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Abstract

The In this paper, a generalized longest common subsequence problem is considered. For this new problem, two

constraining sequences of length § and f must be included as the subsequences of the two main sequences and
the length of the result must be maximal. For the two input sequences X and Y of lengths 7 and M, and the
given two constraining sequences of length § and ¢, we present an O(nmst) time dynamic programming

algorithm for solving the new generalized longest common subsequence problem. The correctness of the new

algorithm is proved.
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1. Introduction

The In this paper, a generalized longest common subsequence problem is considered. The longest common
subsequence (LCS) problem is a well-known problem for computing the similarity of two strings. It can be

widely applied in diverse areas, such as file comparison, pattern matching and computational biology|[3, 4, 8, 9].

Given two sequences X and Y, the longest common subsequence (LCS) problem is to find a subsequence of

X and Y whose length is the longest among all common subsequences of the two given sequences.

For some biological applications some constraints must be applied to the LCS problem. These kinds of variant
of the LCS problem are called the constrained LCS (CLCS) problem. Recently, Chen and Chao[1] proposed the

more generalized forms of the CLCS problem, the generalized constrained longest common subsequence (GC-
LCS) problem. For the two input sequences X and Y of lengths n and m ,respectively, and a constraint
string P of length r, the GC-LCS problem is a set of four problems which are to find the LCS of X and Y

including/excluding P as a subsequence/substring, respectively.

In this paper, we consider a more general constrained longest common subsequence problem called SEQ-IC-
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SEQ-IC-LCS, in which two constraining sequences of length § and ¢ must be included as the subsequences of
the two main sequences and the length of the result must be maximal. We will present the first efficient dynamic

programming algorithm for solving this problem.
The organization of the paper is as follows.

In the following 3 sections, we describe our presented dynamic programming algorithm for the SEQ-IC-SEQ-

IC-LCS problem.

In section 2 the preliminary knowledge for presenting our algorithm for the SEQ-IC-SEQ-IC-LCS problem is
discussed. In section 3 we give a new dynamic programming solution for the SEQ-IC-SEQ-IC-LCS problem

with time complexity OQ(nmst), where 11 and m are the lengths of the two given input strings, and § and ¢

the lengths of the two constraining sequences. Some concluding remarks are in section 4.

2. Characterization of the Generalized LCS Problem

A sequence is a string of characters over an alphabet Z A subsequence of a sequence X is obtained by

deleting zero or more characters from X (not necessarily contiguous). A substring of a sequence X is a

subsequence of successive characters within X .

For a given sequence X = X,X,---x, of length 71, the ith character of X is denoted as X; € Z for any

i=1,---,n. A substring of X from position i to j can be denoted as X[i: j]=xx;,,---x;. If i#1or

4

j#n , then the substring X[i:j]=xx

Vil

X is called a proper substring of X . A substring

X[i:jl=xx

X is called a prefix or a suffix of X if i =1 or j = n, respectively.

An appearance of sequence X = x,X,---X, in sequence ¥ = y,y,---y, , for any X and Y, starting at

n

position j is a sequence of strictly increasing indexes i;,i,,*-+,i suchthat = j,and X = Vig» Yiys s i
n

. A compact appearance of X in Y starting at position j is the appearance of the smallest last index i, .

For the two input sequences X = X,X,---X, and ¥ = y,y,---y, of lengths 7 and m, respectively, and two
constrained sequences P = p,p,---p, and Q = q,q,---q, of lengths § and f, the SEQ-IC-SEQ-IC-LCS

problem is to find a constrained LCS of X and Y including P and Q as its subsequences.

Definiton 1 Let S(i, j,k,r) denote the set of all LCSs of X[1:i] and Y[1: j] such that for each
ze S(, j,k,r), z includes P[1:k] and Q[1: r] as subsequences, where 1<i<n,1<j<m0<k<s

,and 0 < r <7.Thelength of an LCSin S(i, j,k,r) is denoted as f (i, j, k,r) .
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The following theorem characterizes the structure of an optimal solution based on optimal solutions to

subproblems, for computing the LCSs in S(i, j,k,r), for any 1<i<n 1< j<m0<k<s, and

0<r<r.

Theorem 1 If Z[1:1]= z,,z,,"++,z, € S(i, j,k, 7)., then the following conditions hold:
LIfk>0,r>0,x, = Y; =Dy =4, then z; =X, and Z[1:1-1]e SGE-1,j-1,k-1,r-1).

