
Theoretical Computer Science 687 (2017) 79–92
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A space efficient algorithm for the longest common

subsequence in k-length substrings

Daxin Zhu a, Lei Wang b, Tinran Wang c, Xiaodong Wang d,∗
a Quanzhou Normal University, Quanzhou, China
b Facebook, 1 Hacker Way, Menlo Park, CA 94052, USA
c School of Mathematical Sciences, Peking University, Beijing, China
d Fujian University of Technology, Fuzhou, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 February 2017
Received in revised form 17 May 2017
Accepted 19 May 2017
Available online 26 May 2017
Communicated by R. Giancarlo

Keywords:
Longest common subsequence
Similarity of strings
Edit distance
Dynamic programming

Two space efficient algorithms to solve the LC Sk problem and LC S≥k problem are
presented in this paper. The algorithms improve the time and space complexities of the
algorithms of Benson et al. [4]. The space cost of the first algorithm to solve the LC Sk
problem is reduced from O (n2) to O (kn), if the size of the two input sequences are both n.
The time and space costs of the second algorithm to solve the LC S≥k problem are both
improved. The time cost is reduced from O (kn2) to O (n2), and the space cost is reduced
from O (n2) to O (kn). In the case of k = O (1), the two algorithms are both linear space
algorithms.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The longest common subsequence (LCS) problem is a classic problem in computer science [8,17]. Given two sequences
A and B , the longest common subsequence (LCS) problem is to find a subsequence of A and B whose length is the longest
among all common subsequences of the two given sequences. The problem has numerous applications in many appar-
ently unrelated fields ranging from file comparison, pattern matching and computational biology [11]. The LCS problem has
many variants, such as LCS alignment [13–15], constrained LCS [2,5,16,18,19], weighted LCS [1], restricted LCS [7] and LCS
approximation [12].

In past years, many related sequence similarity problems, often motivated by computational biology, have also been stud-
ied. One of them, proposed very recently by Benson et al. [3,4], is the longest common subsequence in k-length substrings
problem, in which the common subsequence is required to consist of k or at least k length substrings.

The LC Sk problem can be characterized as follows.

Definition 1. Given two sequences A = a1a2 · · ·an and B = b1b2 · · ·bm , and an integer k, the LC Sk problem is to find the max-
imal length l such that there are l substrings, ai1 · · ·ai1+k−1, · · · , ail · · ·ail+k−1, identical to b j1 · · ·b j1+k−1, · · · , b jl · · ·b jl+k−1
where {ait } and {b jt } are in increasing order for 1 ≤ t ≤ l and any two k-length substrings in the same sequence, do not
overlap.

* Corresponding author.
E-mail address: wangxd139@139.com (X. Wang).
http://dx.doi.org/10.1016/j.tcs.2017.05.015
0304-3975/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2017.05.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:wangxd139@139.com
http://dx.doi.org/10.1016/j.tcs.2017.05.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2017.05.015&domain=pdf

80 D. Zhu et al. / Theoretical Computer Science 687 (2017) 79–92
A similar problem is the LCS at least k problem (LC S≥k). In this problem, the demand of matching substrings of length
exactly k is relaxed to the length of the matched substrings to be at least k. The length of the common substrings is further
limited by 2k − 1 since a longer common substring contains two substrings each of length k or more.

The LC S≥k problem can be defined as follows.

Definition 2. Given two sequences A = a1a2 · · ·an and B = b1b2 · · ·bm , and an integer k, the LC S≥k problem is to find
substrings with maximal total length such that aip · · ·aip+k+t is identical to b jp · · ·b jp+k+t for −1 ≤ t ≤ k − 2 where {ait }
and {b jt } are in increasing order for 1 ≤ t ≤ l and any two substrings in the same sequence, do not overlap.

In the case of n = m, Benson et al. [3] presented a dynamic programming algorithm to solve the LC Sk problem using
O (kn2) time and O (n2) space. In the case of k = O (1), the time complexity of the algorithm becomes O (n2). For unbounded
k, the time complexity was further improved from O (kn2) to O (n2) [4,6]. If only the length of LC Sk has to be computed,
the space cost of their algorithm can be reduced to O (kn), but if an LC Sk has to be constructed, the whole table is needed
in their algorithm, implying O (n2) space requirement. Applying the sparse dynamic programming paradigm of Hunt and
Szymanski [10], Deorowicz et al. [6] presented an O (n + r log l) time and O (r) space algorithm, where r is the number
of matches, l ≤ n/k is the solution length. If the number of matches in the dynamic programming matrix is large, an
O (n2/k + n(k log n)2/3) and O (nl) space algorithm was also presented in [6] by using the observation that matches forming
a longest common subsequence must be separated with gaps of size at least k. Its variant based on the van Emde Boas tree
was also briefly discussed. Finally, a tabulation-based algorithm was presented, using O (n2/ log n) time and O (n2/ log n)

space.
For the LC S≥k problem, Benson et al. [4] presented a first dynamic programming algorithm to solve the problem using

O (kn2) time and O (n2) space. If only the length of LC S≥k has to be computed, the space cost of their algorithm can be
reduced to O (kn), but if an LC S≥k has to be constructed, their algorithm requires O (n2) space.

Very recently, Ueki et al. presented a similar dynamic programming algorithm to solve the problem [16]. The algorithm
was described very concisely in their paper since the main topic in their paper is to find the LCS in at least k length
order-isomorphic substrings problem. Their algorithm composes of two parts. In the first part, the longest common suffix
problem for the same input strings is solved. Then, in the second part of the algorithm, a dynamic programming formula
can be established by utilizing the solution array L obtained in the first part. If the sizes of the two input strings are m and
n respectively, their algorithm requires O (mn) time and O (mn) space since three tables of size (m + 1)(n + 1) are used. If
only the length of an LC S≥k is required, the space complexity can be easily reduced to O (kn). The algorithm presented in
this paper for the same problem requires also O (mn) time, but uses only O (kn) space.

In this paper, we focus on the space efficient algorithms to solve the LC Sk problem and LC S≥k problem. We present two
new algorithms to solve the problems. The first algorithm is a dynamic programming algorithm to solve the LC Sk problem,
using O (mn) time and O (kn) space, if the sizes of the input sequences are n and m respectively. In the case of k = O (1),
the algorithm is a linear space algorithm.

The second algorithm is an improved algorithm of Benson et al. to solve the LC S≥k problem. The time complexity is
reduced from O (kmn) to O (mn), and the space complexity is reduced from O (mn) to O (kn). In the case of k = O (1), the
algorithm is also a linear space algorithm.

The organization of the paper is as follows.
In the following 3 sections, we describe our improved algorithms of Benson et al to solve the LC Sk and LC S≥k problems.
In Section 2, we present an O (kn) space algorithm for solving the LC Sk problem. In Section 3, the time and space costs

of the algorithm of Benson et al to solve the LC S≥k problem are reduced to O (mn) and O (kn). Some concluding remarks
are placed in Section 4.

2. An O (kn) space algorithm for solving the LC Sk problem

2.1. The description of the algorithm

As stated in [8], LC Sk can be solved by using a dynamic programming algorithm. Let d(i, j) denote the length of the
longest match between the prefixes of A[1 : i] = a1a2 · · ·ai and B[1 : j] = b1b2 · · ·b j . Then, d(i, j) can be computed recur-
sively as follows.

d(i, j) =
{

1 + d(i − 1, j − 1) if ai = b j,

0 otherwise
(1)

Let f (i, j) denote the number of k matchings in the longest common subsequence, consisting of k matchings in the
prefixes A[1 : i] and B[1 : j]. Then, f (i, j) can be computed recursively as follows.

f (i, j) = max

⎧⎪⎨
⎪⎩

f (i − 1, j)

f (i, j − 1)

f (i − k, j − k) + δ(d(i, j))

(2)

D. Zhu et al. / Theoretical Computer Science 687 (2017) 79–92 81
Where, δ is a simple piecewise linear function defined by:

δ(i) =
{

1 if i ≥ k,

0 otherwise
(3)

Based on the formula (2), the table f (i, j) for the given input sequences A = a1a2 · · ·an and B = b1b2 · · ·bm of size n and
m respectively, can be computed in O (mn) time and O (mn) space by a standard dynamic programming algorithm.

