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Clustering is a powerful vehicle to reveal and visualize structure of data. When dealing with time series,
selecting a suitable measure to evaluate the similarities/dissimilarities within the data becomes
necessary and subsequently it exhibits a significant impact on the results of clustering. This selection
should be based upon the nature of time series and the application itself. When grouping time series
based on their shape information is of interest (shape-based clustering), using a Dynamic Time Warping
(DTW) distance is a desirable choice. Using stretching or compressing segments of temporal data, DTW
determines an optimal match between any two time series. In this way, time series exhibiting similar
patterns occurring at different time periods, are considered as being similar. Although DTW is a suitable
choice for comparing data with respect to their shape information, calculating the average of a collection
of time series (which is required in clustering methods) based on this distance becomes a challenging
problem. As the result, employing clustering techniques like K-Means and Fuzzy C-Means (where the
cluster centers - prototypes are calculated through averaging the data) along with the DTW distance is a
challenging task and may produce unsatisfactory results. In this study, three alternatives for fuzzy
clustering of time series using DTW distance are proposed. In the first method, a DTW-based averaging
technique proposed in the literature, has been applied to the Fuzzy C-Means clustering. The second
method considers a Fuzzy C-Medoids clustering, while the third alternative comes as a hybrid technique,
which exploits the advantages of both the Fuzzy C-Means and Fuzzy C-Medoids when clustering time
series. Experimental studies are reported over a set of time series coming from the UCR time series
database.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

relaxed by assigning membership grades that assume values in the
unit interval and quantify a strength of belongingness of a data

Time series are commonly encountered in numerous application
areas including finances, medicine, engineering, and environmental
science. Considering high dimensionality and substantial volume of
time series collected in different applications, extracting and visua-
lizing available structure in this type of data is highly beneficial and
exhibits numerous potential applications in data summarization,
anomaly detection, etc.

In this study, we discuss and contrast a number of alternatives
for fuzzy clustering of time series to reveal and visualize the
available structure within this type of data. Fuzzy clustering is one
of the widely used clustering techniques where, instead of assigning
data to individual cluster, the Boolean-like nature of assignment is
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point to the individual cluster. Fuzzy C-Means (FCM) (Bezdek, 1981)
and Fuzzy C-Medoids (FCMdd) (Krishnapuram et al., 2001) are the
two well-known and representative fuzzy clustering techniques. In
both techniques, the objective is to form a number of cluster centers
(prototypes) and a partition matrix so that a given performance
index becomes minimized. FCMdd selects the cluster centers as
some of the existing data points (medoids) whereas FCM generates
a set of cluster centers using a weighted average of data. In both
techniques, the intent is to minimize a weighted sum of distances
between data points and cluster centers.

Selecting a distance function to evaluate similarities/dissimilarities
of time series has a significant impact on the clustering algorithms
and their final results produced by them. This selection may depend
upon the nature of the data and the specificity of the application. In
most partition-based time series data clustering techniques, the
Euclidean distance is commonly used to quantify the similarities/
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dissimilarities of time series (or their representation). However, in this
technique, one compares the points of time series in a fixed order and
cannot take into account existing time shifts. Furthermore, this
distance function is applicable only when comparing equal-length
time series. On the other hand, in most representation-based (feature-
based) clustering techniques, the representatives of clusters cannot be
reconstructed in the original time series domain and in such a way
they are not useful for data summarization.

In this study, we use Dynamic Time Warping (Berndt and Clifford,
1994) (DTW) distance for clustering time series data. DTW is the
most well known technique for evaluating similarity/dissimilarity of
time series with respect to their shape information. It is a commonly
encountered method and different versions of this technique have
been reported in the literature (e.g., see (Salvador and Chan, 2007;
Jeong et al., 2011; Banké and Abonyi, 2012; Chu et al.,, 2002; Keogh
and Pazzani, 1999)) for evaluating similarity/dissimilarity of time
series. This distance function determines an optimal match between
two time series by stretching or compressing some segments of the
series. As the result, patterns occurring at different time instances of
time series are considered as similar and consequently, this techni-
que evaluates the similarity of time series with respect to their
shapes. Moreover, this technique can express the distance between
non-equal-length time series.

