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A B S T R A C T

There are two key reasons for aligning batch process data. The first is to obtain same-length batches so that
standard methods of analysis may be applied, whilst the second reason is to synchronise events that take place
during each batch so that the same event is associated with the same observation number for every batch. Dy-
namic time warping has been shown to be an effective method for meeting these objectives. This is based on a
dynamic programming algorithm that aligns a batch to a reference batch, by stretching and compressing its local
time dimension. The resulting ”warping function” may be interpreted as a progress signature of the batch which
may be appended to the aligned data for further analysis. For the warping function to be a realistic reflection of
the progress of a batch, it is necessary to impose some constraints on the dynamic time warping algorithm, to
avoid an alignment which is too aggressive and which contains pathological warping. Previous work has focused
on addressing this issue using global constraints. In this work, we investigate the use of local constraints in dy-
namic time warping and define criteria for evaluating the degree of time distortion and variable synchronisation
obtained. A local constraint scheme is extended to include constraints not previously considered, and a novel
method for selecting the optimal local constraint with respect to the two criteria is proposed. For illustration, the
method is applied to real data from an industrial bacteria fermentation process.
1. Introduction

In industrial batch processes data is often collected for I batches and J
variables measured over the duration of the batch at Ki observations. It is
often the case that the duration (number of observations, Ki) varies from
batch to batch. However, most statistical methods for analysis of such
three-way data require data in the format of an I � J � K cube such that
each batch has the same number of observations, K. This is the case in
many methods of statistical batch process monitoring such as multi-way
principal component analysis [13], multi-way partial least squares [14],
PARAFAC/Tucker3 models [7] as well as numerous variations on these
approaches found in the literature.

Furthermore, it is usually reasonable to suppose that the variation in
overall batch duration is just one aspect of a more prevalent time-
variation throughout the entirety of each batch. Industrial batch pro-
cesses often consist of a complex sequence of stages. For example in the
case of bacteria fermentation, the living cells multiply, consume nutri-
ents, change food source and so on. The different stages may be reflected
322, 2800, Kgs. Lyngby, Denmark.
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in the features (peaks, valleys, slopes etc.) of the variable trajectories.
Each stage may occur faster or slower from batch to batch. Even if overall
duration is standardised across batches, at similar time-points, different
events may be occurring in each batch. Early approaches to processing of
batch data did not address this aspect when dealing with uneven batch
lengths. For example, all batches were simply cut to the same length, or
linearly interpolated to obtain the same number of observations and form
the I � J � K data cube for further analysis. The first method ignores
variation in local batch time, whilst the second method assumes that
local batch time is expanded or contracted uniformly throughout the
batch, which is unlikely in most processes and so the data will not be
synchronised.

Reasons for synchronising batch data are well expressed in [3].
Firstly, if the aim is to apply a latent structure model, then such a model
will encounter difficulty in identifying meaningful structure in the time
dimension when the data is unsynchronised. This is because data for the
same observation number, say k, will be contrasted for different batches
and this does not make sense if observation number k corresponds to
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different events in different batches (e.g. in one batch observation 10
could occur during a lag phase, whilst in another batch observation 10
could occur during a growth phase). Synchronising the data will allow
the model to better explain the variation in data for the same event across
batches. A second reason for synchronising batch data is to gain a more
detailed insight into the dynamics of the process.

A method which takes into account time variation throughout the
batch as well as overall duration, has become known as the indicator
variable method [2,11]. This method is useful if there exists a suitable
indicator variable, which must be monotonically increasing or
decreasing throughout each batch. Then the data can be interpolated
against even increments of this variable which is used to indicate the
progress of the batch or local batch time. However, for many batch
processes there may be no suitable variable, or at best one that can only
be used for one stage of the process such as in [2], in which case the
advantage of this method, i.e. its simplicity, is lost.

Dynamic time warping is a synchronisation method which can align
features at every point of each trajectory and does not require an indi-
cator variable. This method originates from the field of speech recogni-
tion [17] and was later applied to batch process data by Kassidas et al.
[6]. DTW aligns a query trajectory to a reference trajectory by finding the
optimum matching of indices of each trajectory, subject to certain con-
straints, such that the overall distance between the trajectories is mini-
mised. This optimummatching is found through a dynamic programming
algorithm. The resulting time warping function contains information on
how the local batch times of the trajectories progress. The application of
DTW to batch process data has been investigated further by, for example,
Ramaker et al. [16] and Gonz�alez-Martínez et al. [5].

