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Abstract. We present two heuristics, Sliding Window and Look Ahead,
to improve solutions for the Sorting Signed Permutations by Reversals
and Transpositions Problem. To assess the heuristics, we implemented
algorithms described in the literature to provide initial solutions. Despite
the fact that we addressed a specific problem, both heuristics can be
applied to many others within the area of genome rearrangement. When
time is a crucial factor, Sliding Window is a better choice because it
runs in linear time and improves the initial solutions in 76.4% of cases. If
the quality of the solution is a priority, Look Ahead should be preferred
because it improves the initial solutions in 97.6% of cases, but it runs in
O(n3×alg(n)), where alg(n) is the complexity of the algorithm given as
input. By using these heuristics one may find a good tradeoff between
running time and solution improvement.

Keywords: Genome rearrangement · Heuristics · Reversals
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1 Introduction

Genome rearrangements affect large portions of the DNA sequence. They occur
when chromosomes break at one or more locations and the pieces are reassembled
in a different order. Due to the Principle of Maximum Parsimony, we approx-
imate the evolutionary distance by the minimum number of events that trans-
forms one genome into another. A Genome Rearrangement Problem aims at
finding this minimum number, the so-called rearrangement distance.

Assuming no duplicated genes, we assign numbers to each gene to represent
genomes as permutations of integers. If we know the relative orientation of the
genes, we associate a sign (positive or negative) to each element of the permu-
tation, resulting in a signed permutation; we omit this sign otherwise, resulting
in an unsigned permutation (or simply permutation).
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A reversal is a genome rearrangement event that inverts a segment of the
genome, changing the order and the orientation of genes in this segment. A
transposition swaps the position of two consecutive genome segments, keeping
the order and the orientation of genes unchanged inside the segments.

To compute the distance between two genomes, we map one to the identity
permutation defined as ιn = (+1 . . . +n) and use gene labels to map the other
to an arbitrary permutation α. The goal is to transform α into ι—a sorting
problem—using the minimum number of genome rearrangement events.

Hannenhalli and Pevzner [10] proved that the Sorting Signed Permutations
by Reversals problem can be solved in polynomial time. Caprara [4] proved that
the unsigned version is NP-hard. Bulteau and coauthors [3] proved that the
Sorting Permutations by Transpositions problem is also NP-hard.

Sorting Signed Permutations by Reversals and Transpositions has unknown
complexity, the same being true for the unsigned version. The best algorithm for
the signed version has an approximation factor of 2 [14]. The best algorithm for
the unsigned has an approximation factor of 2k [11], where k is the approximation
factor of the algorithm used for cycle decomposition [5].

In this work, we present two heuristics to improve solutions from existing
algorithms. Our heuristics produce smaller sorting sequences in the vast majority
of cases when compared to those provided by the algorithms with no heuristics
applied.

The paper is organized as follows. Section 2 presents notations and defini-
tions. Section 3 details the heuristics. Section 4 shows the algorithms used to
evaluate our heuristics. Section 5 reports the experiments. Section 6 concludes
the manuscript.

2 Preliminaries

In genome rearrangement problems, we represent a genome as an n-tuple, where
each element stands for a gene or blocks of genes. Assuming no duplicated genes,
the n-tuple is a permutation π = (π1 π2 π3 . . . πn), where πi ∈ {−n,−(n −
1), . . . ,−2,−1,+1,+2, . . . ,+(n − 1),+n} such that |πi| �= |πj | ↔ i �= j. The
positive or negative sign of an element indicates the orientation of the gene.

The composition between two permutations π = (π1 π2 . . . πn) and σ =
(σ1 σ2 . . . σn) results in a new permutation: α = π ◦ σ = (πσ1 πσ2 . . . πσn

). If
σi < 0, then αi = −π|σi|, otherwise αi = πσi

.
The inverse of σ is a permutation σ−1 such that σ ◦ σ−1 = ιn. The inverse

σ−1 indicates the position and orientation in σ of each element i.
A reversal reverts the order of the segment {πi, πi+1, ..., πj} and also flips

the signs of the elements. Therefore, a reversal ρ(i, j) applied to π leads to
π ◦ ρ(i, j) = (+π1 . . . +πi−1 −πj . . . −πi +πj+1 . . . +πn).
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A transposition τ(i, j, k), 1 ≤ i < j < k ≤ n + 1, swaps the positions of
two adjacent blocks. Therefore, a transposition τ(i, j, k) applied to π leads to
π ◦ τ(i, j, k) = (π1 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn).

The distance between π and σ, d(π, σ), is the size of a minimum length sequence
δ1, δ2, . . . , δt of reversals and transpositions such that π ◦ δ1 ◦ δ2 . . . δt = σ. In this
case, d(π, σ) = t.

Let ιn = (+1 . . . +n) be the identity permutation. A sorting problem is the
distance between an arbitrary permutation α = (α1 . . . αn) into ιn. We denote
the distance between α and ιn by d(α, ιn) = d(α).

The sorting problem may appear a particular case of rearrangement distance,
but it has the same power of representation. Sorting α is equivalent to transform-
ing π into σ if we consider α = π ◦σ−1. Note that d(π, σ) = d(π ◦σ−1, σ ◦σ−1) =
d(α, ιn) = d(α).