As mentioned earlier, DTW distance is a suitable measure to
evaluate the similarities/dissimilarities of time series with respect to
their shape information. However, there are some difficulties in
applying this technique to partition-based clustering methods.
Among several reasons behind this, time complexity of this technique
is quadratic (Salvador and Chan, 2007) and calculating the average of
a set of time series based on this measure is a challenging problem.

In this study, we propose and evaluate three alternatives for
fuzzy clustering of time series data using DTW distance. These
techniques cluster the time series data with respect to their shape
information. Furthermore, the prototypes generated during the
clustering process can be used for data summarization based on
the shape information within the time series.

Using a DTW-based averaging technique reported in the literature
(Petitjean et al., 2011), a Fuzzy C-Means (FCM) clustering is proposed.
As the second method, a Fuzzy C-Medoids (FCMdd) clustering, that is
free from calculating averages of time series, is examined to select a
number of optimal cluster centers as well as an optimal partition
matrix. As the third alternative, a hybrid of Fuzzy C-Means and Fuzzy
C-Medoids technique is considered for clustering time series data. In
all these techniques, time series are clustered based on shape
similarities (using the DTW distance) and the cluster centers are in
time series domain (not their representation). As a result, the centers
can be considered as representatives of time series.

Partition-based clustering of time series data using DTW distance is
a challenging problem that has been addressed in this study. Employ-
ing a DTW-based averaging technique in FCM is a novel idea presented
in this work. Moreover, the proposed hybrid technique which exploits
the merits of FCM and FCMdd for clustering time series data realizes a
novel idea that has been proposed and investigated in this paper.

The study is structured as follows. In Section 2, we review the
proposed methods for clustering time series data. In Section 3 the DTW
distance along with an averaging technique based on this measure is
briefly reviewed. Section 4 discusses different alternatives for fuzzy
clustering of time series data using DTW, and Section 5 reports on the
experimental studies. Finally, Section 6 concludes the paper.

2. Literature review
In this section, we briefly review some well-known similarity/

dissimilarity measures of time series as well as some clustering
techniques reported in the literature for this type of data.

Similarity measures used in time series data can be divided into
three general categories including L,-norm distances, elastic measures,
and statistical techniques (Izakian et al., 2013). Selecting a similarity
measure in time series data mining depends on the nature of data and
the nature of the application itself. When comparing two time series
based on a fixed mapping of their points is of interest, L,-norm
distances can be used. The most commonly used examples of L,-norm
are L; (Manhattan), L, (Euclidean), and L., (Tchebyschev). These
distances can be applied to compare time series in their original or a
representation domain.

In Izakian et al. (2013), Izakian and Pedrycz (2014) and Izakian
and Pedrycz (2014), authors presented an augmented version of
Euclidean distance function for fuzzy clustering of time series data.
The original time series as well as different representation techni-
ques, including Discrete Fourier Transform (DFT), Discrete Wavelet
Transform (DWT), and Piecewise Aggregate Approximation (PAA)
were examined for clustering purpose. D'Urso and Maharaj (2009),
transformed the time series data through their autocorrelation
representation, and used the Euclidean distance to compare data in
the new feature space. Then, a FCM technique was employed to
cluster the transformed data. In Izakian and Pedrycz (2013), a
clustering-based technique for anomaly detection in time series data
was proposed. For detecting anomalies in the amplitude of time
series, a Fuzzy C-Means clustering applied to the original representa-
tion of time series and the Euclidean distance function was employed
as a dissimilarity measure. For the purpose of detecting anomalies in
the shape of time series, first the data are transformed into an
autocorrelation representation, and then the Euclidean distance was
employed to compare time series in the transformed domain.

In Vlachos et al. (2003), time series data were represented using a
Haar wavelet transform, and the K-Means algorithm along with the
Euclidean distance employed to cluster data in the new feature space.
In Maharaj and D'Urso (2011), time series are represented through a
set of cepstral coefficients, and Euclidean distance is employed to
quantify the dissimilarity of time series in the process of a Fuzzy
C-Means clustering. Moller-Levet et al. (2003), represented time series
data through piecewise linear functions, and proposed a short time
series distance, measured as the sum of squared Euclidean distances
between the corresponding slopes encountered in two time series.
The Fuzzy C-Means algorithm was realized to cluster the data in the
new feature space. In Nanda et al., (2010), the Euclidean distance was
considered to cluster stock market time series using the K-Means,
Fuzzy C-Means, and a self organization map for building a portfolio.
The experimental results showed that K-Means could generate more
compact clusters in comparison with the other clustering techniques.

