihara et al. [53] proposed an approach that uses RBM and DBN to
predict the trend of stock prices on the Nikkei Stock Exchange using news events. The
proposed solution was tested with ten Nikkei stocks and the results were compared with
SVM. Shen et al.[54] proposed a new model to forecast the exchange rates by combining
an advanced DBN and the conjugate gradient method. The proposed technique was com-
pared with feed forward neural networks. They concluded that the proposed deep learning
approach was better than the traditional methods. Tino et al. [55] compared the Markov
model (MM) and RNN methods with different parameters to estimate the movements of the
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German DAX and British FTSE indexes (volatiliy, etc.). According to the results obtained,
RNN could not give better results than MM. Deng et al. [56] proposed a method that uses
Deep direct reinforcement (DDR) method and fuzzy deep direct reinforcement (FDDDR)
method together with Recurrent DNN (RDNN). The proposed method was applied in the
Chinese futures market and commodity futures market (silver and sugar prices).

In their previous implementation [37], the authors used evolutionary algorithms to opti-
mize the technical analysis parameters of commonly used indicators and developed a deep
feedforward neural network using these optimized parameters as inputs. The results indicate
deep learning can achieve good learning and generalization of buy-sell points for individual
stocks over long out-of-sample test periods.

In literature, CNN is mostly used for image classification / analysis problems, it is
generally not preferred for time series data analytics directly. Meanwhile, their success
in computer vision over traditional models is quite remarkable. For financial time series
forecasting, deep learning algorithms, most commonly RNN and LSTM networks were the
preferred choices in recent years. At the same time, algorithmic trading systems mostly
depend on technical analysis indicators along with some other inputs. However, models
that integrate technical analysis data with deep neural networks is not very common in
literature. Moreover, using CNN with 2-D matrix representation of the technical analysis
data for algorithmic trading is novel. With the proposed study, technical analysis data
and deep CNN are combined. The difference between the proposed model and the other
methods is that the technical analysis data is applied on the prices to create feature vectors
and matrices (two-dimensional images); hence, the financial time series forecasting problem
is implicitly converted into an image classification problem. In this study, we aimed to
develop algorithmic trading models that can make financial forecasts in the medium and
short term, with stable decisions that can provide maximum profit and less risk (variance).

3. Model Features and Convolutional Neural Network (CNN)

For analyzing and developing inference models from financial data, there are two widely-
adopted approaches: technical analysis and fundamental analysis [1]. Fundamental analysis
can be implemented through examining company specific financial data such as balance
sheet, cash flow, return on assets. Meanwhile, technical analysis can be implemented through
analyzing past financial time series data using mathematical and/or rule-based modelling.
There are many technical indicators that are used for predicting future directions of financial
assets. In our study, we used 15 separate technical indicators with different time intervals.
Selected technical analysis indicators and their corresponding formulas are summarized in
Appendix.

CNN is a feedforward ANN that takes its inputs as 2-D matrices. Unlike a fully con-
nected neural network like MLP, the locality of data within the input vector (or matrix)
is important. Hence, the neighboring data points within the matrix should be carefully
chosen. This is not an issue for image classification problems, since the aforementioned
requirement is satisfied directly because the neighboring pixels are related to each other in
both directions.
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Figure 1: Generalized Convolutional Neural Network

CNN generally consists of two types of layers: the convolutional layer and the subsam-
pling layer. It structurally has successive convolutional and sampling layers. In convolution
layer, convolution operation is applied, results are passed to the next layer. In subsampling
layer, number of parameters and the spatial size of the representation are reduced. In the
last subsampling layer, the data becomes a one-dimensional vector. Finally, the last layer is
connected to a fully connected MLP. Through that, the high-level decision making is per-
formed just as in the case of a traditional classifier. As a result, the previous layers of CNN
actually performs an implicit feature extraction. CNNs have a wide range of applications in
image and video recognition, natural language processing and expert systems. The general
CNN structure is shown in Figure 1 [57],[47].

4. Method

For our algorithmic trading model, we propose a novel method that uses CNN to deter-
mine the ”Buy” and ”Sell” points in stock prices using 15 different technical indicators with
different time intervals and parameter selections for each daily stock price time series to
create images. We also use Apache Spark, Keras and Tensorflow to create and analyze the
images and perform big data analytics. As can be seen in Figure 2, our proposed method
is divided into five main steps: dataset extract/transform, labelling data, image creation,
CNN analysis and financial evaluation phases. Our objective is to determine the best fit for
the buy, sell, and hold points in the time series of the associated stock prices.

4.1. Preprocessing (DataSet Extract/Transform)

In our study, the daily stock prices of Dow 30 stocks and daily Exchange-Traded Fund
(ETFs) prices are obtained from finance.yahoo.com for training and testing purposes. Stock
/ ETF prices between 1/1/2002 to 1/1/2017 are used for training and testing purposes.
We adapted a sliding window with retraining approach where we chose a 5 year period for
training and the following 1 year for testing, i.e. training period: 2002-2006, testing period:
2007. Then we moved both training and testing periods one year ahead, retrained the
model and tested with the following year, i.e. training period: 2003-2007, testing period:
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Figure 2: Proposed Method for CNN-TA

2008. As a result, each year between 2007 and 2016 is tested using repeated retraining.
Figure 3 illustrates this sliding training and testing approach. In the first step, dataset
extract/transform phase, the downloaded prices are normalized according to the adjusted
close prices.

4.2. Labelling

After extracting the data for the intended period in labelling phase, all daily close prices
are manually marked as “Hold”, “Buy”, or “Sell” by determining the top and bottom points
in a sliding window. Bottom points are labelled as “Buy”, top points are labelled as “Sell”,
and the remaining points are labelled as “Hold”. The structure of the labelling process is
given in Algorithm 1.

4.3. Image Creation

In image creation phase, for each day, RSI, Williams %R, WMA, EMA, SMA, HMA,
Triple EMA, CCI, CMO, MACD, PPO, ROC, CMFI, DMI, and PSI values for different
intervals (6 to 20 days) are calculated using TA4J (Technical Analysis For Java)! library.
These particular indicators are mostly oscillator and trend based financial time series filters

Thttps://github.com/mdeverdelhan /tadj
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Figure 3: Training and Testing Approach

that are commonly preferred by short to medium term traders. Since 6 to 20 days of
indicator ranges are used in our study, swing trades for 1 week to 1 month periods are
focused. Different indicator choices and longer ranges can be chosen for models aiming for
less trades.