An alternative alignment algorithm, Correlation Optimized Warping
(COW), was presented by Nielsen et al. [12] for aligning chromato-
graphic data. Tomasi et al. [18] evaluate both COW and DTW perfor-
mance in the application of chromatographic data alignment and
conclude that COW is preferable. With regards to alignment of batch
process data (understood as engineering variables measured over time),
COW has been further explored by [1], but DTW is the more widely used
method in the literature. In this paper the practical issues of the appli-
cation of DTW to industrial batch data will be discussed.

There are an array of options for tuning the DTW algorithm to a
particular alignment problem and two of the key aspects are choice of
global constraint and choice of local constraint. Briefly, the global
constraint limits the maximum timing difference in the matching be-
tween query and reference trajectories found by DTW. There is freedom
in how the trajectories are warped as long as the maximum timing dif-
ference is not exceeded. In contrast, the local constraint limits the amount
of expansion/contraction that DTW applies throughout every point of the
trajectories. If DTW is applied without either type of constraint, then the
alignment may result in unrealistic, extreme warping. Researchers who
have considered the problem of avoiding extreme distortions when
aligning batch process data with DTW have focused on the global
constraint, with little or no discussion of the local constraint [5].
Recently, Lu et al. [8] presented a method for specifying global con-
straints so that warping only takes place in selected regions of the tra-
jectories such that key features are not distorted unduly. Again, a local
constraint is not used. The primary goal of the present work is to provide
a method for avoiding unrealistic warping with DTW whilst achieving a
reasonable synchronisation of the key events in the trajectories.

In this paper, besides reviewing the many relevant aspects of DTW as
applied to batch process data, we focus especially on the effects of local
constraints. We argue that local constraints are preferable to global
constraints for limiting unrealistic warping with DTW. The local
constraint scheme of Sakoe and Chiba [17] is extended and stronger local
constraints than previously seen in the literature are applied. A novel
method for selecting the most appropriate local constraint is proposed
which is readily generalisable to any batch process. A case study of real
data from an industrial bacteria fermentation process is presented and
the proposedmethods are demonstrated on this data. Our local constraint
162
method is shown to be superior to a global constraint in this case and the
results are discussed.

2. Methods

2.1. Basic theory of DTW

In this section the various elements of DTW are introduced. Let X 2
ℝK1�J be a query batch of J variables collected at K1 time points, and let
R 2 ℝK2�J be a reference batch of J variables collected at K2 time points.
In order to align X to R with DTW, the first step is to construct a local
distance matrix, C 2 RK1�K2 where Ck1 ;k2 is the distance between obser-
vation k1 in X and observation k2 in R (denoted by the row vectors Xk1�
and Rk2� respectively). Usually, the squared Euclidean distance is used

Ck1 ;k2 ¼ ½Xk1� � Rk2��W½Xk1� � Rk2��T (1)

whereW 2 RJ�J is a diagonal matrix withWj;j being the weight for the jth

variable. Variables with a large weight will contribute more to the dis-
tance and will therefore have greater influence on the alignment. The
choice of these weights will be revisited in section 2.4. An advantage of
using the squared Euclidean distance, rather than the Euclidean distance,
is that the weights of each variable are preserved in the computed
local distance.

The DTW algorithm considers a warping function f ðtÞ, t ¼ 1; …; T

f ðtÞ ¼ ðfXðtÞ; fRðtÞÞ (2)

fXðtÞ 2 f1;…;K1g (3)

fRðtÞ 2 f1;…;K2g (4)

Thus, fmaps the indices of X and R to a common time axis and defines
a path through the cost-distance matrix consisting of T steps. After
applying a given warping function, f, to X and R then the accumulated
distance between the resulting warped trajectories is given by

Df ðX;RÞ ¼ 1
Mf

X
t¼1

T

mf ðtÞCf ðtÞ (5)

The term mf ðtÞ denotes the weight assigned to the tth step in the path,
with Mf being the normalisation constant

PT
t¼1mf ðtÞ.

Several basic constraints are usually imposed on the warping function
f. In the case of global DTW alignment (synchronising all of X to all of R),
the following boundary constraints must apply:

f ð1Þ ¼ ð1; 1Þ and f ðTÞ ¼ ðK1;K2Þ (6)

The warping function must preserve the monotonicity of the original
time dimension:

fXðtÞ � fXðt þ 1Þ and fRðtÞ � fRðt þ 1Þ (7)

Finally, the time warping function should be continuous:

fXðt þ 1Þ � fXðtÞ � 1 and fRðt þ 1Þ � fRðtÞ � 1 (8)

The goal of DTW is to identify warping function f satisfying these
constraints, which minimises the accumulated distance Df ðX; RÞ. The
DTW algorithm achieves this through dynamic programming in OðK1⋅K2Þ
time. The details of this solution may be found in [10]. DTW thus pro-
duces a warping function f ¼ argminf ðDf ðX; RÞÞ denoting how X and R
can be warped to make them most similar, as well as the accumulated
distance D ¼ minf ðDf ðX; RÞÞ which quantifies the similarity between X
and R after warping.