Dynamic time warping distance (DTW) (Berndt and Clifford, 1994),
longest common subsequence (LCSS) (Vlachos et al., 2002), and edit
distance of real-number sequences (EDR) (Chen et al., 2005) are located
in the elastic measures category. DTW helps to find an optimal match
between two time series by stretching or compressing their segments,
and evaluate the similarity of time series with respect to their shapes.
LCSS employs the length of the longest subsequence occurring in two
time series to quantify their similarity, and EDR takes into account the
number of insert, delete and replace operations required to convert one
sequence to another one to determine their similarity.

Authors in Niennattrakul and Ratanamahatana (2007) examined
K-Means and C-Medoids algorithms for clustering time series data
using dynamic time warping distance function. Experimental results
indicated that the K-Means clustering cannot generate acceptable
results when this distance function is considered (because of the
problem of averaging time series based on this measure), and instead,
C-Medoids technique may generate satisfactory results. In Keogh and
Pazzani (1999), authors proposed a hierarchical clustering technique of
time series data, and a DTW distance was considered to quantify the
dissimilarity of time series. In Petitjean and Gangarski (2012), a DTW-
based averaging of time series is proposed using a compact multiple
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alignments theory. A Genetic Algorithm was considered to scan the
space of compact multiple alignments and find the average of time
series. Furthermore, in Petitjean et al. (2011), a DTW-based global
averaging of time series was proposed and a K-Means clustering was
employed to group data using the proposed averaging technique.
Authors compared their averaging technique with some others
reported techniques in the literature indicating that the proposed
method was more accurate in clustering and classification. In (Jeong
et al, 2011), a weighted dynamic time warping distance was intro-
duced for time series classification. The intuition behind this technique
was that the DTW does not take into account the relative importance
regarding the phase difference between a reference point and a testing
point, leading to some misclassification, where shape similarity is in
concern. As the result, this technique penalizes points with higher
phase difference between a reference point and a testing point to
prevent minimum distance distortion resulted through outliers. In
comparison with the general DTW technique this technique produces
more accurate classification results.

In Banké and Abonyi (2012), a correlation-based DTW distance
was developed to compare multivariate time series. The proposed
method combines DTW and PCA-based similarity measures to
preserve correlation information when comparing multivariate time
series. Experimental studies showed that the proposed method is
efficient in dealing with datasets with complex correlation structure.
In Chu et al. (2002), an iterative deepening dynamic time warping
was proposed. The technique employs a piecewise aggregate approx-
imation to reduce the dimensionality of time series and producing a
comparison method. In Sakurai et al. (2005), through considering
some constraints on warping path, a fast search method for dynamic
time warping was proposed. The proposed method was faster than
the techniques proposed in the literature.

Pearson coefficients and the Kullback-Liebler distance (Ramoni
et al., 2002) are two well-known statistical indicators to quantify the
existing similarities between time series. The first one considers the
correlation between time series and regards it as a similarity measure
whereas the second one is useful in evaluating the similarity of time
series represented by their Markov chains. In Golay et al. (1998), two
cross correlation-based similarity measures of raw functional MRI
data were proposed to provide functional maps of human brain
activity using the fuzzy C-Means method. In (Liu and George, 2003),
the Pearson correlation coefficient was considered as the similarity
measure expressing closeness of weather time series and a FCM
technique employed to cluster the data. In Sobhe Bidari et al. (2008), a

Table 1

Pearson correlation between expression patterns of genes was
considered as a similarity measure, and a Fuzzy C-Means and
K-Means clustering were employed to find functional patterns of
time series gene expression data. Moreover Ramoni et al. (2002)
proposed a Bayesian method to cluster time series through modeling
the time series as Markov chains and using a symmetric Kullback-
Liebler distance between transition matrices. The clustering was
considered as a Bayesian model selection problem to find the most
suitable set of clusters. A number of surveys of time series data
clustering and analysis are reported in Refs. Liao (2005), Fu (2011),
Ding et al. (2008), and Esling and Agon (2012). Note that selecting a
suitable similarity/dissimilarity measure is application-dependent and
has to reflect the nature of time series data. In this paper, we propose
some techniques for shape-based clustering of time series data. For
this purpose, fuzzy clustering along with the DTW distance function
has been considered.