For each day a 15x15 image is generated by using 15 technical indicators and 15 different
intervals of technical indicators. Meanwhile, each image uses the associated label ( “Hold”,
“Buy”, or “Sell”) with the sliding window logic provided in Algorithm 1. The order of the
indicators is important, since different orderings will result in different image formations.
To provide a consistent and meaningful image representation, we clustered indicator groups
(oscillator or trend) and similar behaving indicators together or in close proximity. Figure 4
illustrates sample 15x15 Pixel images that are created during the image creation phase.

In our study, there are approximately 1250 images for each stock price training data in
a b year period. Even though each year from 2007 to 2016 is tested separately, their results
are combined and corresponding annualized metrics are calculated to represent longer test
periods. T'wo sets of long term test periods are chosen to be able to verify the performance
of the proposed model in different market conditions. Approximately 2500 images for each
stock price are generated for the first test case (1/1/2007 to 1/1/2017) which is aimed to
verify the sustainability of the model performance in a 10 year span. In addition, 1250 test
images are used for the second test case (between 1/1/2007 to 1/1/2012) which covers the
2008-2009 financial crisis period. For each stock and ETF, different training and test data
image files are prepared and they are evaluated separately for their different characteristic
features.

/4. CNN

In our proposed CNN analysis phase, as can be seen in Figure 5, nine layers are used.
These are listed as follows: input layer (15x15), two convolutional layers (15x15x32, 15x15x64),
a max pooling (7x7x64), two dropout (0.25, 0.50), fully connected layers (128), and an out-
put layer (3). Dropout layers are added to prevent overfitting. In our proposed model
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Algorithm 1 Labelling Method
1: procedure LABELLING()
2 windowSize = 11 days
3 while(counter Row < numberO f DaysInFile)
4: counter Row + +
5: If (counter Row > windowSize)
6:
7
8
9

window BeginIndexr = counter Row — windowSize

window EndIndexr = windowBeginIndexr + windowSize — 1
windowMiddleIndexr = (windowBeginIndex + window EndIndex) /2
for (i = windowBeginIndex;i <= windowEndIndex;i+ +)

10: number = closePriceList.get(i)

11: if (number < min)

12: min = number

13: minIndex = closePriceList.indexO f(min)
14: if(number > max)

15: max = number

16: maxIndex = closePriceList.indexO f(max)
17: if(mazInder == windowMiddleIndex)

18: result ="SELL”

19: eli f(minIndexr == windowMiddleIndex)

20: result ="BUY”

21: else

22: result ="HOLD”

CNN-TA, 3x3 filter size is used for CNN filter. In literature, different size of CNN filters are
adapted: 3x3, 5xb and 7x7. Decreasing filter size generally results in catching more details of
the images. 3x3 is the smallest and most commonly used kernel size in the image processing
application (AlexNet [45]).Using a filter size of 3x3 provides the convolution capability with
closest neighbors’ (upper,lower,right,left, upper left,upper right,lower left,lower right) infor-
mation while processing the current layer; hence sharp variations within the image can be
captured. In our particular study, we also preferred 3x3 filter size, since we have relatively
small images (15x15) and there can be significant intensity variations within the images (see
Figure 4 ).

In the proposed model CNN-TA, the adapted CNN structure is similar to the deep CNN
used in the MNIST algorithm except 28x28 images were used as inputs in that particular
implementation. LeNet CNN structures, [58] the deep CNN model with first successful
results, consist of six layers. In addition, adding more layers increases the complexity of
the algorithm. Without a large training set, an increasingly complex network is likely to
overfit and reduce the accuracy on the test data. For future work, deeper models with more
processing layers can be configured when more training data is available.

In our proposed CNN structure, there are different layers: convolutional, maxpooling,
dropout and full connected MLP layer. Convolutional layer consists of convolution operation.

10
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Figure 5: CNN Process

Basic convolution operation is shown in Equation 1 (t denotes time). In addition, convolution
operation is implemented on two dimensional images. Equation 2 illustrates the convolution
operation of two dimensional image (I denotes input image, K denotes the kernel). Besides,
consecutive convolutional and maxpooling layers build the deep neural network structure.
Equation 3 provides the details about the neural network architecture (W denotes weights,
x denotes input and b denotes bias). At the end of the network, softmax function is used
to get the output. Equation 4 shows the softmax function (y denotes output) [59].

In this study, we implemented the CNN structure using Keras?, Tensorflow? infrastruc-
ture and each test run lasts for 200 epochs. Number of epochs is fine-tuned with choosing
different number of epochs in different tests.

https://keras.io/
3https://github.com/tensorflow
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4.5. Financial Evaluation

In the last step, buy-sell decisions are made according to the predicted Buy, Sell, Hold
labels. With associated consecutive Buy-Sell pairs, financial trades are implemented. These
trades are stored in a transaction table and each transaction is evaluated through a financial
evaluation model. The results of the financial evaluation will be presented in the next section
for the selected test periods.

Algorithm 2 summarizes the overview of the proposed algorithmic trading model.

5. Performance Evaluation

The overall performance of our proposed model CNN-TA is evaluated using two different
evaluation criteria: Computational Model Performance and Financial Evaluation. Computa-
tional model performance evaluation presents the convolutional neural network performance,
i.e. how well the classifier distinguishes between Buy, Hold and Sell classes. Financial eval-
uation shows the performance of the whole proposed model by implementing the real world
financial scenario. Stocks are bought, sold or held according to the predicted label with the
actual stock prices.

5.1. Test Data

In the financial evaluation phase, our proposed method (CNN-TA) is evaluated with
ETFs and Dow Jones 30 Stocks with different time periods (2007-2012 for analyzing the
effects of 2008 financial crisis, 2007-2017 for evaluating the performance of the last 10 years).
Our proposed model is trained with five-years training data and tested with one-year out-
of-sample data. Then, the network is retrained with the next five-years training data (with
one year move ahead as explained in the previous section) and tested with next one-year
out-of-sample data. Selected ETFs and their descriptions are illustrated in Table 1. The
chosen ETF's have the highest trading volumes with enough training data.