2. 1fk>0,x;,=y,=p, and (r=0vx; #q,),then z; = x; and Z[1:/-1]e S(@—1,j—1,k—1,r).
3.1 r>0,x,=y,=¢q, and (k=0Vvx; # p,),then z;, = x; and Z[1:1-1]€ S(i—1,j—1,k,r—1).
4. I x, =y, and (k=0vx #p) and (r=0vx #q,),then z, = x; and
Z[1:1-11eSG—-1,j-1,k,r).

5. If x; # y;, then z; # x; implies Z[1:/]e S(Z—1, j,k,r).

6. If x; # y;, then z, # y, implies Z[1:/]e S, j—1,k,7).

Proof.

1. In this case, we can add x; to Z[1:/—1] such that x; = z,, and thus Z[1:/—1] must be an LCS of
X[1:i—1] and Y[l:j—1] including P[l:k—1] and Q[l:r—1] as subsequences, i.e.
Z[1:1-1]1eS@i—-1,j-1,k—-1,r—1).

2. In this case we have no constraints on (, and thus X; cab be added to Z[1:/—1] and Z[1:/—1] must
be a common subsequence of X[1:7—1] and Y[1: j—1] including P[1:k —1] as a subsequence and
including Q[1:r] as a subsequence. We can show that Z[1:/—1] is an LCS of X[l:i—1] and
Y[1: j—1] including P[1:k —1] as a subsequence and including Q[1: 7] as a subsequence. Assume by
contradiction that there exists a common subsequence @ of X[1:i—1] and Y[1:j—1] including
P[1:k—1] as a subsequence and including Q[1: 7] as a subsequence, whose length is greater than [ —1.
Then the concatenation of @ and X, will result in a common subsequence of X[1:7] and Y[1: j] including

P[1:k] and Q[1: r] as subsequences, whose length is greater than /. This is a contradiction.
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3. In this case we have no constraints on P, and thus x; cab be added to Z[1:/—1] and Z[1:/—1] must
be a common subsequence of X[1:i—1] and Y[1: j—1] including P[1: k] as a subsequence and including
O[1l:r—1] as a subsequence. We can show that Z[1:/—1] is an LCS of X[1:i—1] and Y[1: j—1]
including P[1: k] as a subsequence and including Q[1: 7 —1] as a subsequence. Assume by contradiction
that there exists a common subsequence d of X[1:i—1] and Y[1:j—1] including P[1:k] as a
subsequence and including Q[1:r—1] as a subsequence, whose length is greater than /—1. Then the
concatenation of @ and x; will result in a common subsequence of X[1:7] and ¥Y[1: j] including P[1: k]

and Q[1: r] as subsequences, whose length is greater than [ . This is a contradiction.

4. In this case we have no constraints on P and (, and thus x; cab be added to Z[1:/—1] and Z[1:/-1]
must be a common subsequence of X[l:i—1] and Y[1:j—1] including P[1:k] and Q[l:r] as
subsequences. We can show that Z[1:/—1] is an LCS of X[1:i—1] and Y[1: j—1] including P[1: k]
and Q[1:r] as subsequences. Assume by contradiction that there exists a common subsequence d of
X[1:i—1] and Y[1: j—1] including P[1: k] and Q[1: r] as subsequences, whose length is greater than
[ —1. Then the concatenation of @ and X; will result in a common subsequence of X[1:i] and Y[1: j]

including P[1: k] and Q[1: r] as subsequences, whose length is greater than [ . This is a contradiction.

5. Since x; #y; and z; # X, , Z[1:1] must be a common subsequence of X[l:i—1] and Y[I: j]

including P[1: k] and Q[1: r] as subsequences. It is obvious that Z[1:/] is also an LCS of X[1:i—1]

and Y[1: j] including P[1:k] and Q[1: r] as subsequences.

6. Since x; # y; and z, #y,, Z[1:1] must be a common subsequence of X[1:i] and Y[1l: j—1]

including P[1: k] and Q[1: r] as subsequences. It is obvious that Z[1:/] is also an LCS of X[1:i] and

Y[1: j—1] including P[1: k] and Q[1: r] as subsequences.
The proof is completed. H
3. A Simple Dynamic Programming Algorithm