3. Dynamic time warping distance

Using stretching and compressing of time series, DTW deter-
mines an optimal match between two time series in the calcula-
tions of their differences. In this technique, each point coming
from the first time series is compared with any arbitrary point of
the second time series. As a result, time series with similar
patterns occurred in different time periods, are considered similar.
To implement this algorithm, a method of dynamic programming
is considered. Table 1 presents a pseudocode for calculating the
DTW distance between two time series @ and b of length n and m,
respectively (Petitjean et al., 2011).

As shown in Table 1, the distance between the two time series a
and b in their ith and jth coordinates, cost;;, can be calculated using
their current distance, and the minimal value of their distance in their
previous coordinates. Moreover, min_index() stands for the coordi-
nates corresponding to the minimum value of the previous cost. The
algorithm calculates two matrices, called cost and path comprising
the cost and warping path of calculating the DTW distance between
two time series.

The main difficulty in applying DTW distance to partition-based
clustering techniques (like the FCM algorithms) is about computing
the average of a set of time series based on this distance function.
There are a number of techniques reported in the literature (e.g.,
Petitjean et al., 2011; Gupta et al,, 1996; Niennattrakul and Ratan-

Calculations of the DTW distance between time series a and b (Petitjean et al., 2011).

Given:

a=ai,a, ..., ay, the first time series with length n

b=by,b,, ... bn, the second time series with length m

Output:

cost: a matrix of size n x mcontaining the cost values. cost,, is the DTW distance between a and b
path: a matrix of size n x mcontaining a warping path

DTW(a, b):

Let sbe a distance between coordinates of sequences

costy 1 =é(ar, by);
path;; =(0,0);
fori=23,..., ndo

cost;; = cost;_11+5(a;,by)
end
for j=23,..., mdo

costy j = costyj_1 +8(ar, bj)
end
for i=23,..., ndo

for j=23,..., m do

costjj = min(cost;_1.Cost;;_1,COSt;_1j_1)+35(a;, bj)
path;j = min _index((i—1,j),(1,j—1),(i—-1,j—1));

end
end
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Table 2
Calculating the average of time series based on DTW distance.

Given:

a=ai,a, ..., d,, the initial average of time series with length n
X1 =X11,X12, ..., X1m, , the first time series with length m;

Xy =X1,X22, ..., Xom, the second time series with length m;

XN = XN1,XN2. ..., XNmy» the Nth time series with length my
Output:
Y=Y1,Y2....Yn, average of time series X,Xa, ..., Xy
DTWavg(a, X1,Xa, ..., Xn):
LetassosTab = [¢, @, ..., ¢],an empty vector with n elements;
for k=1.2,...,N do
path=path matrix in DTW(a, Xx;);
i=n;
J=my
whilei>1 and j>1 do
assosTab; = assosTab; U xy;
@i.J) <—pathf_j:
end
end
fori=1.2,..,ndo
y;=average of elements located in assosTab;;
end

amahatana, 2009) for averaging a set of sequences based on DTW.
Among them, the method proposed in Petitjean et al. (2011) is more
accurate and efficient than the others. Assume that there are N time
series X1,Xz,..,Xy of length mq,m,, .., my, respectively. Table 2
contains a pseudocode for calculating the average of time series
based on DTW distance (Petitjean et al., 2011).

To calculate the average of a set of time series using the
pseudocode expressed in Table 2, one of the time series xy,x;,
...,Xy can be considered as the initial average of the data. However,
this selection may impact the final calculated average of time series.
In other words, considering different time series for initializing the
described averaging technique may produce different results.

4. Fuzzy clustering of time series using DTW distance

In this paper, we consider three alternatives for fuzzy clustering
of time series data. In the first method, we take into account the
averaging technique discussed in the previous section and employ
the Fuzzy C-Means technique for clustering time series data. In the
second method, a Fuzzy C-Medoids technique, which is free from
the averaging phase, is examined and finally, in the third techni-
que a hybrid of FCM and FCMdd is employed.