In order for the minimisation of the distance in Eq. (5) to be solved
through dynamic programming it is necessary that the normalization
constant (Mf ) be independent of the path, f. This limits the possibilities
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for the choice of step weights. The most well known step weights for
symmetric DTW are those devised in [17] where diagonal steps are given
a weight of 2, and horizontal and vertical steps are each given weights of
1. In this case, the normalization factor will be Mf ¼ K1þ K2, indepen-
dently of the warping path. An implication of this weighting scheme is
that the minimisation of Eq. (5) does not favour warping paths of shorter
length (small T). For the computed DTW distances to be comparable for
different batches having different durations we suggest using this
approach for the step weights.

Under the above constraints DTW operates symmetrically, warping
both the reference and the query to obtain the closest alignment. The
usual approach with batch process data is to apply a symmetric form of
DTW between each batch XðiÞ and the reference batch R. However, the
resulting warping functions will still have varying lengths. A second step
is necessary to obtain warped batches of equal length to the reference
batch. This step entails aggregating observations of the query batch
whenever the warping function aligns several observations of the query
to a single observation of the reference. This aggregation may be per-
formed by taking the mean [6] or the median [8]. For example, in Fig. 1,
the 3rd observation of R is aligned to both observations 1 and 2 of X.
Therefore, the 3rd value of the warped X is taken to be the mean of X1 and
X2. We choose to take the mean so that no information from the query
trajectory is removed completely.

The basic form of dynamic time warping outlined in this section may
be used to process batch data so each batch has the same length as the
reference batch. However, the method will often result in extreme
warpings and it is therefore preferable to impose additional constraints
on the algorithm. In the following section we propose a novel method for
selecting a local constraint so that unrealistic warping is avoided.
2.2. Local constraint

The basic DTW method allows a lot of flexibility for the warping path
through the local distance matrix. For example, unlimited vertical and
horizontal paths are permissible. These entail that either a single obser-
vation in the query is expanded to match a section of the reference or that
a section of the query is compressed to match a single observation of the
reference. In many contexts, extreme warpings may be unrealistic. To
limit such warping various constraints have been proposed on the slope
of the path through the cost-distance matrix. This family of constraints,
known as local constraints or slope constraints are expressed as an
allowable step pattern showing which predecessor points are allowable
paths for a given point in the local distance matrix. Sakoe and Chiba [17]
devised step patterns based on the maximum allowable number of hor-
izontal or vertical steps that may be taken before a diagonal step must be
taken and classified them according to the ratio of these two numbers,
the parameter P. They proposed 4 step patterns for P ¼ 0; 0:5; 1 and 2, as
shown in Fig. 2. We have found it necessary to extend this scheme to
obtain arbitrarily strong constraints of P ¼ 3;4;5; …; etc., as shown in
Fig. 1. Two simple trajectories (left), the local distance matrix and the optimum warpin

163
Fig. 2. The original four step patterns of [17], as well as our extension of
this scheme are described in more detail as follows:

� P ¼ 0: Infinitely many steps in either the horizontal or vertical di-
rections are permitted regardless of previous steps, i.e. there is no
constraint on the slope (equivalent to the basic DTW method).

� P ¼ 1
2: up to 2 steps in either the horizontal or vertical directions are

permitted provided they are preceded by 1 diagonal step.
� P ¼ 1: each horizontal or vertical step must be preceded by at least 1
diagonal step

� P ¼ 2: each horizontal or vertical step must be preceded by at least 2
diagonal steps

� P ¼ p: each horizontal or vertical step must be preceded by at least p
diagonal steps

For the mathematical expressions and how these step patterns are
incorporated into the dynamic programming algorithm see the original
work [17]. The choice of local constraint is in effect a trade-off between
trajectory synchronisation, and time distortion. If the constraint is too
strong, then the trajectories may not be adequately synchronised, whilst
if the constraint is too weak, the trajectories will be closely synchronised
but at the cost of unrealistic warpings in the time dimension (extreme
contractions or expansions). A method for evaluating this trade-off is the
primary goal of this work.