12
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Algorithm 2 Generalized Proposed Algorithm
1: procedure ALLPHASES()
2 Phase DataSet E/T:
3 dataset = read(open, close, high, low, adjustedClose, volume)
4: dataset.adjust Ratio = dataset.close/dataset.adjustedClose
5: adjust(dataset.open, dataset.close, dataset.high, dataset.low) with adjustRatio
6
7
8
9

Phase Data Labelling:

calculate Label (Buy/Sell/Hold) using sliding window

Phase Image Creation:

calculate technical analysis values (RST, EMA, MACD..) for each line in dataset
10: create 15215 images

11: merge label and technical analysis values

12: normalize technical analysis values between [1, —1]

13: for(i=0;i < 15;i++)

14: trainingDataset[i| = dataset.split(dates = (1997 + i) to (2002 + 7))
15: test Dataset[i] = dataset.split(dates = (2003 4 1))

16: Phase CNN:
17: foreach(trainingDataset|i] and test Dataset]i])

18: trainingDataset[i] = resample(trainingDataset) to solve data imbalance problem
19: model = CN N (epochs = 200, blocksize = 1028)

20: model .train(training Dataset|[i])

21: model.test(test Dataset]i])

22: Phase Financial Evaluation:

23: foreach(trainingDataset[i] and test Dataset[i])

24: evaluate Results()

Table 1: Selected ETFs and Their Descriptions

Name Description Inception Date Volume
XLF  Financial Select Sector SPDR ETF 12/16/1998 71,886,065
XLU  Utilities Select Sector SPDR ETF 12/16/1998 11,342,530
QQQ  PowerShares QQQ ETF 10/03/1999 33,918,165
SPY  SPDR S&P 500 ETF 1/22/1993 68,675,793
XLP  Consumer Staples Select Sector SPDR ETF  12/16/1998 9,721,714
EWZ iShares MSCI Brazil Capped ETF 7/10/2000 19,613,073
EWH  iShares MSCI Hong Kong ETF 3/12/1996 2,586,985
XLY  Consumer Discret Sel Sect SPDR ETF 12/16/1998 4,257,841
XLE  Energy Select Sector SPDR ETF 12/16,/1998 16,494,257

5.2. Computational Model Performance

The prediction performance of the proposed model is analyzed. Even though, each
stock/ETF performance is considered separately, due to space constraints, only summary
results will be presented. Table 2 tabulates the confusion matrix for Dow-30 test data.
Table 3 illustrates the performance evaluation of the results obtained through the confusion
matrix for Dow-30 data. Recall values of class "Buy” and class ”Sell” are better when
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compared with class "Hold”. However, classes ”Buy” and ”Sell” have worse precision values
compared to class "Hold”. For stock trading systems, accurate entry and exit points (classes
"Buy” and ”Sell”) are important for the overall success of the trading algorithm. In our case,
most of the ”Buy and Sell” points are captured correctly by the proposed model. However,
a lot of false entry and exit points are also generated. This is mainly due to the fact that
"Buy” and ”Sell” points appear much less frequent than "Hold” points, it is not easy for
the neural network to catch the "seldom” entry and exit points without jeopardizing the
general distribution of the dominant ”Hold” values. In other words, in order to be able to
catch most of the "Buy” and ”Sell” points (recall), the model has a trade-off by generating
false alarms for non-existent entry and exit points (precision). Besides, Hold points are not
as clear as "Buy” and ”Sell” (hills and valleys). It is quite possible for the neural network
to confuse some of the "Hold” points with ”Buy” and ”Sell” points, especially if they are
close to the top of the hill or bottom of the valley on sliding windows. Table 2 provides the
confusion matrix of Dow30 test data and Table 3 illustrates the evaluation of the confusion
matrix of Dow30 test data. Table 4 provides the confusion matrix of ETFs test data and
Table 5 illustrates the evaluation of the confusion matrix of ETFs test data. Performance
Evaluation results indicate that ETFs’ results (overall accuracy) are better than Dow30
results. This can be as a result of ETFs being more stable and less sensitive to events,
economic crises, political decisions compared to stocks making them less volatile. This lack
of volatility results in a more stable environment for algorithmic trading models to learn the
trading model easier.

Table 2: Confusion Matrix of Test Data (Dow-30)
Predicted

Hold | Buy | Sell

Hold | 52364 | 18684 | 23592

Actual | Buy | 1268 | 5175 |3

Sell | 1217 |8 5059

Table 3: Evaluation Of Test Data (Dow-30)
Total Accuracy: 0.58

Hold | Buy | Sell
Recall 0.55 0.80 | 0.81
Precision | 0.95 | 0.22 | 0.18
F1 Score | 0.70 | 0.34 |0.29

Table 4: Confusion Matrix of Test Data (ETFs)
Predicted

Hold | Buy | Sell
Hold | 18629 | 5180 | 6498
Actual | Buy | 478 1215 | 0
Sell | 587 0 1127
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Table 5: Evaluation Of Test Data (ETF's)
Total Accuracy: 0.62

Hold | Buy | Sell
Recall 0.61 |0.72 | 0.66
Precision | 0.95 | 0.19 | 0.15
F1 Score | 0.75 | 0.30 | 0.24

5.3. Financial Evaluation

In the last step of our algorithmic trading model, the generated transactions are analyzed
using the financial evaluation method. In our model, each stock is bought, sold or held
according to the predicted label. If the predicted label is “Buy”, the stock is bought at that
point with all of the current available capital (if not bought before already). If the predicted
label is “Sell”, the stock is sold at that price (if it has been bought). If the predicted label
is “Hold”, no action is taken at that point. During a financial trade, if the same label
comes consecutively, only the first label is activated and the corresponding transaction is
performed. Repeating labels are ignored until the label changes. Starting capital for financial
evaluation is $10,000, trading commission is $1 per transaction. Financial evaluation scenario
is illustrated in Equation 5 (”S” denotes financial evaluation scenario, ”tMoney” denotes
totalMoney, ”#O0fStocks” denotes numberOfStocks). The corresponding formulas for the
evaluation metrics (presented in Tables 10 and 11) are listed in Equations 6, 7, 8, 9, 10, 11.