4.1. Fuzzy C-means clustering of time series

FCM clusters N time series,Xq,Xy,...,Xy into c information
granules - fuzzy clusters. The result of clustering is a set of ¢
cluster centers (prototypes), vi,V,,..,v. and a partition matrix
U=[ugl i=12,....c, k=12,...,N where uy € [0, 1], >5_;usp=1 Vk
and 0 < >°p_; uy <n Vi. This structure arises through the mini-
mization of the following objective function:

c N
J=>">" upd’wix M
i=1k=1
where d is a distance function and m (m>1) is a fuzzification
coefficient. Considering the Euclidean distance function in (1), and
starting from a randomly initialized partition matrix the cluster centers
and partition matrix are calculated in an iterative fashion as follows:

N m
_ Dk—1 UjkRk

V=
N m
Dk—1 U

@)

1

c 3)
Z (d(Vi,Xk)
i d(v;.x)

Uje =

)2/("!*1)

Note that when considering DTW as the distance function in (1), the
cluster centers cannot be calculated using (2). In this paper, for
clustering time series using FCM and DTW as the distance function,
we employ a weighted averaging method, based on the technique
covered in Table 2. Moreover, to initialize the average of time series
in each cluster, the time series having the maximum membership
degree to that cluster center is considered. The intuition behind this
selection is that, the weighted average of a set of time series should
be more similar to the time series having the maximum weight in
averaging. In the proposed technique in this section, the partition
matrix is calculated using (3), where d stands for the DTW distance.

4.2. Fuzzy C-Medoids clustering of time series

While using the FCM technique we calculate the cluster centers as
a weighted average of time series, FCMdd selects c time series from
the dataset as cluster centers (medoids) and in this way it does not
require averaging. It is important to stress that the prototypes formed
in this way are the elements of the collection of time series and are
fully interpretable. Similarly as in the case of the FCM, the objective
function used in this technique is expressed by (1). At the first step, a
set of c medoids can be selected randomly from the data. Considering
the selected medoids as cluster centers, a partition matrix is
constructed using (3). In the next step of the algorithm, in order to
minimize the objective function expressed in (1), the new medoids
v;, for i=1,2,...c are selected in the form (Krishnapuram et al., 2001):

V[(—Xq,

where

N
q=arg min» _ uflDTW?(X;, X,) “4)
1<j<Np_=1

The algorithm proceeds with the calculation of partition matrix and
new medoids until there is no a significant change in the partition
matrix.

4.3. Hybrid Fuzzy C-Means and Fuzzy C-Medoids for time series
clustering

The performance of the proposed FCM technique directly
depends on the accuracy of the DTW-based averaging technique
proposed in Petitjean et al. (2011) (and described in the previous
section). On the other hand, FCMdd is sensitive to initialization and
may generate results in local optima. In this section, we propose a
hybrid technique that exploits the merits of both FCM and FCMdd
techniques. The proposed technique uses the DTW-based averaging
technique only once and is less sensitive to initialization. Fig. 1
shows the overall scheme of the hybrid method.

In this approach, FCMdd is used to cluster the data for a large
number of clusters r; r > ¢, where c is the number of clusters in data
selected by the end user or some cluster validity indices. The result of
clustering is a set of prototypes (medoids), v{, V,, .., v; and a partition
matrix U with r rows and N columns (with N being the number of
time series). One may consider U as a new dataset with N objects each
having r features located in range [0, 1]. As a matter of fact, the FCMdd
technique is used here to create a transformed version of the dataset.
Considering that n is the length of time series, usually we have r<n,
and as the result, the transformed dataset is positioned in a smaller
search space. Moreover, the Euclidean distance can be now used to
compare the data formed in the new feature space. In the next step of
the algorithm, the FCM with the Euclidean distance is used to cluster
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the new dataset, U, into c clusters. The result is a partition matrix U’
and a set of cluster centers v}, v, ..., V..

The proposed technique clusters the data into ¢ clusters and
generates a partition matrix, U’ describing the membership degree of
each time series to different clusters. However, the cluster centers in
the proposed technique do not assume a form of time series as they
are expressed in the new feature space. To reconstruct the cluster
centers as time series in the original domain, one may use the
calculated cluster centers by FCM and FCMdd. In fact, each calculated

DTW Euclidean
distance distance
X1, X550 Xy
»] FCMdd L > ——» FCM >
ViV, ; — Ve,
\ 4 v
" ” ”

DTW-based
weighted average

Vi, Vo,V

Fig. 1. The overall scheme of the hybrid method proposed in this paper.