It is not realistic that a choice of local constraint could be made based
on process knowledge. Kassidas et al. [6] use DTW without a local
constraint, and other authors appear to take the same approach, in some
cases using instead a global constraint to limit extreme warpings (to be
discussed in section 2.3). To our knowledge, the effects of different local
constraints on DTW alignment of batch process data have not been pre-
viously investigated. We will demonstrate the advantages of exploiting
the local constraint possibilities in DTW to obtain realistic
data alignment.

In order to select the best local constraint, we first consider the two
extremes: the most lenient constraint, P ¼ 0, and the most restrictive
constraint which we call P ¼ pmax. These define the feasible region for
choosing the local constraint. The value of pmax depends on the length of
the query batch Ki relative to the length of the reference batch KRef .
Consider the Ki � KRef local distance matrix C. As P increases, the
warping function is constrained to a path closer to the diagonal. If Ki≠
KRef then C is non-square and a path from ð1;1Þ may consist of at most
min

�
Ki; KRef

�
diagonal steps before reaching the edge of the matrix (the

first step ”onto” (1,1) is conventionally considered a diagonal step). For
the path to reach the corner at ðKi; KRef Þ, requires

��Ki� KRef
�� additional

horizontal or vertical steps. This is illustrated in Fig. 3. In the plot of the
5� 8 matrix, there may be at most 5 diagonal steps requiring 3 hori-
zontal steps to form a path from ð1;1Þ to ð5; 8Þ. This is the case regardless
of how the 5 diagonal and 3 vertical steps are distributed. The ratio of the
maximum number of diagonal steps possible to the associated number of
g path (black line) found by DTW (center), and the resulting warped trajectory X.



Fig. 3. Two possible warping paths for Ki ¼ 8 and Kref ¼ 5, showing that the greatest number of diagonal steps possible is 5 and this requires 3 horizontal steps to complete a valid path.

Fig. 2. The four symmetric step patterns proposed by [17] (top row) and our extension of this scheme for arbitrarily large integer P (bottom).
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horizontal or vertical steps required provides the greatest P value which
still allows a possible warping path to be found. As we cannot allow
fractions of a diagonal step, the floor of this ratio is taken to obtain the
strictest local constraint for a particular query batch. Once this is done for
every query batch in the dataset, pmax is taken to be the smallest of the
values, so that the same P ¼ pmax local constraint can be used on all
the batches.

pmax ¼ min
1< i< I

�
min

�
Ki;Kref

�
��Ki � Kref

��
�

(9)

The P ¼ pmax local constraint is the strictest constraint under which
every query batch in the dataset can be aligned to the reference batch
using DTW, and corresponds to the DTW alignment that is most com-
parable to linear interpolation of each query batch at Kref sampling
points, i.e., minimal warping takes place so events within the batch are
not well synchronised. Conversely, the P ¼ 0 constraint allows unlimited
warping, and the batches are aligned as closely as possible. The problem
is to select a local constraint between these extremes that can produce the
closest alignment without extreme warpings. To evaluate this trade-off,
the following measures are first defined to quantify the two effects.

With regards to degree of variable synchronisation, recall that the
DTW distance, Eq. (5), is precisely a measure of the similarity between
the query trajectories and the reference trajectories, after DTW syn-
chronisation by the warping function f. In addition, this quantity is
returned by the DTW algorithm and so requires no additional
164
computation. To quantify the degree of synchronisation for a particular
local constraint P ¼ p, align each batch under this constraint. Let Di be the
DTW distance calculated for the ith batch. Define the synchronisation
value, D, as the mean of the DTW distances across the I batches

D ¼
XI

i¼1

Di=I (10)

A small synchronisation value indicates a close alignment of
the batches.

To quantify the degree of time distortion, we note that warping only
occurs at horizontal and vertical transitions in the warping path whilst
diagonal transitions correspond to no change. Therefore, we define the
time distortionmeasureNHV as the mean number of horizontal or vertical
steps per batch alignment. Denote the warping function for the ith batch

by f ðiÞðtÞ ¼ ðf ðiÞX ðtÞ; f ðiÞR ðtÞÞ, t ¼ 1; …; TðiÞ. A horizontal or vertical step

entails that either f ðiÞX ðtÞ remains the same for a step, or that f ðiÞR ðtÞ remains
the same, and the distortion measure is defined as

NHV ¼ ð1=IÞ
XI

i¼1

XT ið Þ�1

t¼1

10
��
f ið Þ
X ðt þ 1Þ � f ið Þ

X tð Þ �⋅�f ið Þ
R ðt þ 1Þ � f ið Þ

R tð Þ � �

(11)

where 10ðxÞ ¼ 1 for x ¼ 0 and 0 otherwise.
In order to combine D and NHV into a single ”alignment score” for
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each local constraint they should be scaled to make them comparable
(the range spanned by NHV for different local constraints will differ in
magnitude to the range spanned by D). This is done by subtracting the
minimum and dividing by the range so each measure varies from 0 to 1.
The combined alignment score may then be calculated as the euclidean
distance of ðNHVðscaledÞ; DðscaledÞÞ to the origin ð0; 0Þ:

Alignment Score ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

2
HVðscaledÞ þ D

2
ðscaledÞ

q
(12)

The local constraint which has the smallest alignment score is chosen
as the most suitable and the aligned data under this constraint may be
used for further analysis. This constraint will synchronise the key events
in the process without unrealistic time distortions.