#O fStocks = Lont, if label="Buy’
S = < no action, if label="Hold’ (5)
tMoney = price x #0 fStocks if label="Sell’
total Money 1
AR f— _  )numberOfYears — 1 100 6
<<staTtMoney) )+ (6)
transactionCount
AnT = 7
N numberO fY ears (M)
PoS — successTTanisactionC'ount «100 (8)
transactionCount
ApT = totalPerc.entProfz’t « 100 ()
transactionCount
I totalTransactionLength « 100 (10)

transactionCount

data.length — totalTransLength

IdleR =
¢ data.length

%100 (11)
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5.4. Compared Models

Our proposed model is also compared with ”Buy&Hold” Strategy (BaH), RSI (14 days,
70-30), SMA (50 days), LSTM and MLP regression methods. Each method, model and
strategy has been implemented and relevant financial calculation scenarios have been ana-
lyzed. In the "Buy&Hold” strategy, the stock is bought at the beginning of the test data,
sold at the end of the test data. In the RSI model, the RSI value is calculated for each day
in the test data. If the RSI value of the corresponding test data is less than 30, buy signal
is generated. If the RSI value of the corresponding test data is more than 70, sell signal is
generated. In the SMA model, a 50-day SMA value is calculated for each day in the test
data. Buy signal is generated if the corresponding test data is more than 50 days-SMA
value, whereas if it is less than 50 days-SMA value, sell signal is generated. LSTM [5] and
MLP regression [30], [60] models are also used in the analysis of financial time series data
in the literature. The implemented LSTM model is composed of 25 neurons (input layer: 1
neuron, hidden layer: 25 neurons, output layer: 1 neuron, dropout: 0.5, epoch: 1000, time
steps: 240) [5]. The implemented MLP is a model consisting of 4 layers (layers: 1,10,5,1,
dropout: 0.5, epoch: 200, time steps: 100) [5].

5.5. ETF Analysis

The average annualized return for our proposed method (ETFs-2007-2017) is 13.01%
and percent of successful transactions is 71.51% (Table 11), whereas BaH average annual-
ized return is 4.63%, RSI model average annualized return is 3.95%, SMA model average
annualized return is 2.81%, LSTM model average annualized return is 6.22%, and MLP
regression average annualized return is 4.01% (Table 6). Proposed method’s average annu-
alized return is almost three times better than BaH, RSI, SMA, MLP regression average
annualized returns. At the same time, our proposed model and MLP regression are the
only models with positive annualized returns for all ETFs during the 10 year test period.
Meanwhile, the standart deviation of annualized returns of our model is also low indicating
stable and consistent returns. (Table 6). Figure 6 shows the proposed model’s accumulation
of the capital for selected ETFs. In each case, the model performance is compared against
Buy&Hold during the corresponding period. The performance results for other ETFs also
show similar characteristics.

The method is also tested and compared against other aforementioned models for the
test period between 2007-2012 which coincides with the 2008-2009 financial crisis. The stock
market was hit very hard during that period and a lot of stocks/funds/ETFs had negative
returns. During that period, the average annualized return for our proposed method (ETFs-
2007-2012) is 13.17% and percent of successful transactions is 71.44% (Table 11), whereas
BaH average annualized return is 2.60%, RSI model average annualized return is -0.01%,
and SMA model average annualized return is 1.30%, LSTM model average annualized return
is 8.44%, and MLP regression average annualized return is 8.23%, (Table 7). Proposed
method’s average annualized return is almost five times better than BaH average annualized
return in that particular period. In addition, our proposed solution’s average annualized
return is almost 1.5 times better than LSTM and MLP regression average annualized returns
during the financial crisis period. The standart deviation for the annualized returns was
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XLE - Profits Over the Years (2007 - 2012)
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Figure 6: Comparison of the Proposed Algorithm and BaH Method Results on XLE and XLF ETFs

Table 6: Comparison of Annualized returns of the Proposed System (CNN-TA) with BaH, RSI, SMA,
LSTM, MLP Reg. Models (ETFs - Test Period: 2007 - 2017)

ETFs CNN-TAr BaHr RSIr SMAr LSTMr[5] MLPr[5]
SPY 10.77% 4.63% 6.14%  0.54% 3.35% 7.27%
QQQ 11.57% 10.52% 6.46%  5.37% -1.33% 3.92%
XLU 10.13% 2.97% 4.91% 0.90% 1.29% 1.12%
XLE 15.80% 2.85% 3.64% 5.88% 4.01% 5.41%
XLP 11.10% 6.92% 5.29% 5.17% 5.97% 0.84%
XLY 9.55% 7.68% 5.74% 1.80% 2.13% 1.31%
EWZ 20.40% -3.38% -3.25% 4.15% -1.30% 5.42%
EWH 11.69%  1.73% 2.32%  3.08% 12.30% 6.11%
XLF 16.05%  2.31% 1.22% -5.60% 16.18% 2.68%
Average 13.01% 4.63% 3.95% 2.81% 6.22% 4.01%
St.Dev. 3.61% 4.03% 3.12% 3.57% 5.96% 2.40%

higher for this period when compared with 2007-2017 case. However, when compared with

the other models, it was still better than the majority. (Table 7).