Algorithm 1: LC Sk.

Input: A, B
Output: f (i, j), the number of k matchings in the longest common subsequence of A and B

1 for i=1 to n do
2 for j=1 to m do
3 if ai = b j then d(i, j) ← 1 + d(i − 1, j − 1);
4 f (i, j) ← max{ f (i − 1, j), f (i, j − 1), f (i − k, j − k) + δ(d(i, j))};
5 end
6 end
7 return f (n, m)

It is clear that the time and space complexities of the algorithm are both O (mn).
When computing a particular row of the dynamic programming table, no rows before the previous k rows are required.

Thus only k + 1 rows have to be kept in memory at a time. Without loss of generality, we can assume m = O (n) in the
following discussion. Thus, we need only (k + 1)m = O (kn) entries to compute the table.

If a longest common subsequence in k-length substrings has to be constructed, not just its length, then the information
provided by the (k + 1)m entries is not enough for this purpose. The O (kn) space algorithm proposed in this section is
also based on Hirschberg’s divide-and-conquer method of solving the LCS problem in linear space [9]. In order to use the
divide-and-conquer method, we need to extend the definition of LC Sk to a more general definition as follows.

Definition 3. For the two substrings A[i0 : i1] = ai0 ai0+1 · · ·ai1 and B[j0 : j1] = b j0 b j0+1 · · ·b j1 , 1 ≤ i0 ≤ i1 ≤ n, 1 ≤ j0 ≤
j1 ≤ m, the set of all LC Sks of A[i0 : i1] and B[j0 : j1] is denoted by LC Sk(i0, i1, j0, j1). The length of an LC Sk in
LC Sk(i0, i1, j0, j1) is denoted by f (i0, i1, j0, j1).

Similarly, the set of all LC Sks of the two reversed substrings A[i0 : i1] = ai1 ai1−1 · · ·ai0 and B[j0 : j1] = b j1 b j1−1 · · ·b j0 is
denoted by LC SkR(i0, i1, j0, j1). The length of an LC Sk in LC SkR(i0, i1, j0, j1) is denoted by g(i0, i1, j0, j1).

In the special case of i0 = 1 and j0 = 1, f (1, i, 1, j) is abbreviated to f (i, j) for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Similarly, in the
special case of i1 = n and j1 = m, g(i, n, j, m) is abbreviated to g(i, j) for 1 ≤ i ≤ n, 1 ≤ j ≤ m. It is clear that in the special
case of i0 = 1, i1 = n and j0 = 1, j1 = m, we have f (n, m) = g(1, 1).

The following algorithm ξ(i0, i1, j0, j1, L) uses an array L[0 : k][1 : m] to store the (k + 1)m entries required to compute
the current table. The row i (1 ≤ i ≤ n) of f is mapped to the row λ(i) (1 ≤ λ(i) ≤ k) of L, where λ(i) is defined as

λ(i) = (i − 1) mod k + 1. (4)

A space efficient algorithm ξ(i0, i1, j0, j1, L) to solve the LC Sk problem for the input sequences A[i0 : i1] and B[j0 : j1]
can be described as follows.

Algorithm 2: ξ(i0, i1, j0, j1, L).

Input: A[i0 : i1] = ai0 ai0+1 · · ·ai1 ; B[j0 : j1] = b j0 b j0+1 · · ·b j1

Output: L, the map of f (i, j)
1 for i = i0 to i1 do
2 for j = j0 to j1 do
3 L(λ(i − 1), j) ← L(0, j);
4 if ai = b j then d(λ(i), j) ← 1 + d(λ(i − 1), j − 1);
5 L(0, j) ← max{L(λ(i − 1), j), L(0, j − 1), L(λ(i − k), j − k) + δ(d(λ(i), j))};
6 end
7 end
8 for j = j0 to j1 do L(λ(i1), j) ← L(0, j);
9 return L(λ(i1), j1)

In the algorithm above, the array L of size (k + 1)m is utilized to hold the appropriate entries of f . At the time f (i, j)
to be computed, L will hold the following entries:

82 D. Zhu et al. / Theoretical Computer Science 687 (2017) 79–92
• L(λ(t), j) = f (t, j) for 1 ≤ t < i, 1 ≤ j ≤ m;
• L(0, j) = f (i, j) for 1 ≤ j ≤ m.

Therefore, a total of (k + 1)m entries is used in the algorithm. The time complexity of the algorithm is obviously O ((i1 −
i0)(j1 − j0)). In the case of i0 = 1, i1 = n and j0 = 1, j1 = m, the algorithm ξ(1, n, 1, m, L) can find f (n, m), the number of
k matchings in the longest common subsequence of A and B , in O (mn) time using O (km) space.

Similarly, the space efficient algorithm η(i0, i1, j0, j1, L) to solve the LC SkR problem for the input sequences A[i0 : i1]
and B[j0 : j1] can be described as follows.

Algorithm 3: η(i0, i1, j0, j1, L).

Input: A[i0 : i1] = ai0 ai0+1 · · ·ai1 ; B[j0 : j1] = b j0 b j0+1 · · ·b j1

Output: L, the map of g(i, j)
1 for i = i1 downto i0 do
2 for j = j1 downto j0 do
3 L(λ(i + 1), j) ← L(0, j);
4 if ai = b j then d(λ(i), j) ← 1 + d(λ(i + 1), j + 1);
5 L(0, j) ← max{L(λ(i + 1), j), L(0, j + 1), L(λ(i + k), j + k) + δ(d(λ(i), j))};
6 end
7 end
8 for j = j0 to j1 do L(λ(i0), j) ← L(0, j);
9 return L(λ(i0), j0)

In the following discussion, we will use ⊕ to denote the concatenation of two strings.
For k < t ≤ n, let

M(t) = max
t−k+1≤i≤t

0≤ j≤m

{ f (i, j) + g(i + 1, j + 1)} (5)

Theorem 1. For k < t ≤ n, M(t) = f (n, m).

Proof. Let M(t) = f (i, j) + g(i + 1, j + 1) for some i, j. Let Z(i, j) ∈ LC Sk(1, i, 1, j) and Z ′(i, j) ∈ LC SkR(i + 1, n, j + 1, m).
Then, C = Z(i, j) ⊕ Z ′(i, j), the concatenation of the two LC Sks, is a common subsequence of A and B in k-length substrings
of length M(t). Therefore, M(t) ≤ f (n, m).

On the other hand, let Z(n, m) ∈ LC Sk(1, n, 1, m), and l = f (n, m).
In the case of l = 0, it is clear that M(t) = f (n, m) = 0 for any k < t ≤ n.
In the case of l > 0, let

Z(n,m) =
(

A[i1 : i1 + k − 1], · · · , A[il : il + k − 1]
B[j1 : j1 + k − 1], · · · , B[jl : jl + k − 1]

)
.