Table 3
UCR time series selected for experimental studies.

Dataset Length of time Number of time Number of
series series classes
CBF 128 930 3
Synthetic 60 600 6
control
Trace 275 200 4
Face four 350 112 4
Olive oil 570 60 4
Gun point 150 200 2
Lighting 7 319 143 7
Beef 60 470 5
a
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cluster center using FCM,vj, i=1.2,...c is composed of r weights
assuming values in the range [0, 1] corresponding to the selected
medoids vq,Vo, ..., vithrough the FCMdd. As the result, one may
generate cluster centers in the form of time series using a DTW-
based weighted average of vy, v,, ..., v, (expressed in Table 2) where
the weights are stored as v}, v, ..., v,.

5. Experimental studies

In this section, we examined the three alternatives for fuzzy
clustering using a number of datasets available online at the UCR
time series (www.cs.ucr.edu/~eamonn/time_series_data/). Table 3
summarizes the selected time series.

As shown in this table, datasets with different number of time
series, different length of time series, and different number of
classes are selected.

For both the FCM and FCMdd techniques the fuzzification
coefficient, m, is set to 2 and the maximum number of iterations
is set to 40, while the termination condition is considered to be in
the form |U(iter+1)— U(iter)| < 0.01, where U(iter) stands for the
partition matrix in iteration iter. For the hybrid technique, the
number of clusters considered in the first step of the algorithm, r,
may have a substantial impact on the performance of the algo-
rithm. Considering a small value for this number (e.g. r=c), the
FCMdd technique cannot capture the data to be used for clustering
at the next step of the algorithm. On the other hand, when
increasing the value of this parameter, more structural information
about the data can be accommodated and the performance of the
algorithm (in terms of accuracy) can be improved. However,
assuming a high value for this parameter may result in generating
some local optima through FCMdd and this may adversely impact
the performance of the algorithm. The optimal value of this
parameter depends on the structure available within the dataset.
For simplicity, in this paper we set r = +/N where N is the number
of time series in dataset.

Fig. 2. Example time series belonging to different classes of the CBF dataset.
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Figs. 2-4 show a collection of time series belonging to different Euclidean distance function (referred here to as FCM-EU). In a
classes of the CBF, Synthetic control, and Trace datasets (the first collection of figures, Figs. 5-7, we display the obtained prototypes

three datasets in Table 3).

for all the clustering methods and the three described datasets.

We set the number of clusters equal to the number of classes Let us consider the available classes in the CBF dataset (Fig. 2),
present in the above three datasets. Moreover, for purpose of and the obtained prototypes. As shown in Fig. 5 the FCM technique

comparative analysis, we consid

ered the FCM technique with the only revealed two classes. All the cluster centers achieved by

b

AL

d

=
S
<

b A'\NW
il \/\W" w]\'\ /V by
\)MW\M,& m\

=
=
<=

e f
VAo
ey
r
/ NW/) N
] \_/ V/J /k/ (,
Fig. 3. Selected time series belonging to different classes of the synthetic control dataset.
a b
f,w of \/\ mrvvm
W"’
c d

et ]

e Y

v

Fig. 4. Example time series belonging to different classes of the trace dataset.
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FCMdd are from the same class and the cluster centers coming
from FCM-EU are not similar to any classes available in the dataset.
The only technique that revealed all the three classes is the hybrid
one. Now let us consider the Synthetic control dataset. Since the
time series available in this dataset come from six classes, the
revealed prototypes using each clustering technique are shown in
the separate figures. As shown in Fig. 6, the only technique, which
discovers all six classes is the hybrid method. Finally, considering
the Trace dataset, all the three proposed techniques studied here
are able to reveal four available classes within the dataset,
however, the FCM-EU technique which uses the Euclidean dis-
tance function cannot produce convincing results.

a
25

2
15
1
05
0
05
-1
451

Fig. 8(a)-(c) shows a process of minimization of the objective
function (1) for the FCM and FCMdd techniques for the three datasets.

Both the FCM and FCMdd attained the minimum value of J in
the first few iterations of the algorithm.