Table 7: Comparison of Annualized returns of the Proposed System (CNN-TA) with BaH, RSI, SMA,
LSTM, MLP Reg. Models (ETFs Test Period: 2007 - 2012)

ETFs CNN-TAr BaHr RSIr SMAr LSTMr[5] MLPr[5]
SPY 925% -0.39% -1.64% -1.56%  11.05%  10.62%
QQQ 8.75%  5.13% 2.60%  6.35% 5.38% 2.85%
XLU 12.43% 372% 084% 0.13% 6.89% 3.78%
XLE 23.41% 561% -0.32%  7.45% 376%  12.93%
XLP 12.59%  6.97% 3.88%  4.07% 1.20% 137%
XTY 543%  1.65% 2.00% -3.68% 388%  7.41%
EWZ 25.07%  7.64% -1.54%  7.55% 1.69% 3.54%
EWH 1232%  1.75% -001% -0.63%  26.07%  17.64%
XLF 9.34% -16.91% -7.68% -16.06% 6.39% 7.02%
Average  13.17%  2.60% -001%  1.30% 8.44% 8.23%
St.Dev. 6.69% 7.49% 3.36%  7.44% 7.61% 5.03%

5.6. Dow30 Analysis

As mentioned earlier, our proposed method was also evaluated with Dow Jones 30 Stocks
in different time periods (2007-2012 and 2007-2017). Our proposed method’s (Dow30-2007-
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2017) average annualized return is 12.59% and percent of successful transactions is 71.32%
(Table 10), whereas BaH average annualized return is 10.47%, RSI model average annual-
ized return is 5.01%, SMA model average annualized return is 3.78%, LSTM model average
annualized return is 6.48%, and MLP regression average annualized return is 5.45%. The
analyses provided for ETFs are also applicable to Dow30 performance, since similar out-
comes are observed. The proposed model performed the best overall annualized return with
a relatively low standart deviation. (Table 8). Figure 7 shows the proposed model’s accu-
mulation of the capital for different Dow30 stocks. In each case, the model performance is
compared against Buy&Hold during the selected period. The performance results for other
Dow30 stocks also show similar characteristics.

JPM - Profits Over the Years (2007 - 2012) TRV - Profits Over the Years (2007 - 2017)
00 == Our $80.000,00 - Our

== BaH = BaH

Capital ($)
Capital ($)

01.01.2007 01.01.2008 01.01.2009 01.01.2010 01.01.2071 01.01.2012 01.01.2008 01.01.2010 01.01.2012 01.01.2074 01.01.2018

Year Year

Figure 7: Comparison of the Proposed Algorithm and BaH Method Results on JPM and TRV stocks

In addition, during the financial crisis period the average annualized return for our
proposed method (Dow30-2007-2012) is 12.83% and percent of successful transactions is
70.63% (Table 10), whereas BaH average annualized return is 6.98%, RSI model average
annualized return is 1.92%, and SMA model average annualized return is 0.75%, LSTM
model average annualized return is 10.82%, and MLP regression average annualized return
is 9.98%. In addition, our proposed solution’s average annualized return is almost twice as
BaH annualized return during financial crisis period. Again, the proposed model achieved the
best overall performance while keeping the variance low. These results show that proposed
solution is more stable than the other models (Table 9).

5.7. Discussions

Consistenly beating Buy and Hold strategy is challenging in a long period of time (like
10 years). Our proposed method’s (Dow30-2007-2012) annualized return performed better
than BaH strategy’s annualized return in 24 out of 28 stocks during the out-of-sample test
period (Table 9) (In the same period, Visa stock [V] did not have sufficient data points, so V
is neglected. Also Dupont [DD] stock prices had data inconsistencies in finance.yahoo.com,
so that was not used in the analyses.). In addition, our proposed method’s (ETF-2007-
2012) annualized return performed better than BaH strategy’s annualized return in 9 out of
9 ETFs during the out-of-sample test period (Table 7).
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Table 8: Comparison of Annualized returns of the Proposed System (CNN-TA) with BaH, RSI, SMA,
LSTM, MLP Reg. Models (DOW30 - Test Period: 2007 - 2017)
Stock CNN-TAr BaHr RSIr SMAr LSTMr[5] MLPr[5]

MMM 10.88% 11.36%  4.64% 2.25% 6.43% 2.28%
AXP 25.05% 4.25% -0.85%  -0.96% 7.23% 9.56%
APPL 11.37% 26.42% 10.11%  19.55% 5.03% 2.57%
BA 7.03% 8.60% 2.30% 2.07% 4.01% 2.59%
CAT 4.33% 7.19% -3.02% 10.72% -1.53% 0.66%
CVX 14.91% 8.67%  4.60% 1.07% 7.63% 5.76%
CSCO 10.02% 2.76%  5.57%  -5.28% 9.05% 9.15%
KO 11.13% 8.85%  7.718% 3.09% 3.70% 2.711%
DIS 13.97% 13.14%  0.96% 6.36% 4.67% 5.36%
XOM 14.51% 4.78%  4.81%  -2.34% 6.67% 3.46%
GE 10.35% 217% -7.35% 3.92% 4.74% 5.74%
GS 6.18% 2.35% -4.92% 2.83% 5.24% 11.62%
HD 15.20% 15.91% 7.07% 5.34% 6.27% 2.12%
IBM 8.15% 777%  5.35% 2.37% 0.91% -1.52%
INTC 18.23% 8.99%  5.18% 5.90% 6.18% 4.711%
JNJ 13.45% 9.01%  7.53% 1.81% 3.76% 0.42%
JPM 12.79% 8.25%  8.66%  -4.77% 15.72% 16.27%
MCD 17.94% 14.43% 8.37% 2.04% 4.09% 0.24%
MRK 15.93% 6.55%  3.60% 0.91% 2.88% 5.46%
MSFT 13.43% 9.95%  7.07% 5.58% 5.29% 4.45%
NKE 18.00% 17.10%  9.34% 0.58% 1.54% 4.68%
PFE 8.07% 6.51% -0.35% 1.83% 7.07% 1.34%
PG 9.79% 572%  3.31% 0.88% 4.99% 3.93%
TRV 17.34% 12.01% 6.24%  -7.62% 19.98% 10.97%
UuTXx 9.36% 767%  2.76% 3.18% 6.52% 1.65%
UNH 9.74% 13.21%  7.31% 9.50% -1.01% 2.13%
VZz 10.23% 9.29%  9.3™% 0.28% 4.49% 5.63%
WMT 15.20% 6.28%  5.22%  -2.88% 5.30% 8.33%
Average 12.59% 10.47%  5.01% 3.78% 6.48% 5.45%
St.Dev. 4.45% 510%  4.38% 5.28% 4.26% 3.99%

When Table 10 and Table 11 are analyzed, it is observed that Percent of Success for Trade
Transactions are between 70-80%. Hence, the trades generated by the proposed model are
successful (profitable) most of the time. Since the out-of-sample test period is selected as 10
years, different market conditions are observed during such a lengthy period (i.e. uptrend,
downtrend, stationary). But these fluctuations in the market conditions did not affect the
overall trading performance of the proposed model. As a result, the model was able to
generate good profits even under deteriorating market conditions. For the most commonly
traded ETFs, the proposed model (ETF-2007-2017) outperformed the Buy & Hold strategy
9 out of 9 times (Table 6) and for Dow30 stocks, the proposed model (Dow30-2007-2017)
outperformed Buy & Hold 22 out of 28 times over the span of 10 years (Table 8).