For k < t ≤ n, there are some cases to be distinguished.
(1) t /∈ [ip, ip + k − 1], for 1 ≤ p ≤ l.
In this case, there are also some subcases.
(1.1) t < i1. In this case, let i = t and j = j1 − 1, then t −k + 1 ≤ i ≤ t , 0 ≤ j ≤ m, and f (i, j) = 0, g(i + 1, j + 1) = f (n, m),

and thus M(t) ≥ f (i, j) + g(i + 1, j + 1) = f (n, m).
(1.2) t > il + k − 1. In this case, let i = t and j = jl + k − 1, then t − k + 1 ≤ i ≤ t , 0 ≤ j ≤ m, and f (i, j) = f (n, m),

g(i + 1, j + 1) = 0, and thus M(t) ≥ f (i, j) + g(i + 1, j + 1) = f (n, m).
(1.3) There exists 1 ≤ p < l such that ip + k − 1 < t < ip+1. In this case, let i = t and j = jp + k − 1, then t − k + 1 ≤ i ≤ t ,

0 ≤ j ≤ m, and f (i, j) = p, g(i + 1, j + 1) = l − p, and thus M(t) ≥ f (i, j) + g(i + 1, j + 1) = f (n, m).
(2) There exists 1 ≤ p ≤ l such that t ∈ [ip, ip + k − 1].
(2.1) t = ip + k − 1. In this case, let i = ip + k − 1 and j = jp + k − 1, then t − k + 1 ≤ i ≤ t , 0 ≤ j ≤ m, and f (i, j) = p,

g(i + 1, j + 1) = l − p, and thus M(t) ≥ f (i, j) + g(i + 1, j + 1) = f (n, m).
(2.2) ip ≤ t < ip +k − 1. In this case, let i = ip − 1 and j = jp − 1, then t − i = t − ip + 1 < ip +k − 1 − ip + 1 = k, and thus

t − k + 1 ≤ i ≤ t , 0 ≤ j ≤ m, and f (i, j) = p − 1, g(i + 1, j + 1) = l − p + 1. Thus, M(t) ≥ f (i, j) + g(i + 1, j + 1) = f (n, m).
Finally we have, M(t) = f (n, m).
The proof is completed. �
Based on Hirschberg’s divide-and-conquer method of solving the LCS problem in linear space [6], we now can use the

above theorem recursively to design a divide-and-conquer algorithm to find an LC Sk of A and B as follows.

D. Zhu et al. / Theoretical Computer Science 687 (2017) 79–92 83
Algorithm 4: D&C(i0, i1, j0, j1).

1 if i1 − i0 + 1 < 2k then return;
2 l ← 	(i1 − i0 + 1 + k)/2
;
3 ξ(i0, i0 + l − 1, j0, j1, L1);
4 η(i0 + l − k + 1, i1, j0, j1, L2);
5 split(k1, k2, l1, l2, s1, s2, i0 + l − 1, j0, j1);
6 if l1 > 1 then D&C(i0, k1, j0, k2);
7 else if l1 = 1 then print bs1 bs1+1 · · ·bs1+k−1;
8 if l2 > 1 then D&C(k1 + 1, i1, k2 + 1, j1);
9 else if l2 = 1 then print bs2 bs2+1 · · ·bs2+k−1;

The algorithm is invoked in the condition of n ≥ 2k. In the case of n < 2k, the problem can be solved by using the
standard dynamic programming algorithm of Benson et al. [3,4]. The space cost in this case is also O (km).

Once the above algorithm is invoked, the sub-algorithm split(k1, k2, l1, l2, s1, s2, i1, j0, j1) is used to find the split points
k1 and k2 by using Theorem 1.

The two sequences A[i0 : i1] and B[j0 : j1] are spitted into A[i0 : k1], A[k1 + 1 : i1] and B[j0 : k2], B[k2 + 1 : j1] such that⎧⎪⎨
⎪⎩

l1 = f (i0,k1, j0,k2)

l2 = g(k1 + 1, i1,k2 + 1, j1)

f (i0, i1, j0, j1) = l1 + l2

(6)

In the case of l1 = 1 (l2 = 1), the first k-sting start from s1 (s2) can be found by⎧⎨
⎩

s1 = min
j0≤ j≤k2

{ j| f (i0,k1, j0, j) = 1} − k + 1 if l1 = 1

s2 = max
k2+1≤ j≤ j1

{ j|g(k1 + 1, i1, j, j1) = 1} if l2 = 1
(7)

It is clear that in the case of l1 = 1, if s1 ≥ j0 then B[s1 : s1 + k − 1] is an LC Sk of A[i0 : k1] and B[j0 : k2]. Similarly, in
the case of l2 = 1, if s2 ≥ k2 + 1 then B[s2 : s2 + k − 1] is an LC Sk of A[k1 + 1 : i1] and B[k2 + 1 : j1].

In the cases of l1 > 1 and l2 > 1, the problem can be solved recursively.

Algorithm 5: split(k1, k2, l1, l2, s1, s2, i1, j0, j1).

Output: k1, k2, l1, l2, s1, s2
s1, s2, tmp ← 0;
for i = i1 − k + 1 to i1 do

for j = j0 − 1 to j1 do
t ← L1(λ(i), j) + L2(λ(i + 1), j + 1);
if t > tmp then tmp ← t, k1 ← i, k2 ← j;

end
end
l1 ← L1(λ(k1), k2); l2 ← L2(λ(k1 + 1), k2 + 1);
if l1 = 1 then s1 ← min

j0≤ j≤ j1
{ j|L1(λ(k1), j) = 1} − k + 1;

if l2 = 1 then s2 ← max
j0≤ j≤ j1

{ j|L2(λ(k1 + 1), j) = 1};

2.2. Correctness of the algorithm

We now prove that if the above algorithm is applied to the given sequences A and B , D&C(1, n, 1, m) will produce an
LC Sk of A and B .

Proof. The claim can be proven by induction on n and m, the sizes of the input sequence A and B respectively. In the case
of n < 2k and any m > 0, we have l ≤ 1 in the algorithm.

In the cases of l1 = 1 and l2 = 1, let B[s1 : s1 + k − 1] and B[s2 : s2 + k − 1] be the k-strings start from s1 and s2
respectively, where⎧⎨

⎩
s1 = min

1≤ j≤k2

{ j| f (1,k1,1, j) = 1} − k + 1

s2 = max { j|g(k1 + 1,n, j,m) = 1} (8)
k2+1≤ j≤m

84 D. Zhu et al. / Theoretical Computer Science 687 (2017) 79–92
Then, it can be verified directly that the k-strings B[s1 : s1 + k − 1] ∈ LC Sk(1, k1, 1, k2) and B[s2 : s2 + k − 1] ∈ LC Sk(k1 +
1, n, k2 + 1, m), since l1 = 1 and l2 = 1.

In the cases of l1 = 0 and l2 = 0, it is clear that LC Sk(1, k1, 1, k2) = ∅ and LC Sk(k1 + 1, n, k2 + 1, m) = ∅, and nothing is
done by the algorithm in the cases.

Therefore, the claim applies in the case of n < 2k.
Suppose the claim is true when the size of the input sequence A is less than n. We now show that when the size of

the input sequence A is n, the claim is also true. In this case, A is divided into two subsequences A[1 : 	(n + k)/2
] and
A[(n + k)/2
 + 1 : n]. Then, in line 3–4 of the algorithm, the length of an LC Sk in LC Sk(1, 	(n + k)/2
, 1, m) is computed
by ξ(1, 	(n + k)/2
, 1, m) and the result is stored in L1. The length of an LC Sk in LC SkR((n + k)/2
 + 1, n, 1, m) is also
computed by η((n + k)/2
 + 1, n, 1, m) and the result is stored in L2.

M((n + k)/2
) = max
	(n+k)/2
−k+1≤i≤	(n+k)/2

0≤ j≤m

{ f (i, j) + g(i + 1, j + 1)}

is then computed by the algorithm split(k1, k2, l1, l2, s1, s2, 	(n + k)/2
, 1, m) in line 5, using the results in L1 and L2. The
split points k1 and k2 are found such that⎧⎪⎨

⎪⎩
l1 = f (1,k1,1,k2)

l2 = g(k1 + 1,n,k2 + 1,m)

M((n + k)/2
) = l1 + l2

(9)

In the cases of l1 > 1 and l2 > 1, the LC Sks Z1 ∈ LC Sk(1, k1, 1, k2) and Z2 ∈ LC Sk(k1 + 1, n, k2 + 1, m) are found recur-
sively, in lines 6 and 8 of the algorithm.

Thus, Z = Z1 ⊕ Z2, the concatenation of the subsequences Z1 and Z2, is a common subsequence of A and B . It follows
from (9) and Theorem 1 that |Z | = M((n + k)/2
) = f (n, m). Therefore, Z , the common subsequence of A and B produced
by the algorithm is an LC Sk of A and B .