Let f(i, j,k,r) denote the length of an LCS in S(i, j,k, 7). By the optimal substructure properties of the
SEQ-IC-SEQ-IC-LCS problem shown in Theorem 1, we can build the following recursive formula for
computing (7, j,k,r).Forany 1<i<m1<j<m0<k<s,and O<r<t, the values of f(i, j,k,r)

can be computed by the following recursive formula (1).
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max{f(i—1,j.k,r), fG,j-1kr)} if x#y,
1+ fG@-1,j-1,k—1,r-1) ifk>0,r>0,x,.=yj=pk=qr
o 1+ f@i-1,j-1,k-1,r) itk>0,x,=y. =p, A(r=0vx #q,) )
fG, j.k,r)= L . !
1+ f(i-1,j-1,k,r-1) if r>0,x,=y,=q, A(k=0vx, #p,)
I+ fG-1,j-1kr) if x, =y, A(k=0vx,#p)A(r=0vx #q,)

The boundary conditions of this recursive formula are f(7,0,0,0) = (0, j,0,0)=0 and

f@@.,0,k,r)= f(0,j,k,r)=—c0 forany 0<i<n0<j<m0<k<s,and 0<r<t.

Based on this formula, our algorithm for computing f(Z, j,k,r) is a standard dynamic programming
algorithm. By the recursive formula (1), the dynamic programming algorithm for computing f (i, j,k,r) can

be implemented as the following Algorithm 1.

Algorithm 1 SEQ-IC-SEQ-IC-LCS

Input: Strings X =1 ---2,, Y = y; - -y, 0f lengths n and m, respectively, and two constrained sequences
P=pipy---psand Q = qiq2 -+ -4, of lengths s and ¢

Output: f(i,j,k,7), the length of an LCS of X[l : i and Y[1 : j] including P[1 : k] and
Q1 : 7] as subsequences, for all 1 < i < nl < j < m0 < k < s and 0 < r <
t

1: forall 7,5, k7 , 0€i<n0<j<m0<k<sand 0<r<tdo
20 f(i,0,k,7), f(0. 4, k1) + —o0, f(i,0,0,0), £(0,40,0) + 0 {boundary condition}
3: end for

4 forall 1,5, k,r, 1<i<n1<j<mi0<k<sand0<r<!do
5 if m; # y; then

6: fli g kyr) ¢« max{f(i — 1,5, k1), fli,7 — Lk, 7)}

7. elseif £ > 0 and z; = p;. then

8: if r > 0 and r; = g, then

o; G5 kr)—1+fi—-1j—Lk—1r—1)

10: else

11: flikor)+—1+fle—1,—1k—1,r)

12: end if

13:  elseif r > 0 and r; = ¢, then

14 FG, G kr) 1+ fli—1,5—1,kr—1)

15:  else

16: FE g, kr) 14+ fi-1,5-1,kr)

17:  end if

18: end for

It is obvious that the algorithm requires Q(nmst) time and space. For each value of f(i, j,k,r) computed
by algorithm Suffix , the corresponding LCS of X[1:7] and Y[1: j] including P[1: k] and Q[1:r] as
subsequences, can be constructed by backtracking through the computation paths from (i, j,k,r) to
(0,0,0,0) . The following algorithm back(i, j, k,r) is the backtracking algorithm to obtain the LCS, not only

its length. The time complexity of the algorithm back(i, j,k,r) is obviously O(n+ m).
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Algorithm 2 back(i, j. k.r)
Input: Integers i, j. k,r
Output: The LCS of X[1 : i] and Y]l : j] including P[1 : k] as a subsequence and Q[1 : 7] as a suf-

fix
1:ifi<1orj<]1then
2:  return
3: end if
4: if x; # y; then
5. if f(i —1,4,k.v) > fli,j — 1,k r) then
6: back(i — 1,7, k,1)
7. else
8: back(i,j — 1,k,7)
9:  end if
10: else if £ > 0 and x; = p; then
11: if r > 0 and x; = ¢, then
12: back(i—1,j—1,k—1,r—1)
I3: print a;
14:  else
15: back(i — 1,5 — 1, k—1,7)
16: print x;
17:  end if
18: else if r > 0 and z; = ¢, then
19:  back(i—1,7—1,k,r—1)
20: print z;
21: else
22:  back(i—1,7—1,k,7)
23; print z;
24: end if

4. Concluding Remarks

We have suggested a new dynamic programming solution for the new generalized constrained longest common
subsequence problem SEQ-IC-SEQ-IC-LCS. The new dynamic programming algorithm requires O(nmst) in

the worst case, where n,m,S,f are the lengths of the four input sequences respectively. It is not difficult to

show that this problem can also be solved in O(min (72,71)st) space based on Hirschberg’s Algorithm [5].
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