5.8. Statistical Significance Tests

The statistical significance test results tabulated in Table 10 and Table 11 indicate the
proposed model does not change its behavior neither for different asset classes (Dow30
stocks or ETFs) nor between different time periods and varying market conditions (2007-
2012 and 2007-2017 time periods). For most of the evaluation metrics, the proposed model
shows stable and robust operating characteristics. Even though statistically no significant
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Table 9: Comparison of Annualized returns of the Proposed System (CNN-TA) with BaH, RSI, SMA ,LSTM,
MLP Reg. Models (DOW30 - Test Period: 2007 - 2012)
Stock CNN-TAr BaHr RSIr SMAr LSTMr[5] MLPr[5]

MMM 13.42%  3.52% -1.58% -6.63% 15.26% 3.24%
AXP 31.64% -2.21% -11.33% -5.65% 27.47% 24.68%
APPL 10.03% 36.54%  7.54% 32.73% 20.92% 0.49%
BA 2.73%  -056%  0.30% 1.82% 13.53% 3.94%
CAT 0.22% 1097% -8.82% 17.61% 4.75% 4.56%
CVX 19.77% 11.8™%  2.49%  -0.02% 16.31% 14.09%
CSCO 8.34%  -7.05%  0.13% -15.38% 0.80%  20.82%
KO 14.15% 11.13%  4.67%  5.13% 5.83% 8.25%
DIS 13.33%  355% -1.92% -4.28% 8.47% 3.11%
XOM 18.92% 5.12%  4.45%  -5.17% 3.66% 9.15%
GE 711%  -9.62% -17.51%  -3.02% 3.73% 3.20%
GS 1.47% -15.00% -13.65%  -4.50% -11.25% 6.41%
HD 12.01%  4.32% 2.77% -7.59% 5.23% 6.21%
IBM 11.61% 15.52%  4.46%  6.55% 1.34% -1.14%
INTC 18.56%  6.42%  4.08%  0.68% 7.82% 15.83%
JNJ 16.63%  3.03% 4.81% -3.09% 7.52% 2.63%
JPM 9.19%  -5.84%  5.93% -19.40% 33.74% 29.12%
MCD 21.86% 22.14%  9.49%  0.91% -2.18% 2.45%
MRK 13.15%  0.33% -3.89% -1.21% 6.95% 11.71%
MSFT 4.44%  -1.24%  -250%  0.62% 12.58%  16.02%
NKE 19.12% 16.93% 12.80%  -6.01% 11.80% 6.30%
PFE 8.56%  0.99% -5.84%  -0.82% 2.92% 7.97%
PG 10.47%  3.26%  2.53% -2.33% 12.92% 1.12%
TRV 23.01% 5.91%  5.77% -18.90% 21.79% 15.03%
UTX 10.65%  4.37%  3.53%  2.39% 5.41% 3.40%
UNH 2.38%  0.22% -1.85% 7.59% -8.37% -0.09%
VZ 14.56% 7.95%  9.59% -3.16% 13.46%  16.30%
WMT 21.82%  6.89% 10.37% -10.88% 12.91% 13.09%
Average 12.83%  6.98% 1.92%  0.75% 10.82% 9.98%
St.Dev. 7.38% 10.09% 7.33%  10.21% 9.74% 7.77%

differences are observed for the proposed model’s trading performance under different market
conditions, the proposed model performs better than traditional trading models like Buy &
Hold, RSI, SMA, LSTM and MLP regression especially when the overall market is not in
an uptrend.

Also, in Table 10 and Table 11 some trading summary results are provided. The results
are consistent not only between ETFs and Dow30 stocks, but also between varying market
conditions (2007-2012) and (2007-2017) periods. The number of transactions (AnT) are
between 17 and 21 in all cases indicating the model performs a trade (buy-sell pair) once
every 3 weeks which is consistent with the input technical analysis resolution (6 to 20 days).
Average trade length (L) is also 7 to 9 days which indicates there is also 9-14 days of idle
time where the model sits on cash waiting for a trade trigger (indicated by Idle Ratio).

In addition, the statistical significance test results of proposed CNN-TA compared with
BaH, LSTM and MLP are tabulated in Table 12 and Table 13. The results indicate CNN-TA
trading performance is significantly better than all models over the long run (2007-2017) for
both Dow30 stocks and ETFs. For 2007-2012 period, the outcome is similar, however only
for the LSTM case, the outperformance of CNN-TA is not significant.
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Table 10: TTest Results and Average Results of the Proposed CNN-TA Model for Dow30

Performance Metrics TTest Avg(07-12) Avg(07-17)
Proposed CNN Strategy o o
Annualized Return (CNN-TAr) 0-337 12.83% 12.50%
Annualized Number

of Transaction (AnT) 0-007 191 213
Percent of Success (PoS) 0.556 70.63% 71.32%
Average Percent Profit o o
Per Transactions (ApT) 0-981 0.78% 0.78%
Average Transaction

Length in Days (L) 0-000 90 69
Maximum Profit Percentage o o
in Transaction (MpT) 0-127 11.04% 8.82%
Maximum Loss Percentage . 0,

in Transaction (MIT) 0-052 -18.97% -14.33g
Idle Ratio (IdleR) 0.002 53.32% 57.11%
Sharpe Ratio (Daily) - 0.08 0.10

Table 11: TTest Results and Average Results of the Proposed CNN-TA Model for ETFs