Finally, we can conclude by induction that the algorithm D&C(1, n, 1, m) can produce an LC Sk of A and B .
The proof is completed. �

2.3. Time analysis of the algorithm

We have proved that a call D&C(1, n, 1, m) of the algorithm produces an LC Sk of A and B . Let the time cost of the
algorithm be T (n, m) if the sizes of the input sequences are n and m respectively. The problem is divided into two smaller
subproblems of finding LC Sks in LC Sk(1, k1, 1, k2)) and LC Sk(k1 + 1, n, k2 + 1, m) by a call of split(k1, k2, l1, l2, s1, s2, 	(n +
k)/2
, 1, m) and two calls of ξ(1, 	(n + k)/2
, 1, m) and η((n + k)/2
 + 1, n, 1, m). It is clear that the time costs of ξ and η
are both O (mn), and the time cost of split is O (km). Thus T (n, m) satisfies the following equation.

T (n,m) =
{

T (k1,k2) + T (n − k1,m − k2) + O (mn) if n ≥ k,

O (1), if n < k.
(10)

Where, 	(n + k)/2
 − k + 1 ≤ k1 ≤ 	(n + k)/2
 and 0 ≤ k2 ≤ m.
It can be proved by induction that (10) has a solution T (n, m) = O (mn).

Proof. The claim is trivially true for n < 2k.
In the case of n ≥ 2k, it follows that n/4 ≤ k1 ≤ 3n/4. Assume T (n, m) is bounded by c1 ·mn, and the O (mn) term in (10)

is bounded by c2 · mn. It follows from (10) that T (k1, k2) + T (n − k1, m − k2) + O (mn) is bounded by

c1 · (k1k2 + (n − k1)(m − k2)) + c2 · mn

≤ c1 · (3n/4)(k2 + m − k2) + c2 · mn

= c1 · 3mn/4 + c2 · mn

= (3c1/4 + c2) · mn

To be consistent with the assumption on the time bound of T (n, m), we must have 3c1/4 + c2 ≤ c1, which is realizable
by letting c1 ≥ 4c2. It follows from (10) and by induction on n that T (n, m) ≤ c1 · mn.

The proof is completed. �
2.4. Space analysis of the algorithm

We assume that the input sequences A and B are in common storage using O (m + n) space. In the execution of the
algorithm D&C , the temporary arrays L1 and L2 are used in the execution of the algorithms ξ and η. It is clear that

D. Zhu et al. / Theoretical Computer Science 687 (2017) 79–92 85
|L1| ≤ (k + 1)m and |L2| ≤ (k + 1)m. It is seen that the execution of the algorithm D&C uses O (1) temporary space, and the
recursive calls to D&C are exclusive. There are at most 2n − 1 calls to the algorithm D&C (it can be proved analogously in
[9]), and thus the space cost of the algorithm D&C is proportional to (k + 1)m, i.e. O (kn).

3. An O (kn) space algorithm for solving the LC S≥k problem

As stated in [4,8], LC S≥k can be solved by using a dynamic programming algorithm. A dynamic programming algorithm
using O (kn2) time and O (n2) space to solve the problem was presented by Benson et al. If only the length of LC S≥k has
to be computed, the space cost of their algorithm can be reduced to O (kn), but if an LC S≥k has to be constructed, their
algorithm requires O (n2) space. Very recently, Ueki et al. presented a similar dynamic programming algorithm to solve the
problem [16]. Their algorithm requires O (mn) time and O (mn) space. If only the length of an LC S≥k is required, the space
complexity can be easily reduced to O (kn).

In the following section, a totally different algorithm for solving the LC S≥k is presented. A very simple recursive formula
can be built for our purpose in Theorem 2, which enables us to compute each item recursively in O (1) time, and finally the
total computing time can be reduced to O (mn).

The main contribution of this section is that the space cost of the new algorithm can be reduced from O (mn) to O (kn),
and an LC S≥k can be output as a result of computing, not just its length. This is a new feature has never been reported yet
by the previous algorithms.

3.1. Reduce the time cost to O (mn)

As stated above, LC S≥k can be solved by using a dynamic programming algorithm. The recursive rule for LC S≥k is a
modification of (2) for LC Sk.

Let p(i, j) denote the length of the longest common subsequence consisting of at least k length matchings in the prefixes
A[1 : i] and B[1 : j]. For each fixed pair of (i, j), k ≤ i ≤ n, 1 ≤ j ≤ m, let{

μ(i, j, t) = p(i − t, j − t) + t

ν(i, j) = min{d(i, j),2k − 1} (11)

β(i, j) =
⎧⎨
⎩

max
k≤t≤ν(i, j)

{μ(i, j, t)} if ν(i, j) ≥ k

0 otherwise
(12)

Where d(i, j), the length of the longest match between the prefixes of A[1 : i] and B[1 : j] is defined by (1). Then, p(i, j)
can be computed recursively as follows [8].

p(i, j) = max

⎧⎪⎨
⎪⎩

p(i − 1, j)

p(i, j − 1)

β(i, j)

(13)

Based on the formula (13), the table p(i, j) for the given input sequences A = a1a2 · · ·an and B = b1b2 · · ·bm of size n
and m respectively, can be computed in O (kmn) time and O (mn) space by a standard dynamic programming algorithm,
since β(i, j) can be computed by O (k) comparisons.

In this section, we can show that μ(i, j, t) is a very special function of t , and thus β(i, j) can be recursively computed
in O (1) time for each pair of (i, j).

Let Z = s1
⊕ · · ·⊕ sr ∈ LC S≥k(1, i, 1, j) be a longest common subsequence consisting of r at least k length matchings in

the prefixes A[1 : i] and B[1 : j], where

st =
(

ait , · · · ,ait+lt−1
b jt , · · · ,b jt+lt−1

)
(14)

The length of st is lt , and k ≤ lt ≤ 2k − 1, 1 ≤ t ≤ r, and thus

p(i, j) =
r∑

t=1

lt (15)

Any two substrings in the same sequence do not overlap, and thus, for all 1 ≤ t < r,{
it + lt ≤ it+1

jt + lt ≤ jt+1
(16)

86 D. Zhu et al. / Theoretical Computer Science 687 (2017) 79–92
In the following, the suffix matching of A[1 : i] and B[1 : j] with length t , 1 ≤ t ≤ d(i, j), is defined as

α(i, j, t) =
(

ai−t+1, · · · ,ai
b j−t+1, · · · ,b j

)
(17)

Lemma 1. For any pair of (i, j), if d(i, j) ≥ 2k − 1, then p(i, j) = β(i, j).

Proof. Let Z = s1
⊕ · · ·⊕ sr ∈ LC S≥k(1, i, 1, j). It is clear that lr ≤ 2k − 1. It follows from ir + lr − 1 ≤ i and jr + lr − 1 ≤ j

that ir ≤ i − lr + 1 and jr ≤ j − lr + 1, and thus s1
⊕ · · ·⊕ sr−1

⊕
α(i, j, lr) ∈ LC S≥k(1, i, 1, j), since lr ≤ 2k − 1 ≤ d(i, j). It

follows that p(i, j) = p(i − lr, j − lr) + lr ≤ β(i, j).
It follows from (13) that p(i, j) ≥ β(i, j), and finally we have p(i, j) = β(i, j).
The proof is completed. �

Lemma 2. For any pair of (i, j), if d(i, j) ≥ 2k, then p(i, j) = 1 + p(i − 1, j − 1).

Proof. It follows from Lemma 1 that p(i, j) = β(i, j) and p(i − 1, j − 1) = β(i − 1, j − 1), since d(i, j) ≥ 2k.
We now prove Lemma 2 in the following two steps.
(1) We first show that

p(i, j) ≤ 1 + p(i − 1, j − 1) (18)

Let s1
⊕ · · ·⊕ sr ∈ LC S≥k(1, i, 1, j). It follows from Lemma 1 that we can assume that sr = α(i, j, lr).