With regards to the variable weightsW, the above procedure requires
that the same variable weights are used for each alignment so that D is
comparable for different local constraints. We suggest that W is calcu-
lated prior to local constraint selection, using the method in [16] with the
basic DTW algorithm (P ¼ 0 local constraint). These variable weights are
then used thereafter. In this way, the variable weights are based on the
potential warping information, under the most flexible local constraint.

Our proposed method for selecting the local constraint is summarised
as follows:

� Determine variable weights W by applying the method from [16]
with P ¼ 0 local constraint.

� Select the reference batch (see section 2.4)
� Calculate the value of pmax (Eq. (9))
� For p in 0; 1

2; 1;2; …; pmax, align the batches to the reference batch
using DTW with P ¼ p local constraint

� For each different local constraint alignment calculate the synchro-
nisation value D and the distortion measure NHV

� For each local constraint calculate the alignment score by adding the
scaled synchronisation value and scaled distortion measure.

� Select that local constraint which results in the smallest synchroni-
sation score for the final alignment of the data
Fig. 4. Itakura parallelograms for the P ¼ 1 local constraint, having sides that slope 1=2
and 2, and the P ¼ 2 local constraint, having slides that slope 2=3 and 3=2
2.3. Global constraint

A global constraint may be specified such that the warping function
may not enter certain regions of the local distancematrix. A simple global
constraint is the band constraint [17], where the time difference between
the warped query and reference series may not exceed some value b:
jfXðtÞ� fRðtÞj � b. This means that the warping function is confined to a
band of width b along the main diagonal of the distance matrix. The band
constraint is problematic when the query and reference are of different
lengths, as the main diagonal of a non square matrix does not go from
corner to corner.

Alternatively, arbitrary regions of the distance matrix may be selected
as off-limits to the warping function. Gonz�alez-Martínez et al. [5] define
global constraints for use in their on-line DTW implementation as an
empirical envelope derived from historical warping functions in an off-
line analysis. Lu et al. [8] use global constraints to avoid warping re-
gions in the data that contain important features. This procedure requires
identifying features and selecting which features should not be warped,
requiring much analysis and interpretation. It does not seem physically
realistic that local batch time would follow the reference time exactly in
certain predefined regions, but warp freely in other regions.

Global constraints entail that there is a maximum possible time dif-
ference between the warped series. As long as this maximum is not
exceeded, extreme compressions and expansions may still occur. This
abrupt cut-off in maximum allowable time difference does not seem
realistic if the warping function is interpreted physically as the local
batch time. It seems unlikely that local batch time could naturally adhere
to such a cut-off. In contrast, the local constraint may be physically
interpreted as a limit to the rate of change of local batch time relative to
165
the reference, which is more realistic.
Finally, it has been shown that the local constraints for P>0 implic-

itly limit the region of possible warping paths to the so-called Itakura
parallelogram [9], the sides of which have slopes 1=S and S where S ¼
ðpþ 1Þ=p for local constraint P ¼ p. For example, local constraint P ¼ 1
limits the warping path to the Itakura parallelogram with sides of slope
1=2 and 2 (Fig. 4). Therefore, we do not see an advantage to introducing
additional global constraints if a local constraint is used.
2.4. Other DTW considerations

Ourmain interest in this work is the use of local and global constraints
to control the performance of DTW as outlined in sections 2.2 and 2.3. In
this section we consider several issues which are relevant for applying
DTW to alignment of batch process data but which are not related to the
local or global constraints.

During DTW, each query batch is aligned to the same reference batch
in order to obtain aligned batches of the same length as the reference. The
choice of reference batch is of importance as the data will be re-expressed
in terms of its relation to the reference batch. To aid interpretation of the
DTW results, it is preferable that the reference batch be a typical batch
found under normal operating conditions. Following [5,6,16], we select
the batch with a duration closest to the median duration of the dataset as
the reference. It should also be noted that it is important to carry out
additional checks that the chosen batch represents normal operating
conditions.