Performance Metrics TTest Avg(07-12) Avg(07-17)
Proposed CNN Strategy o o

Annualized Return (CNN-TAr) 0787 % 13.01%
Annualized Number

of Transaction (AnT) 0293 ) i 173
Percent of Success (PoS) 0.982 71.44% 71.51%
Average Percent Profit - o

Per Transactions (ApT) R 0.74% 0.70%
Average Transaction

Length in Days (L) 0-405 8.8 94
Maximum Profit Percentage o o

in Transaction (MpT) V62 9.98% 10.12%
Maximum Loss Percentage ' '

in Transaction (MIT) 0747 -19.84% -18.51%
Idle Ratio (IdleR) 0.546 52.64% 54.04%
Sharpe Ratio (Daily) - 0.09 0.11

Table 12: TTest Results of Annualized Return of Dow30 Stocks

Time Interval Performance Metrics TTest Results

CNN-TA - BaH 0.0100241
2007-2017 CNN-TA - LSTM 0.0000001
CNN-TA - MLP 0.0000001
CNN-TA - BaH 0.0012111
2007-2012 CNN-TA - LSTM 0.1072803
CNN-TA - MLP 0.0490155

Table 13: TTest Results of Annualized Return of ETFs

Time Interval Performance Metrics TTest Results

CNN-TA - BaH 0.0000302
2007-2017 CNN-TA - LSTM 0.0010461
CNN-TA - MLP 0.0000013
CNN-TA - BaH 0.0013547
2007-2012 CNN-TA - LSTM 0.0755492
CNN-TA - MLP 0.0463610
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5.9. Future Directions

Even though the performance of the model is promising, more improvements can still
be achieved. The model might perform better if CNN structural parameters are optimized.
Evolutionary algorithms for model optimization may enhance the network performance.
Similarly, selecting the proper image size, window size, technical analysis optimization can
improve the overall performance considerably. Also, data representation for ”Buy”, ”Sell”,
"Hold” points can be optimized for better trade signal generation performance.

In this study, we analyzed a long-only strategy for our algorithmic trading model. How-
ever, adapting a long-short strategy might increase the profit significantly, since there are
a lot idle times where the model is sitting on cash while waiting for a trigger Buy signal.
Similarly, based on the stock/ETF performance, a portfolio with multiple stocks/ETFs can
be dynamically allocated and enhanced overall performance with less risk can be achieved.

From a general perspective, more applications might start adapting 2-D CNN for non-
image data in the future. There are already some indications for this trend for time series
forecasting [61, 62, 63], gait recognition through radar signals [64] and malware classification
(65, 66]. Following these recent developments, in the near future, we might expect similar
implementations in other fields to start utilizing image-based CNN.

6. Conclusion

In this study, we utilized a 2-D Deep Convolutional Neural Network model to be used
with financial stock market data and technical analysis indicators for developing an algo-
rithmic trading system. In our proposed solution, we analyzed financial time series data
and converted this data into 2-D images. In our study, we attempted to predict entry and
exit points of the time series values as ”Buy”,”Sell” and ”Hold” marks for profitable trades.
We used Dow Jones 30 stock prices and ETFs as our financial time series data. The results
indicate this novel approach performs very well against Buy & Hold and other models over
long periods of out-of-sample test periods. For future work, we will use more ETFs and
stocks in order to create more data for the deep learning models. We will also analyze the
correlations between selected indicators in order to create more meaningful images so that
the learning models can better associate the Buy-Sell-Hold signals and come up with more
profitable trading models.
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8. Appendix
8.1. Relative Strength Index (RSI)

Relative Strength Index (RSI) is an oscillator type technical analysis indicator that shows
the historical strength and weakness of stock prices. As stock prices change, RSI values
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oscilate between 0 and 100 which indicates whether the stock prices are in the overbought
or oversold region. The most common usage of RSI indicator and its interpretation works
as follows: If the value is over 70, the stock is considered to be in the overbought region.
Meanwhile, if the value is under 30, the stock is assumed to be in the oversold region.
Equation for calculating the RSI value is provided in Equation 12.

100
RS[ - 100 - ﬁ (12)
L+ Gocrageloss

8.2. Williams %R

Williams %R is a momentum based technical indicator that also determines overbought
and oversold conditions for stock prices. It oscillates between -100 and 0 values. The
corresponding logic for Williams %R is exactly the same as RSI. If the value is under -80,
it is interpreted that stock prices are in the oversold region. In contrast, if the value is over
-20, the stock price is considered to be in the overbought region. Equation 13 shows how
Williams %R value is calculated.

max(high) — close

= —100 13
max(high) — min(low) y (13)

8.3. Simple Moving Average (SMA)

Simple Moving Average (SMA) shows the moving average of the prices for a given period.
In its most widely accepted interpretation, the intersection of the SMA values with different
interval values are used to determine the trend direction. As a result, multiple SMAs can
be combined to be used together, or one single SMA value can be used in conjunction with
the underlying stock, i.e. if the stock price is higher than the SMA (for instance 50 day), it
is assumed that the stock is in uptrend, indicating the stock price will continue to increase
(Buy trigger), whereas if the stock price is lower than the SMA| it is assumed that the stock
is in downtrend, indicating the stock price will decrease (Sell trigger). Calculation of SMA
is summarized in Equation 14.

SMA(M,n) = i M:‘") (14)
k=a+1

8.4. Ezxponential Moving Average (EMA)

Exponential Moving Average (EMA) is a type of moving average indicator that shows
moving average of the prices, emphasizing more for latest days. Latest data has more
weight when calculating the moving average. Importance of the latest data is exponentially
increasing in EMA calculations. Equation 15 illustrates the calculation of EMA of the stock
prices.

(M(t) — EMA(M,t — 1,7)).

2
EMA(M,t—1 15
o+ EMAOM,t—1,7) (15)
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8.5. Weighted Moving Average (WMA)

Weighted Moving Average (WMA) is another type of moving average indicator that is the
same as exponential moving average. The only difference is the importance of the close price
is decreasing linearly when moving back to the past. On the other hand, the significance of
the close price of stock is decreasing exponentially in EMA. Equation 16 shows how WMA
is calculated.