There are two cases to be distinguished.
(1.1) lr > k.
In this case, s1

⊕ · · ·⊕ sr−1
⊕

α(i − 1, j − 1, lr − 1) must be a common subsequence consisting of at least k length
matchings in the prefixes A[1 : i − 1] and B[1 : j − 1] with length p(i, j) − 1.

It follows that p(i − 1, j − 1) ≥ p(i, j) − 1.
(1.2) lr = k.
In this case, we have ir−1 + lr−1 = ir or jr−1 + lr−1 = jr . Otherwise, s1

⊕ · · ·⊕ sr−1
⊕

α(i, j, lr + 1) would be a longer
common subsequence.

We check the case ir−1 + lr−1 = ir . The other case jr−1 + lr−1 = jr can be proved analogously.
There are also two different subcases.
(1.2.1) lr−1 > k.

In this case, let s′ =
(

air−1 , · · · ,air−1+lr−1−2
b jr−1 , · · · ,b jr−1+lr−1−2

)
. Then, |s′| = lr−1 − 1 ≥ k, and s1

⊕ · · ·⊕ sr−2
⊕

s′ ⊕α(i − 1, j − 1, lr) must

be a common subsequence consisting of at least k length matchings in the prefixes A[1 : i − 1] and B[1 : j − 1] with length
p(i, j) − 1.

It follows that p(i − 1, j − 1) ≥ p(i, j) − 1.
(1.2.2) lr−1 = k.
In this case, s1

⊕ · · ·⊕ sr−2
⊕

α(i − 1, j − 1, 2k − 1) must be a common subsequence consisting of at least k length
matchings in the prefixes A[1 : i − 1] and B[1 : j − 1] with length p(i, j) − 1.

It follows that p(i − 1, j − 1) ≥ p(i, j) − 1.
(2) We now show

p(i, j) ≥ 1 + p(i − 1, j − 1) (19)

Let s1
⊕ · · ·⊕ sr ∈ LC S≥k(1, i − 1, 1, j − 1). It follows from Lemma 1 that we can assume that sr = α(i − 1, j − 1, lr).

There are two cases to be distinguished.
(1) lr < 2k − 1.
In this case, s1

⊕ · · ·⊕ sr−1
⊕

α(i, j, lr + 1) must be a common subsequence consisting of at least k length matchings in
the prefixes A[1 : i] and B[1 : j] with length p(i − 1, j − 1) + 1.

It follows that p(i, j) ≥ p(i − 1, j − 1) + 1.
(2) lr = 2k − 1.
In this case, |α(i, j, lr + 1)| = 2k, and thus α(i, j, lr + 1) is a concatenation of two at least k length matchings. It follows

that s1
⊕ · · ·⊕ sr−1

⊕
α(i, j, lr +1) must be a common subsequence consisting of at least k length matchings in the prefixes

A[1 : i] and B[1 : j] with length p(i − 1, j − 1) + 1.
It follows that p(i, j) ≥ p(i − 1, j − 1) + 1.
Finally, it follows from (18) and (19) that p(i, j) = 1 + p(i − 1, j − 1).
The proof is completed. �
It follows from Lemma 1 and Lemma 2 that if d(i, j) ≥ 2k, then

β(i, j) = 1 + β(i − 1, j − 1) (20)

D. Zhu et al. / Theoretical Computer Science 687 (2017) 79–92 87
Lemma 3. For any pair of (i, j), if d(i, j) < 2k, then

β(i, j) = max

{
p(i − k, j − k) + k

1 + β(i − 1, j − 1)
(21)

Proof. It follows from d(i, j) < 2k that ν(i, j) = d(i, j). It is clear that μ(i, j, t) can also be defined recursively as follows.

μ(i, j, t) =
{

1 + μ(i − 1, j − 1, t − 1) if k < t

p(i − k, j − k) + k otherwise
(22)

It follows from (12) and (22) that

β(i, j) = max
k≤t≤d(i, j)

{μ(i, j, t)}

= max

⎧⎨
⎩

μ(i, j,k)

max
k<t≤d(i, j)

{1 + μ(i − 1, j − 1, t − 1)}

= max

⎧⎨
⎩

μ(i, j,k)

1 + max
k≤t≤d(i, j)−1

{μ(i − 1, j − 1, t)}

= max

⎧⎨
⎩

μ(i, j,k)

1 + max
k≤t≤d(i−1, j−1)

{μ(i − 1, j − 1, t)}

= max

{
p(i − k, j − k) + k

1 + β(i − 1, j − 1)

The proof is completed. �
A new recursive formula to compute β(i, j) in O (1) time can be built as follows.

Theorem 2.

β(i, j) =

⎧⎪⎨
⎪⎩

max

{
p(i − k, j − k) + k

1 + β(i − 1, j − 1)
if d(i, j) ≥ k

0 otherwise

(23)

Proof. It remains to show that (21) is also true for the case of d(i, j) ≥ 2k. It is clear that p(i −k, j −k) ≥ k, since d(i, j) ≥ 2k.
Let Z = s1

⊕ · · ·⊕ sr ∈ LC S≥k(1, i − k, 1, j − k), and

sr =
(

air , · · · ,air+lr−1
b jr , · · · ,b jr+lr−1

)
.

We can show that

p(i − 1, j − 1) ≥ p(i − k, j − k) + k − 1 (24)

There are some cases to be distinguished.
(1) ir + lr − 1 < k and jr + lr − 1 < k.
In this case, Z

⊕
α(i − 1, j − 1, k) is a common subsequence consisting of at least k length matchings in the prefixes

A[1 : i − 1] and B[1 : j − 1] with length p(i − k, j − k) + k, and thus p(i − 1, j − 1) ≥ p(i − k, j − k) + k.
(2) ir + lr − 1 = k or jr + lr − 1 = k.
We check the case ir + lr − 1 = k. The other case jr + lr − 1 = k can be proved analogously.
(2.1) lr > k.

In this case, s1
⊕ · · ·⊕ sr−1

(
air , · · · ,air+lr−2
b jr , · · · ,b jr+lr−2

)⊕
α(i − 1, j − 1, k) is a common subsequence consisting of at least k

length matchings in the prefixes A[1 : i − 1] and B[1 : j − 1] with length p(i − k, j − k) + k − 1, and thus p(i − 1, j − 1) ≥
p(i − k, j − k) + k − 1.

88 D. Zhu et al. / Theoretical Computer Science 687 (2017) 79–92
(2.2) lr = k.
In this case, s1

⊕ · · ·⊕ sr−1
⊕

α(i − 1, j − 1, 2k − 1) is a common subsequence consisting of at least k length matchings
in the prefixes A[1 : i − 1] and B[1 : j − 1] with length p(i −k, j −k) +k − 1, and thus p(i − 1, j − 1) ≥ p(i −k, j −k) +k − 1.

It follows that in all cases (24) is true.
It follows from Lemma 1 that

1 + p(i − 1, j − 1) = 1 + β(i − 1, j − 1) ≥ p(i − k, j − k) + k

Thus

1 + β(i − 1, j − 1) = max

{
p(i − k, j − k) + k

1 + β(i − 1, j − 1)

It follows from (20) that

β(i, j) = 1 + β(i − 1, j − 1) = max

{
p(i − k, j − k) + k

1 + β(i − 1, j − 1)

The proof is completed. �
Based on Theorem 2, the table p(i, j) for the given input sequences A = a1a2 · · ·an and B = b1b2 · · ·bm of size n and m

respectively, can be computed in O (mn) time and O (mn) space by a standard dynamic programming algorithm.

Algorithm 6: LC S≥k.

Input: A, B
Output: p(i, j), the length of Z ∈ LC S≥k(1, i, 1, j)

1 for i=1 to n do
2 for j=1 to m do
3 if ai = b j then d(i, j) ← 1 + d(i − 1, j − 1);
4 if d(i, j) ≥ k then β(i, j) ← max{p(i − k, j − k) + k, 1 + β(i − 1, j − 1)}

p(i, j) ← max{p(i − 1, j), p(i, j − 1), β(i, j)};
5 end
6 end
7 return p(n, m)

It is clear that the time and space complexities of the algorithm are both O (mn).