Prior to DTW alignment, the data should be scaled so that the local
distance measure in Eq. (1) is not influenced by the different engineering
units of the variables. Following [6] this is done by dividing each variable
by its average range across batches. Ramaker et al. [16] hold that scaling
is not necessary for spectroscopic data where each variable has the same
unit and similar range. Mean standard deviation or interquartile range
could also be used as a scaling factor.

After the data has been scaled, the appropriate weight of each vari-
able, W in Eq. (1) must be determined. Variables with a large relative
weight will contribute more to the distance and will thereby have greater
influence on the warping function and the final alignment. Therefore
appropriate weighting will lead to better synchronisation. There have
been two proposed methods for defining variable weights. Both are
iterative methods. The first method, from Kassidas et al. [6], aims to give
large weights to variables that are consistent from batch to batch. These
are the variables which can be most closely synchronised by DTW.
However, as noted by [16], the method assigns large weights to flat,
featureless variables which are actually poor indicators for alignment.
For this reason, we choose to use the second method, proposed by
Ramaker et al. [16], which assigns large weights to variables which
produce a steep valley in the surface plot of the local distance matrix. In
section 3.3 we apply both the method from [6] and from [16] and find
that the latter results in more intuitive weights based on visual inspection
of the data.
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Finally, we consider the case where batches are stopped at varying
degrees of completeness. This may occur in processes where there is no
reliable way to measure the completeness of a batch exactly. In this case,
some batches will contain process events which are not present in other
batches. One approach to aligning such data is to use partial DTW
alignment in which the endpoint constraints of Eq. (6) are relaxed to
allow for all of X to be aligned to a section ofR. The DTW solution may be
interpreted as performing Kref DTW alignments, using Rð1 : k; :Þ as the
reference for k ¼ 1; …; Kref . Then the alignment which gives the mini-
mum value of Df ðX; Rð1 : k; :ÞÞ is adopted and indicates that the batch
completion of X corresponds to the first k observations of R. Similarly, a
partial alignment can account for uncertainty concerning the start time of
the batches, or of both start time and end time. Of course, it is necessary
that a reference batch which is ”more complete” than all the query
batches is chosen.

A disadvantage of conducting a partial alignment is that after syn-
chronisation, the batches will still have varying lengths. Secondly, in
omitting the start point or end point constraint, the algorithm is given a
great deal more flexibility which may result in inappropriate synchro-
nisation. The constraint of fixed endpoints is a great advantage, (if the
start and end endpoints do indeed represent the same events in all
batches) as they ensure that at least these points are appropriately
aligned, leading to a greater confidence in the alignment of the inter-
vening points. With an open ended alignment, there is uncertainty
whether the reference section selected by DTW truly represents the
events in the query, or whether a chance match was found to a section
containing different events, because of atypical behaviour in the batch.

We suggest dealing with varying completion amounts as follows:

1. Using process knowledge, identify a feature in one or more of the
variable trajectories, near the end of the batch, which is present in all
batches and which may be assumed to represent the same event
across batches. Truncate each batch at the time of this end-point
event.
Fig. 5. The 23 batches in the dataset obtained from the batch fermentation pr
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2. Select local constraint using global DTW and synchronise data using
the optimum local constraint.

3. For subsequent analysis, each synchronised batch matrix may be
appended with the very last observation from the unsynchronised
batch matrix in order to represent the information on what took place
after the endpoint event for each batch. As a single observation is used
for this, all the synchronised batches will still have the same length.

A similar method could be used if the start-point of the batches varies.
If an end or start event cannot be identified, then partial DTW may be
of value.

3. Results and discussion

Themethods described in section 2 were applied to real data using the
statistical software R [15]. To implement DTW with various local con-
straints, global constraints, variable weights etc. the DTW R package was
used [4]. The Sakoe and Chiba [17] local constraints for P ¼ 0;0:5; 1 and
2 are built in to this package, and the additional constraints described in
section 2.2 for integer P> 2 may be readily defined by the user.