5.1. Comparative studies

In this section, we compare the three proposed fuzzy clustering
techniques along with the FCM method with Euclidean distance
function (FCM-EU) over the datasets summarized in Table 3. The
number of clusters is considered to be c=k,k+1,...,2k where k is
the number of classes in each dataset. To quantify the ability of the
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Fig. 6. Prototypes for the Synthetic control dataset using (a) FCM, (b) FCMdd, (c) hybrid, and (d) FCM-EU. The number of clusters was set to 6.
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techniques in grouping similar time series, precision has been consid-
ered as a suitable evaluation criterion. This criterion is expressed in (5).
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Fig. 7. Prototypes over the Trace dataset using (a) FCM, (b) FCMdd, (c) hybrid, and (d) FCM-EU. The number of clusters set to 4.
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where c is the number of clusters, k is the number of classes (in
the labeled data), N is the number of time series, K;is the set of
objects (time series) belonging to ith class (labeled as i), C; is the
set of objects belonging to the jth cluster, and |. |denotes the
number of elements in a set. Table 4 shows the average and
standard deviation of the obtained precision; the clustering
process has been repeated 20 times (viz. the experiment
completed over 20 independent runs).

As shown in this table, FCM-EU generates weak results for most
of the data sets. However, for the Olive-oil data set, this technique
produces acceptable results. The reason is that in the Olive-oil data
set there is no so much time shifting in time series and therefore
the Euclidean distance function can be sought as a suitable choice
to compare time series. In 70% of cases, the hybrid technique
produced higher precision, and the FCMdd, FCM, and FCM-EU
techniques achieved better results (higher precision) in 11%, 14%,
and 5% cases, respectively.

The t-test carried out at a=0.05 (95% confidence) was
employed to assess whether the differences between the achieved
results produced by different techniques are statistically

Table 4

significant. Entries marked with asterisk (%) indicate that the
differences between the achieved precision value produced by
the proposed method and the achieved values by the other
techniques are statistically significant. In 47% of cases, the hybrid
method produced results exhibiting statistically significant differ-
ences with the results produced by other techniques. These values
for FCMdd, FCM, and FCM-EU are 0%, 2%, and 2%, respectively. In fact,
the hybrid technique proposed in this paper, builds on the merits of
both FCMdd and FCM techniques to generate results with higher
quality.

6. Conclusions

In this paper, to capture shape similarities between time series,
dynamic time warping distance is considered and three alterna-
tives, namely a Fuzzy C-Means, a Fuzzy C-Medoids, and a hybrid
Fuzzy C-Means and Fuzzy C-Medoids is introduced for clustering
time series data with respect to their shape information. A weighted
average technique is employed for calculating cluster centers in the

Comparison of the fuzzy clustering techniques in terms of the precision value. The results are reported in terms of average and standard deviation obtained over 20
independent runs for c=k, k+1, ... 2k, where k is the number of classes in each dataset. The entries in boldface highlight the best results obtained in each case.