3.2. Reduce the space cost to O (kn)

In the algorithm above, when a particular row of the table is to compute, no rows before the previous k rows are
required. Thus only k + 1 rows have to be kept in memory at a time. Thus, we need only O (kn) entries to compute the
table.

If a longest common subsequence in at least k-length substrings has to be constructed, not just its length, then the
O (mn) entries of L is required for this purpose. Based on Hirschberg’s divide-and-conquer method, the space cost can be
reduced to O (kn).

In order to use the divide-and-conquer method, we need to extend the definition of LC S≥k to a more general definition
as follows.

Definition 4. For the two substrings A[i0 : i1] = ai0 ai0+1 · · ·ai1 and B[j0 : j1] = b j0 b j0+1 · · ·b j1 , 1 ≤ i0 ≤ i1 ≤ n, 1 ≤ j0 ≤
j1 ≤ m, the set of all LC S≥ks of A[i0 : i1] and B[j0 : j1] is denoted by LC S≥k(i0, i1, j0, j1). The length of an LC S≥k in
LC S≥k(i0, i1, j0, j1) is denoted by p(i0, i1, j0, j1).

Similarly, the set of all LC S≥ks of the two reversed substrings A[i0 : i1] = ai1 ai1−1 · · ·ai0 and B[j0 : j1] = b j1 b j1−1 · · ·b j0

is denoted by LC S≥kR(i0, i1, j0, j1). The length of an LC S≥k in LC S≥kR(i0, i1, j0, j1) is denoted by q(i0, i1, j0, j1).
In the special case of i0 = 1 and j0 = 1, p(1, i, 1, j) is abbreviated to p(i, j) for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Similarly, in the

special case of i1 = n and j1 = m, q(i, n, j, m) is abbreviated to q(i, j) for 1 ≤ i ≤ n, 1 ≤ j ≤ m. It is clear that in the special
case of i0 = 1, i1 = n and j0 = 1, j1 = m, we have p(n, m) = q(1, 1).

The following algorithm ξ(i0, i1, j0, j1, L) uses an array L[0 : 2k][1 : m] to store the (2k + 1)m entries to compute the
current table. The row i(1 ≤ i ≤ n) of f is mapped to the row λ(i)(1 ≤ λ(i) ≤ k) of L, where λ(i) is defined somewhat
different from (4).

λ(i) = (i − 1) mod 2k + 1. (25)

D. Zhu et al. / Theoretical Computer Science 687 (2017) 79–92 89
A space efficient algorithm ξ(i0, i1, j0, j1, L) to solve the LC S≥k problem for the input sequences A[i0 : i1] and B[j0 : j1]
can be described as follows.

Algorithm 7: ξ(i0, i1, j0, j1, L).

Input: A[i0 : i1] = ai0 ai0+1 · · ·ai1 ; B[j0 : j1] = b j0 b j0+1 · · ·b j1

Output: L, the map of f (i, j)
1 for i = i0 to i1 do
2 for j = j0 to j1 do
3 L(λ(i − 1), j) ← L(0, j);
4 if ai = b j then d(λ(i), j) ← 1 + d(λ(i − 1), j − 1);
5 if d(λ(i), j) ≥ k then β(λ(i), j) ← max{k + L(λ(i − k), j − k), 1 + β(λ(i − 1), j − 1)};
6 L(0, j) ← max{L(λ(i − 1), j), L(0, j − 1), β(λ(i), j)};
7 end
8 end
9 for j = j0 to j1 do L(λ(i1), j) ← L(0, j);

10 return L(λ(i1), j1)

In the algorithm above, the array L of size (2k + 1)m is used to hold the appropriate entries of p. At the time p(i, j) to
be computed, L will hold the following entries:

• L(λ(t), j) = p(t, j) for 1 ≤ t < i, 1 ≤ j ≤ m;
• L(0, j) = p(i, j) for 1 ≤ j ≤ m.

Therefore, a total of (2k + 1)m entries is used in the algorithm. The time complexity of the algorithm is obviously
O ((i1 − i0)(j1 − j0)). In the case of i0 = 1, i1 = n and j0 = 1, j1 = m, the algorithm ξ(1, n, 1, m, L) can find p(n, m) in O (mn)

time using O (kn) space.
Similarly, the space efficient algorithm η(i0, i1, j0, j1, L) to solve the LC S≥kR problem for the input sequences A[i0 : i1]

and B[j0 : j1] can be described as follows.

Algorithm 8: η(i0, i1, j0, j1, L).

Input: A[i0 : i1] = ai0 ai0+1 · · ·ai1 ; B[j0 : j1] = b j0 b j0+1 · · ·b j1

Output: L, the map of g(i, j)
1 for i = i1 downto i0 do
2 for j = j1 downto j0 do
3 L(λ(i + 1), j) ← L(0, j);
4 if ai = b j then d(λ(i), j) ← 1 + d(λ(i + 1), j + 1);
5 if d(λ(i), j) ≥ k then β(λ(i), j) ← max{k + L(λ(i + k), j + k), 1 + β(λ(i + 1), j + 1)};
6 L(0, j) ← max{L(λ(i + 1), j), L(0, j + 1), β(λ(i), j)};
7 end
8 end
9 for j = j0 to j1 do L(λ(i0), j) ← L(0, j);

10 return L(λ(i0), j0)

For 2k ≤ x ≤ n, let

M(x) = max
x−2k+1≤i≤x

0≤ j≤m

{p(i, j) + q(i + 1, j + 1)} (26)

Theorem 3. For 2k ≤ x ≤ n, M(x) = p(n, m).

Proof. Let M(x) = p(i, j) + q(i + 1, j + 1) for some i, j. Let Z ∈ LC S≥k(1, i, 1, m) and Z ′ ∈ LC S≥kR(i + 1, n, j + 1, m). Then,
C = Z ⊕ Z ′ , the concatenation of the two LC S≥ks, is a common subsequence of A and B in k-length substrings of length
M(x). Therefore, M(x) ≤ p(n, m).

On the other hand, let Z = s1
⊕ · · ·⊕ sr ∈ LC S≥k(1, n, 1, m), where

st =
(

ait , · · · ,ait+lt−1
b jt , · · · ,b jt+lt−1

)
.

The length of st is lt , and k ≤ lt ≤ 2k − 1, 1 ≤ t ≤ r. It is clear that p(n, m) = ∑r
t=1 lt .

In the case of Z = ∅, it is clear that M(x) = p(n, m) = 0 for any 2k ≤ x ≤ n.
In the case of r > 0, there are some cases to be distinguished.

90 D. Zhu et al. / Theoretical Computer Science 687 (2017) 79–92
(1) x /∈ [it, it + lt − 1], for 1 ≤ t ≤ r.
In this case, there are also some subcases.
(1.1) x < i1. In this case, let i = x and j = j1 −1, then x −2k +1 ≤ i ≤ x, 0 ≤ j ≤ m, and p(i, j) = 0, q(i +1, j +1) = p(n, m),

and thus M(x) ≥ p(i, j) + q(i + 1, j + 1) = p(n, m).
(1.2) x > ir + lr − 1. In this case, let i = x and j = jr + lr − 1, then t − 2k + 1 ≤ i ≤ x, 0 ≤ j ≤ m, and p(i, j) = p(n, m),

q(i + 1, j + 1) = 0, and thus M(x) ≥ p(i, j) + q(i + 1, j + 1) = p(n, m).
(1.3) There exists 1 ≤ t < r such that it + lt − 1 < x < it+1. In this case, let i = x and j = jt + lt − 1, then x − 2k + 1 ≤ i ≤ x,

0 ≤ j ≤ m, and p(i, j) = ∑t
u=1 lu , q(i + 1, j + 1) = ∑r

u=t+1 lu , and thus M(x) ≥ p(i, j) + q(i + 1, j + 1) = p(n, m).
(2) There exists 1 ≤ t ≤ r such that x ∈ [it, it + lt − 1].
(2.1) x = it +lt −1. In this case, let i = it +lt −1 and j = jt +lt −1, then x −2k +1 ≤ i ≤ x, 0 ≤ j ≤ m, and p(i, j) = ∑t

u=1 lu ,
q(i + 1, j + 1) = ∑r

u=t+1 lu , and thus M(x) ≥ p(i, j) + q(i + 1, j + 1) = p(n, m).
(2.2) it ≤ x < it + lt − 1. In this case, let i = it − 1 and j = jt − 1, then x − i = x − it + 1 < lt ≤ 2k − 1, and thus

x − 2k + 1 ≤ i ≤ x, 0 ≤ j ≤ m, and p(i, j) = ∑t−1
u=1 lu , q(i + 1, j + 1) = ∑r

u=t lu . Thus, M(t) ≥ p(i, j) + q(i + 1, j + 1) = p(n, m).
Finally we have, M(x) = p(n, m).
The proof is completed. �
Based on Hirschberg’s divide-and-conquer method of solving the LCS problem in linear space [6], we now can use the

above theorem recursively to design a divide-and-conquer algorithm to find an LC S≥k of A and B as follows.