3.1. The data

Data was provided by the company Chr. Hansen for an industrial
bacteria fermentation process used to produce a multi-strain bacteria
culture for use in the dairy industry. Process data was obtained for I ¼ 23
batches consisting of J ¼ 6 variables measured throughout the batch
duration. The raw data was processed to obtain measurements at evenly
spaced time intervals resulting in 403 � Ki � 532 observations. This
processed data is shown in Fig. 5. A batch begins with the introduction of
bacteria cells to a fermentation vessel which has been pre-filled with
growth media. As the bacteria cells grow and multiply they produce acid
which lowers the pH inside the fermenter. Once the pH reaches a pre-
defined set point roughly half-way through the process, a controller is
ocess. The scale of the ordinate axis is omitted for confidentiality reasons.
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activated which is designed to maintain the pH at this set point for the
remainder of the batch. The controller does this by manipulating the
amount of base (ammonia) added to the fermenter in response to changes
in measured pH. The rate of base addition is measured, as well as the total
quantity of base added to the fermenter. The level inside the tank rises as
base is added. Temperature is kept within a narrow range. The point at
which to stop the batch is decided by the operator based on process
knowledge (judgement on the degree of bacteria growth based on
amount or current rate of base addition) and logistics (e.g. availability of
equipment downstream). In this process, the pH and base addition rate/
quantity can be assumed to be direct indicators of the biological state of
the process. Level is closely correlated to base addition. Pressure is kept
constant. However, it was determined that the temperature variable is
not a reflection of the progress of bacteria growth, but rather depends on
the physics of maintaining the temperature of a large body of fluid, and
the mixing of this fluid in relation to the sensor placement. Therefore, the
temperature variable is not a direct indicator of the biological progress of
the bacteria fermentation. Based on this prior knowledge, the tempera-
ture variable should not influence the alignment of the data.

Time variation between batches is clearly visible in the process. As
well as the overall batch duration which varies between 403 and 523
observations, there is also variation in the timing of the events that take
place during the process. The lag phase (the time before the bacteria
multiply enough to decrease the pH) varies from around 50, to around
200 observations. The time at which the pH reaches the set-point varies
from 200 to 270 observations. The time at which base addition rate peaks
varies between 350 and 450. In addition to these more visible events in
the biological process, we may suppose that there are many other fea-
tures in the variable trajectories that reflect other events in the process,
and these also vary in time from batch to batch.

3.2. Processing data and selecting reference batch

The batches have been stopped at varying degrees of completion, as
Fig. 6. The truncated data with reference ba
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illustrated by how complete a curve is traced by the base addition rate
trajectory after it has peaked. The last observation in each batch does not
correspond to the same event, and so should not be synchronised to each
other. The methods proposed in this paper determine the most appro-
priate constraints to use for DTW, by applying the global alignment
version of DTW. Therefore, in cases like this, some endpoint that is
common to all batches must be inferred in order to truncate the data so
that all batches stop at the same event. The time of reaching peak base
addition rate was selected as the imposed endpoint. This time was
determined by fitting a cubic polynomial to the last section of the base
addition rate trajectory, and the batches were truncated at this point.

Next, the reference batch was selected to be that batch with duration
closest to the median duration, having confirmed with operators that the
selected batch had desirable properties. The data was scaled by dividing
each variable by its mean range across all batches and centred by sub-
tracting the minimum (across all batches).

The truncated data and reference batch are shown in Fig. 6.

3.3. Determining variable weights

The variable weights are determined by applying the method from
[16] with unconstrained DTW (P ¼ 0) and initial weights of 1 for all
variables (Temperature excluded as previously discussed). After seven
iterations the weights converged (ε< 0:002) to the values shown in
Fig. 7. It is reasonable that pH is given the greatest weight as it is the main
indicator of the state of the process. Base addition quantity and rate are
also important indicators, but are only relevant for the second half of the
process so receive less weight. Pressure and Level contain very little in-
formation on the state of the process and so it is appropriate that they are
given small weights.

The weights that result from the method in [6] are also shown in
Fig. 7. This method required 19 iterations before ε<0:002 and it
weighted pressure and level greater than base addition rate and base
addition quantity. This contradicts our prior interpretation that level and
tch in black and other batches in grey.



Fig. 7. Variable weights resulting from the methods of Ramaker et al. [16] and Kassidas
et al. [6].

M. Spooner et al. Chemometrics and Intelligent Laboratory Systems 167 (2017) 161–170
pressure are the least informative variables for alignment and supports
our choice of the Ramaker method for determining variable weights.

3.4. Selecting local constraint

After truncating the batches to a common end point, they range in
length from 387 to 432 observations. The reference batch is of length 412
observations. From Eq. (9), the strictest constraint which can be applied
to all batches is Pmax ¼ 15. Therefore a choice must be made amongst the
constraints P 2 ½0; 0:5; 1; …; 15�. DTW alignments were applied for
each of these 17 local constraint choices. The resulting time warping
functions and aligned trajectories of the pH variable are shown for P ¼
0; 3 and 15 in Fig. 8.