Dataset c FCM-EU FCM FCMdd Hybrid
CBF 3 0.631 + 0.006 0.795 + 0.166 0.704 + 0.159 0.914 + 0.021:
4 0.643 +0.013 0.828 +0.109 0.748 + 0.150 0.978 + 0.017x
5 0.652 +0.012 0.869 + 0.084 0.795 + 0.092 0.974 + 0.025:¢
6 0.660 + 0.006 0.923 +£0.079 0.805 +0.113 0.976 + 0.023:
Synthetic control 6 0.583 +0.009 0.690 + 0.092 0.632 +0.175 0.929 + 0.048::
7 0.512 + 0.008 0.745 4+ 0.087 0.767 + 0.111 0.933 + 0.025:¢
8 0.534+£0.010 0.817 +£ 0.097 0.833 £0.100 0.936 + 0.025:¢
9 0.581 + 0.041 0.826 + 0.061 0.769 +0.110 0.949 + 0.018:¢
10 0.528 +0.009 0.889 + 0.058 0.887 + 0.045 0.933 + 0.025:
1 0.573 +0.029 0.871 £ 0.080 0.863 + 0.076 0.921 + 0.030:
12 0.570 + 0.046 0.879 +0.056 0.905 + 0.068 0.936 + 0.030
Trace 4 0.539 +0.018 0.755 + 0.006 0.743 + 0.050 0.761 + 0.009::
5 0.536 + 0.016 0.767 + 0.032 0.778 +0.121 0.829 + 0.029
6 0.549 £+ 0.002 0.801 £ 0.051 0.820 + 0.094 0.895 + 0.056:¢
7 0.558 + 0.009 0.820 + 0.053 0.813 + 0.088 0.877 + 0.071:¢
8 0.562 + 0.005 0.866 + 0.061 0.776 + 0.081 0.914 + 0.055:¢
Face four 4 0.585 + 0.044 0.611 + 0.099 0.610 + 0.091 0.699 + 0.061::
5 0.623 +0.042 0.704 £ 0.116 0.747 + 0.120 0.745 + 0.039
6 0.637 +0.034 0.760 + 0.085 0.742 + 0.110 0.780 + 0.027
7 0.657 + 0.024 0.737 + 0.097 0.674 + 0.038 0.811 + 0.041:
8 0.651 + 0.011 0.739 £0.103 0.730 £ 0.107 0.819 + 0.049:¢
Olive-oil 4 0.783 + 0.000 0.770 +0.038 0.728 +0.055 0.735 +£0.045
5 0.783 +0.008 0.798 + 0.033 0.737 + 0.073 0.742 + 0.038
6 0.775 + 0.009 0.800 + 0.026:¢ 0.742 + 0.042 0.763 +0.030
7 0.827 +0.009 0.837 +0.028 0.792 + 0.046 0.805 + 0.042
8 0.847 + 0.022: 0.815 +0.020 0.815 + 0.030 0.813 + 0.028
Gun point 2 0.500 + 0.000 0.505 + 0.004 0.507 +0.003 0.515 + 0.025
3 0.576 + 0.016 0.615 + 0.028 0.604 + 0.056 0.637 + 0.037:
4 0.650 + 0.063 0.651 £ 0.035 0.653 +0.059 0.727 + 0.024
Lighting 7 7 0.384 +0.024 0.502 + 0.044 0.514 + 0.060 0.539 + 0.037
8 0.372 +0.018 0.515 + 0.042 0.513 +0.037 0.545 + 0.042:¢
9 0.376 + 0.017 0.555 + 0.029 0.528 4+ 0.026 0.547 +0.042
10 0.377 £ 0.015 0.569 +0.033 0.557 £0.056 0.574 + 0.033
1 0.376 + 0.023 0.550 + 0.036 0.560 + 0.053 0.580 + 0.039
12 0.385 +0.029 0.588 + 0.058 0.578 +0.021 0.576 +0.032
13 0.364 +0.008 0.584 + 0.046 0.564 + 0.024 0.577 +£0.035
14 0.383 £0.032 0.591 + 0.030 0.604 + 0.035 0.588 + 0.047
Beef 5 0.525 +0.009 0.515 +0.030 0.530 + 0.017 0.513 + 0.040
6 0.533 +0.000 0.522 +0.029 0.525 4+ 0.025 0.535 + 0.050
7 0.533 +£0.000 0.530 £ 0.025 0.540 + 0.029 0.552 + 0.023
8 0.538 +0.008 0.562 + 0.025 0.570 + 0.033 0.558 +0.018
9 0.563 +0.015 0.553 +0.030 0.577 + 0.042 0.570 +0.023
10 0.562 +0.019 0.572 +0.024 0.570 +0.022 0.573 +0.043
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FCM method. For the FCMdd technique, one may select a number of
time series within the dataset as cluster centers (medoids) and this
technique is free from averaging. In the hybrid technique, first the
time series are clustered using the FCMdd, transforming the data
into a new feature space, and then a FCM technique along with a
Euclidean distance function is used to cluster the transformed data.
Using the DTW-based averaging technique and the cluster centers
revealed using FCMdd and FCM, the cluster centers of the hybrid
method can be constructed in the original feature space.
Experimental studies carried out over eight datasets coming from
UCR time series repository. In comparison with the conventional
FCM-EU method, the proposed techniques generate more acceptable
results in terms of the shape of generated cluster centers and the
precision of clustering results. Moreover, among the three proposed
techniques, in most cases the hybrid technique produces superior
results. Furthermore, in 47% of cases of experiments the difference
between the achieved precision by the hybrid technique and the
obtained precision using the other methods is statistically significant.
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