Algorithm 9: D&C(i0, i1, j0, j1).

1 if i1 − i0 + 1 < 2k then return;
2 l ← max{2k − 1, 	(i1 − i0 + 1)/2
 + k};
3 ξ(i0, i0 + l − 1, j0, j1, L1);
4 η(max{i0, i0 + l − 2k} + 1, i1, j0, j1, L2);
5 split(k1, k2, l1, l2, s1, s2, i0, i0 + l − 1, j0, j1);
6 if l1 ≥ 2k then D&C(i0, k1, j0, k2);
7 else if s1 > 0 then print bs1 bs1+1 · · ·bs1+l1−1;
8 if l2 ≥ 2k then D&C(k1 + 1, i1, k2 + 1, j1);
9 else if s2 > 0 then print bs2 bs2+1 · · ·bs2+l2−1;

The algorithm is invoked in the condition of n ≥ 2k. In the case of n < 2k, the problem can be solved by using the
standard dynamic programming algorithm of Benson et al. [3,4]. The space costs in this case is also O (kn).

Once the above algorithm is invoked, the sub-algorithm split(k1, k2, l1, l2, s1, s2, i0, i1, j0, j1) is used to find the split
points k1 and k2 by using Theorem 3.

The two sequences A[i0 : i1] and B[j0 : j1] are spitted into A[i0 : k1], A[k1 + 1 : i1] and B[j0 : k2], B[k2 + 1 : j1] such that⎧⎪⎨
⎪⎩

l1 = p(i0,k1, j0,k2)

l2 = q(k1 + 1, i1,k2 + 1, j1)

p(i0, i1, j0, j1) = l1 + l2

(27)

In the case of l1 < 2k (l2 < 2k), the first at least k length matching start from s1 (s2) can be found by⎧⎨
⎩

s1 = min
j0≤ j≤k2

{ j|p(i0,k1, j0, j) = l1} − l1 + 1 if k ≤ l1

s2 = max
k2+1≤ j≤ j1

{ j|q(k1 + 1, i1, j, j1) = l2} if k ≤ l2
(28)

In the cases of l1 ≥ 2k and l2 ≥ 2k, the problem can be solved recursively.

Algorithm 10: split(k1, k2, l1, l2, s1, s2, i0, i1, j0, j1).

Output: k1, k2, l1, l2, s1, s2
s1, s2, tmp ← 0;
for i = max{i0, i1 − 2k + 1} to i1 do

for j = j0 − 1 to j1 do
t ← L1(λ(i), j) + L2(λ(i + 1), j + 1);
if t ≥ tmp then tmp ← t, k1 ← i, k2 ← j;

end
end
l1 ← L1(λ(k1), k2); l2 ← L2(λ(k1 + 1), k2 + 1);
if k ≤ l1 < 2k then s1 ← min

j0≤ j≤ j1
{ j|L1(λ(k1), j) = l1} − l1 + 1;

if k ≤ l2 < 2k then s2 ← max
j0≤ j≤ j1

{ j|L2(λ(k1 + 1), j) = l2};

D. Zhu et al. / Theoretical Computer Science 687 (2017) 79–92 91
3.3. Correctness of the algorithm

We now prove that if the above algorithm is applied to the given sequences A and B , D&C(1, n, 1, m) will produce an
LC S≥k of A and B .

Proof. The claim can be proven by induction on n and m, the sizes of the input sequence A and B respectively. In the case
of n < 2k and any m > 0, we have 0 ≤ l ≤ 2k − 1 in the algorithm.

In the cases of l1 = 0 and l2 = 0, it is clear that LC S≥k(1, k1, 1, k2) = ∅ and LC S≥k(k1 + 1, n, k2 + 1, m) = ∅, and nothing
is done by the algorithm in the cases.

If l1 > 0 (l2 > 0) then k ≤ l1 ≤ 2k − 1 (k ≤ l2 ≤ 2k − 1).
In the cases of l1 ≥ k (l2 ≥ k), let B[s1 : s1 + l1 − 1] (B[s2 : s2 + l2 − 1]) be the at least k length matching start from

s1 (s2), defined by (28). Then, it can be verified directly that the strings B[s1 : s1 + l1 − 1] ∈ LC S≥k(1, k1, 1, k2) and B[s2 :
s2 + l2 − 1] ∈ LC S≥k(k1 + 1, n, k2 + 1, m).

Therefore, the claim applies in the case of n < 2k.
Suppose the claim is true when the size of the input sequence A is less than n. We now show that when the size of

the input sequence A is n, the claim is also true. In this case, A is divided into two subsequences A[1 : 	n/2
 + k] and
A[n/2
 + k + 1 : n]. Then, in line 3–4 of the algorithm, the length of an LC S≥k in LC S≥k(1, 	n/2
 + k, 1, m) is computed
by ξ(1, 	n/2
 + k, 1, m) and the result is stored in L1. The length of an LC S≥k in LC S≥kR(n/2
 + k + 1, n, 1, m) is also
computed by η(n/2
 + k + 1, n, 1, m) and the result is stored in L2.

M(n/2
 + k) = max
	n/2
−k+1≤i≤	n/2
+k

0≤ j≤m

{p(i, j) + q(i + 1, j + 1)}

is then computed by the algorithm split(k1, k2, l1, l2, s1, s2, 1, 	n/2
 + k, 1, m) in line 5, using the results in L1 and L2. The
split points k1 and k2 are found such that⎧⎪⎨

⎪⎩
l1 = p(1,k1,1,k2)

l2 = q(k1 + 1,n,k2 + 1,m)

M(n/2
 + k) = l1 + l2

(29)

In the cases of l1 ≥ 2k and l1 ≥ 2k, the LC S≥ks Z1 ∈ LC S≥k(1, k1, 1, k2) and Z2 ∈ LC S≥k(k1 + 1, n, k2 + 1, m) are found
recursively, in lines 6 and 8 of the algorithm.

Thus, Z = Z1 ⊕ Z2, the concatenation of the subsequences Z1 and Z2, is a common subsequence of A and B . It follows
from (29) and Theorem 3 that |Z | = M(n/2
 + k) = p(n, m). Therefore, Z , the common subsequence of A and B produced
by the algorithm is an LC S≥k of A and B .

Finally, we can conclude by induction that the algorithm D&C(1, n, 1, m) can produce an LC S≥k of A and B .
The proof is completed. �

3.4. Time analysis of the algorithm

We have proved that a call D&C(1, n, 1, m) of the algorithm produces an LC S≥k of A and B . Without loss of generality,
we can assume m ≤ n. Let the time cost of the algorithm be T (n, m) if the sizes of the input sequences are n and m
respectively. The problem is divided into two smaller subproblems of finding LC S≥ks in LC S≥k(1, k1, 1, k2)) and LC S≥k(k1 +
1, n, k2 + 1, m) by a call of split(k1, k2, l1, l2, s1, s2, 1, 	n/2
 + k, 1, m) and two calls of ξ(1, 	n/2
 + k, 1, m) and η(n/2
 +
k + 1, n, 1, m). It is clear that the time costs of ξ and η are both O (mn), and the time cost of split is O (kn). Thus T (n, m)

satisfies the following equation.