Fig. 8 clearly shows that in the traditional DTW method where P ¼ 0
and there is no constraint on the slope of the warping function, there are
Fig. 8. The warping functions (top) and the aligned trajectories for the pH variable (bottom)
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many extreme warpings in the time warping functions: long sections of
the query batch are compressed to an instant or a single observation in
the query batch may be expanded to cover long sections of the reference
batch. The variable trajectories are aligned too aggressively by tradi-
tional DTW. The strongest constraint, P ¼ 15 approaches similar results
to a linear interpolation. The aligned batches have the same number of
observations as the reference, but events during each batch are not
synchronised. The intermediate constraint shown in Fig. 8 (P ¼ 3), re-
sults in much less extreme warping than for P ¼ 0, whilst appearing to
succeed in synchronising the key events in the pH variable.

For each local constraint alignment, NHV (degree of time distortion)
and D (synchronisation value) was calculated. The statistics are scaled
and combined to form the alignment score. The constraint resulting in
the smallest alignment score was the P ¼ 3 constraint, although P ¼ 2 has
a score very close to it. This procedure is shown in Fig. 9.

With no local constraint (P ¼ 0, i.e. traditional DTW), the closest
variable synchronisation is obtained, but also the greatest time distor-
tion, NHV≈500. As the local constraint is strengthened up to P ¼ 3, time
distortion is reduced significantly to NHV <100, without much deterio-
ration in variable synchronisation (small increase in D). Further
strengthening of the local constraint up to P ¼ 15 does not lead to sub-
stantial reduction in time distortion but results in rapid deterioration in
variable synchronisation. This relationship results in an ”elbow” in the
plotted values which could form the basis for choosing P without the
need for scaling and score calculation steps. The ”elbow” indicates the
choice of P at which strengthening the constraint further will result in
substantially poorer alignment with little reduction in time distortion.
This heuristic may be summarised as follows:

� Plot D against NHV

� Locate the bend in the plot and select the smallest local constraint
closest to the bend

This approach would lead us to select P ¼ 3 or P ¼ 2. Although the
are shown from DTW alignment with local constraints of P ¼ 0;3 and 15 (left to right).



Fig. 9. Choosing the local constraint parameter, P, based on the alignment performance according to NHV and D (left), their scaled counterparts (center) and the alignment score (right).
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method is more subjective, in this instance it leads to the same conclusion
as the score method.

In summary, the above off-line analysis has determined the variable
weights and the appropriate local constraint for DTW alignment of this
data. Using these parameters, the data may then be aligned for further
analysis by multi-way methods. In addition, these parameter settings can
be used on new batch data from the process, or even in applying DTW in
an on-line application.
Fig. 10. NHV and D are shown for varying local constraint (black dots) and varying width
of the slanted band global constraint (blue triangles). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
3.5. Comparison to DTW with global constraint

For comparison, the effect of using a global constraint was investi-
gated by applying the ”slanted band” global constraint from [4]. This
global constraint limits the warping function to a band that is b columns
wide and is centred on the line joining start-corner and end-corner of the
local distance matrix. The data was aligned with the slanted band global
constraint for bandwidths of b ¼ 5;10;20;40 and 80 without local
constraint (P ¼ 0 for all b). For each bandwidth, time distortion value
NHV , as well as variable synchronisation value D was calculated. The
resulting values are compared to the previous results from varying the
local constraint in Fig. 10. The global constraint is not as effective as the
local constraint in reducing time distortion, and strengthening the global
constraint (decreasing b) leads to rapid deterioration in variable syn-
chronisation (increase in D) without much reduction in time distortion.
We conclude that the local constraint approach is superior to the slanted
band global constraint at limiting unrealistic warping without serious
loss in variable synchronisation quality.

4. Conclusions

DTW has been widely used for the alignment of batch process data,
though there is not a single accepted approach to how the algorithm
should be applied. We have investigated the use of local constraints, an
area which has received little attention previously in this application. We
have shown how the local constraint may be used to avoid unrealistic
warping in the aligned data and presented a novel method for selecting
the most appropriate local constraint for an alignment problem. This
method optimises the trade-off between variable synchronisation and
time distortion. We maintain that the problem of unrealistic warping in
DTW should be addressed using the proposed local constraint method,
rather than a global constraint approach for twomain reasons. Firstly, the
global constraint does not avoid extreme contractions or expansions less
than some upper limit, whilst the local constraint method limits extreme
warping more pervasively. Secondly, the local constraint method we
propose is very generalizable to other datasets, whilst many global
169
constraint methods require much tailoring to the dataset at hand. By
adopting the proposed method to select an appropriate local constraint,
batch process data may be aligned realistically, allowing the warping
functions of the aligned batches to be interpreted as progress signatures
of the batches.
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