Sum of Weighted Averages
WMA(M,n) = 1
(M,n) Sum of Weight (16)

8.6. Hull Moving Average (HMA)

Hull Moving Average (HMA) is a type of moving average indicator that reduces the lag
associated with SMA. EMA and WMA tries the reduction of lag using more emphasis on the
latest data. HMA improves this reduction of the lag and gets better results when compared
with EMA and WMA. Equation 17 exhibits the calculation of HMA.

WMA(M,n) = WMA(2 * WMA(%) — WMA(n)), sqrt(n) (17)

8.7. Triple Exponential Moving Average

Triple Exponential Moving Average (TEMA) is a type of EMA indicator that provides
the reduction of minor price fluctuations and filters out volatility. It can be calculated as
follows:

(3% EMA — 3% EMA(EMA)) + EMA(EMA(EMA)) (18)

8.8. Commodity Channel Index (CCI)

Commodity Channel Index (CCI) is an indicator that compares current prices and the
average price over a period of time. It oscillates mostly (%75) between -100 and 100 values.
%25 of time period, indicator passes its range values. Equation 19 and Equation 20 show
the calculations for CCIL.

Typical Price — 20 Period SMA of TP

I = 1
oY 015 * Mean Deviation (19)
High + L Cl
Typical Price(TP) = gh T Zw T Close (20)

8.9. Chande Momentum Oscilator Indicator (CMO)

The Chande Momentum Oscillator (CMO) is a type of momentum indicator that is
similar to RSI and Stochastic Oscillator. It oscillates between -100 and 100. If the indicator
value is over 50, it is interpreted that stock prices are in the overbought region. If the value
is under -50, it is commonly considered that stock prices are in the oversold region. The
formula of the indicator is illustrated in Equation 21. S, is the sum of the momentum of up
days and Sy is the sum of the momentum of down days.
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CMO = 100 * (Su — S4)

(Su + Sa) (21)

8.10. Moving Average Convergence and Divergence (MACD)

Moving Average Convergence and Divergence (MACD) is a technical indicator that shows
the trend of the stock prices. If MACD line crosses signal lines in upward direction, it is
predicted that stock prices will increase. In contrast, if MACD line crosses signal lines
in downward direction, it is interpreted that stock prices will decrease. Equation 22 and
Equation 23 show the calculations of MACD and Signal Lines.

MACD Line: (12 Day EMA — 26 Day EMA) (22)
Signal Line : 9 Day EMA of MACD Line (23)

8.11. Percentage Price Oscillator (PPO)

Percentage Price Oscillator (PPO) is similar to MACD. The calculation of the PPO and
Signal Line of PPO are illustrated in Equation 24 and Equation 25.

(12 Day EMA — 26 Day EMA)
26 Day EM A

PPO = %100 (24)

Signal Line : 9 Day EMA of PPO (25)

8.12. Rate of Change (ROC)

Rate of Change is a technical indicator that illustrates the speed of price change over a
period of time. Equation 26 shows the calculation of the formula.

Latest Close — Previous Close)

(Previous Close)

RoC = ¢ % 100 (26)

8.13. Chaikin Money Flow Indicator (CMFI)

Chaikin Money Flow (CMF) is a technical indicator that is used to measure Money Flow
Volume over a period of time. Indicator’s value fluctuates between 1 and -1. If the value
is closer 1, it is interpreted that buying pressure is higher. On the contrary, if the value
is closer -1, it is interpreted that selling pressure is higher. Equation 27, Equation 28 and
Equation 29 illustrate the calculation of CMFI.

((Close — Low) — (High — Close))

Multiplier = 2
ultiplier (High = Low) (27)
Money Flow Volume (MFV) = Volume x Multiplier (28)
21 Peri MF
21 Period CMF = —LPeriod Sum of MEV (29)

21 Period Sum of Volume
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8.14. Directional Movement Indicator (DMI)

Directional Movement Indicator is a technical indicator that shows the trend’s strength
and direction. It consists of three seperate indicators: Average Directional Index (ADX),
Plus Directional Indicator (+DI) and Minus Directional Indicator (-DI). DMI oscillates 0 and
100 values. Algorithm 3, Equation 27, Equation 28 and Equation 29 show the calculation
of DMI.

Algorithm 3 Calculating DMI
1: procedure DMI()
2 UpMove = CurrentHigh — PreviousHigh
3 DownMove = CurrentLow — PreviousLow
4 If (UpMove > DownMove and UpMove > 0)
5: then return (+DM1I) = UpMove,
6
7
8
9

else return (+DMI) =0

If (DownMove > Upmove and DownMove > 0)
then return (—DMI) = DownM ove,
else return (—DMI) =0

+DMI
DI =100« EMA 30
* i (Avemge True Rcmge) (30)
—DMI
—-DI =1 EMA 1
00+ (Average True Range) (31)

+DI — -DI

ADX =1 EMA(A _—
00 * (Absolute Value of (+DI—|——DI))

8.15. Parabolic Sar

Parabolic SAR (SAR) is a technical analysis indicator that is used to determine points
of potential stops and reverses. Current SAR is calculated with three elements; Previous
SAR (PSAR), Extreme point (EP) and Acceleration Factor (AF). Previous SAR is a SAR
value for the previous period. EP is the highest high of the current uptrend or the lowest
low of the current downtrend. AF explains the sensitivity of the SAR. AF begins at .02 and
increases by .02 every time when EP rises in a Rising SAR. AF decreases by .02 every time
when EP falls in a Falling SAR. Equation 33 shows the calculation of Rising Parabolic SAR.
Falling Parabolic SAR is calculated as in Equation 34.

PSAR + Previous AF(Previous EP + PSAR) (33)

PSAR — Previous AF(PSAR — Previous EP) (34)
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Highlights of Article:

We converted 1-D financial technical analysis data to 2-D images for classification.

We used 2-D Deep Convolutional Neural Network for trend forecasting.

We propose a robust algorithmic trading model that works in any market condition.

To best of our knowledge, 2-D CNN with TA has not been used for financial trading before.

Model outperformed Buy&Hold, RSI, MA, LSTM, MLP over long time periods.