T (n,m) =
{

T (k1,k2) + T (n − k1,m − k2) + O (mn) if n ≥ k,

O (1), if n < k.
(30)

Where, 	n/2
 − k + 1 ≤ k1 ≤ 	n/2
 + k and 0 ≤ k2 ≤ m.
It can be proved by induction that (30) has a solution T (n, m) = O (mn).

Proof. (1) We first show that the claim is true in the case of n < 3k. Let Z = s1
⊕ · · ·⊕ sr ∈ LC S≥k(1, n, 1, m). It is clear

that r ≤ 2 since n < 3k. Thus, the algorithm split can be called at most once, and its time cost is O (km). Output of Z will
cost O (k) time. Therefore, the total time cost of the algorithm is O (km) in the case of n < 3k.

(2) In the case of n ≥ 3k, it follows that n/6 ≤ k1 ≤ 5n/6. Assume T (n, m) is bounded by c1 · mn, and the O (mn) term in
(30) is bounded by c2 · mn. It follows from (30) that T (k1, k2) + T (n − k1, m − k2) + O (mn) is bounded by

c1 · (k1k2 + (n − k1)(m − k2)) + c2 · mn

≤ c1 · (5n/6)(k2 + m − k2) + c2 · mn

92 D. Zhu et al. / Theoretical Computer Science 687 (2017) 79–92
= c1 · 5mn/6 + c2 · mn

= (5c1/6 + c2) · mn

To be consistent with the assumption on the time bound of T (n, m), we must have 5c1/6 + c2 ≤ c1, which is realizable
by letting c1 ≥ 6c2. It follows from (30) and by induction on n that T (n, m) ≤ c1 · mn.

The proof is completed. �
3.5. Space analysis of the algorithm

We assume that the input sequences A and B are in common storage using O (m + n) space. In the execution of the
algorithm D&C , the temporary arrays L1 and L2 are used in the execution of the algorithms ξ and η. It is clear that
|L1| ≤ (2k + 1)m and |L2| ≤ (2k + 1)m. It is seen that the execution of the algorithm D&C uses O (1) temporary space, and
the recursive calls to D&C are exclusive. There are at most 2n − 1 calls to the algorithm D&C (it can be proved analogously
in [9]), and thus the space cost of the algorithm D&C is proportional to (2k + 1)m, i.e. O (kn).

4. Concluding remarks

We have presented two space efficient algorithms to solve the LC Sk problem and LC S≥k problem. The space cost of the
first algorithm to solve the LC Sk problem is reduced from O (n2) to O (kn), if the size of the two input sequences are both n.
The time and space costs of the second algorithm to solve the LC S≥k problem are both improved. The time cost is reduced
from O (kn2) to O (n2), and the space cost is reduced from O (n2) to O (kn). In the case of k = O (1), the two algorithms are
both linear space algorithms.

The experiments to compare the behavior of LC Sk versus LC S on real data have been performed in [4]. The choice of
the value k interestingly affects the similarity percentage in the experiments. The experiments were carried out only for
small k. It is not clear that the large k, for example k = O (n), is meaningful to the similarity measure.

References

[1] A. Amir, Z. Gotthilf, R. Shalom, Weighted LCS, J. Discrete Algorithms 8 (3) (2010) 273–281.
[2] A. Amir, T. Hartman, O. Kapah, R. Shalom, D. Tsur, Generalized LCS, Theoret. Comput. Sci. 409 (3) (2008) 438–449.
[3] G. Benson, A. Levy, B.R. Shalom, Longest common subsequence in k length substrings, Lecture Notes in Comput. Sci. 8199 (2013) 257–265.
[4] G. Benson, A. Levy, S. Maimoni, D. Noifeld, B.R. Shalom, LCSk: a refined similarity measure, Theoret. Comput. Sci. 638 (2016) 11–26.
[5] Y.C. Chen, K.M. Chao, On the generalized constrained longest common subsequence problems, J. Comb. Optim. 21 (3) (2011) 383–392.
[6] S. Deorowicza, S. Grabowski, Efficient algorithms for the longest common subsequence in k-length substrings, Inform. Process. Lett. 114 (2014)

634–638.
[7] Z. Gotthilf, D. Hermelin, G.M. Landau, M. Lewenstein, Restricted LCS, in: Proc. 17th Symposium on String Processing and Information Retrieval, SPIRE,

2010, pp. 250–257.
[8] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge University Press, Cambridge, UK,

1997.
[9] D.S. Hirschberg, A linear space algorithm for computing maximal common subsequences, Commun. ACM 18 (6) (1975) 341–343.

[10] J.W. Hunt, T.G. Szymanski, A fast algorithm for computing longest subsequences, Commun. ACM 20 (5) (1977) 350–353.
[11] N.C. Jones, P.A. Pevzner, An Introduction to Bioinformatics Algorithms, MIT Press, 2004.
[12] G.M. Landau, A. Levy, I. Newman, LCS approximation via embedding into locally non-repetitive strings, Inform. and Comput. 209 (4) (2011) 705–716.
[13] G.M. Landau, E.W. Myers, M. Ziv-Ukelson, Two algorithms for LCS consecutive suffix alignment, in: Proc. 15th Annual Symposium on Combinatorial

Pattern Matching, CPM, 2004, pp. 173–193.
[14] G.M. Landau, B. Schieber, M. Ziv-Ukelson, Sparse LCS common substring alignment, in: Proc. 14th Annual Symposium on Combinatorial Pattern Match-

ing, CPM, 2003, pp. 225–236.
[15] F. Pavetic, G. Zuzic, M. Sikic, LCSk++: practical similarity metric for long strings, https://arxiv.org/abs/1407.2407.
[16] Y. Ueki Diptarama, M. Kurihara, Y. Matsuoka, K. Narisawa, R. Yoshinaka, H. Bannai, S. Inenaga, A. Shinohara, Longest common subsequence in at least

k length order-isomorphic substrings, in: SOFSEM 2017, in: Lecture Notes in Comput. Sci., vol. 10139, 2017, pp. 363–374.
[17] R.A. Wagner, M.J. Fischer, The string-to-string correction problem, J. ACM 21 (1) (1974) 168–173.
[18] L. Wang, X. Wang, Y. Wu, D. Zhu, A dynamic programming solution to a generalized LCS problem, Inform. Process. Lett. 113 (2013) 723–728.
[19] Y. Wu, L. Wang, D. Zhu, X. Wang, An efficient dynamic programming algorithm for the generalized LCS problem with multiple substring exclusive

constraints, J. Discrete Algorithms 26 (2014) 98–105.

http://refhub.elsevier.com/S0304-3975(17)30420-6/bib31s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib32s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib33s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib34s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib35s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib36s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib36s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib38s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib38s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib39s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib3130s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib3131s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib3132s1
https://arxiv.org/abs/1407.2407
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib3136s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib3136s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib3137s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib3138s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib3139s1
http://refhub.elsevier.com/S0304-3975(17)30420-6/bib3139s1

	A space efﬁcient algorithm for the longest common subsequence in k-length substrings
	1 Introduction
	2 An O(kn) space algorithm for solving the LCSk problem
	2.1 The description of the algorithm
	2.2 Correctness of the algorithm
	2.3 Time analysis of the algorithm
	2.4 Space analysis of the algorithm

	3 An O(kn) space algorithm for solving the LCS>=k problem
	3.1 Reduce the time cost to O(mn)
	3.2 Reduce the space cost to O(kn)
	3.3 Correctness of the algorithm
	3.4 Time analysis of the algorithm
	3.5 Space analysis of the algorithm

	4 Concluding remarks
	References