If we can sort α, we can also transform π into σ using the same sequence
of operations. For example, let π = (+6 +5 +1 +2 +4 +3) and σ =
(+2 −1 +4 −5 +3 +6), the inverse of σ is σ−1 = (−2 +1 +5 +3 −4 +6).
We compute α = π ◦σ−1 = (+6 −4 −2 +1 +3 +5). Applying a sorting sequence
in α leads to α ◦ ρ(2, 4) ◦ τ(4, 5, 6) ◦ τ(1, 2, 7) ◦ ρ(1, 1) = ι6. Applying the same
operations in π leads to π ◦ ρ(2, 4) ◦ τ(4, 5, 6) ◦ τ(1, 2, 7) ◦ ρ(1, 1) = σ.

We obtain an extended permutation from π by inserting two new elements:
π0 = +0 and πn+1 = n+1. From now on, unless stated otherwise, permutations
will be extended.

A breakpoint occurs in a pair πi and πi+1 of π if πi+1 −πi �= 1, 0 ≤ i ≤ n. We
denote the number of breakpoints by b(π). For π = (+0 ·−2 −1 ·+4 +5 ·−3 ·+6),
where “·” represents a breakpoint, we have b(π) = 4. The identity permutation
ι is the only with no breakpoints.

Breakpoints split a permutation into strips, which are maximal intervals with-
out breakpoints. We do not add the elements π0 and πn+1 to the scope of strips.
For π = (+0 · −2 −1 · +4 +5 · −3 · +6), we have three strips: (−2 −1), (+4 +5),
and (−3).

Christie [6] created an algorithm to reduce a permutation π into a permuta-
tion πreduced such that d(π) ≤ d(πreduced). Four steps summarize the algorithm:
(i) Remove the first strip if it starts with +1. (ii) Remove the last strip if it ends
with +n. (iii) Replace each strip with the smallest element in it. (iv) Renumber
the final sequence to obtain a valid permutation.

For example, let π = (+1 +2 −9 −8 +5 +6 +7 +3 +4) be a permutation
with four strips: (+1 +2), (−9 −8), (+5 +6 +7), and (+3 +4). We remove
the first strip since it starts with +1, resulting in (−9 −8), (+5 +6 +7), and
(+3 +4). Then, we select the smallest element in each strip: (−9 +5 +3). Finally,
we renumber the final sequence to obtain the reduced permutation: πreduced =
(−3 +2 +1).
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3 Heuristics

We developed two heuristics, Sliding Window and Look Ahead, that extend pre-
vious approaches applied to unsigned permutations [7,8] and we assess them on
the Sorting Signed Permutations by Reversals and Transpositions problem.

3.1 Sliding Window

Sliding Window uses a database that contains optimal sorting sequences for
signed permutations of size up to nine [9]. It receives a permutation π and an
algorithm alg as input and outputs a sequence of rearrangement events that
sorts π.

The heuristic behaves as follows: we use alg to sort π and generate a sequence
of permutations S = [π0, . . . , πz], such that πi ◦ δ = πi+1, where δ ∈ {ρ, τ}, for
0 ≤ i < z. The output is a sequence S

′
= [π0, . . . , πy], such that y ≤ z and

πy = πz.
Initially, the heuristic picks a subsequence of permutations Sw from S that

we call window. The window begins with πi and ends with πj , 0 ≤ i < j ≤ z.
The heuristic computes α = πi ◦ πj−1

and reduces it to αreduced. If αreduced has
up to nine elements, we retrieve the optimal sorting sequence from the database,
otherwise a smaller window Sw will be sought and slided through S.

If the optimal sequence for αreduced is shorter than Sw, we use it to build a
sequence Sw′

that sorts α. Each permutation α′ ∈ Sw′
is replaced by πj ◦α′ and

the window Sw is replaced by Sw′
, which improves S. Figure 1 shows a flowchart

for this heuristic.

Fig. 1. Flowchart of the Sliding Window heuristic.

The heuristic runs in O(n + alg(n)), where alg(n) is the complexity of the
algorithm given as input.
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3.2 Look Ahead

Look Ahead receives a permutation π and an algorithm alg as input, and outputs
a sequence of events that sorts π. The heuristic behaves as follows: we start with
the permutation π as the current permutation. While the current permutation
is not sorted, the heuristic assess all possible reversals and transpositions, fully
investigating the neighborhood of π.

We use alg to estimate the distance of each permutation in the neighborhood
of π, and we select the permutation with the shortest distance (or one of the
shortest if multiple choices are available). The selected permutation will be the
current permutation in the next iterative step. The process ends when we reach
the identity.

Look Ahead requires a distance estimator alg to select an operation at each
step. If the estimator does not work well, it negatively impacts the solution
provided.

The heuristic runs in O(n3 × alg(n)), where alg(n) is the complexity of the
algorithm given as input. Since the complexity of this heuristic is directly linked
to alg(n), it becomes prohibitive in cases where alg(n) has a high complexity.
Figure 2 shows the flowchart for this heuristic.

Fig. 2. Flowchart of the Look Ahead heuristic.

4 Algorithms Implemented to Evaluate the Heuristics

We use as input different algorithms from the literature. Some were not designed
for the Sorting Signed Permutations by Reversions and Transpositions problem,
but they provide a valid solution or some modifications were performed to make it
valid. We employed such algorithms to verify the behavior on various situations.
Table 1 shows the algorithms used as input.
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Table 1. Algorithms used to evaluate the heuristics.

Rearrangement problem Code Reference Time Ratio

Reversal and transposition RSH Rahman et al. [11] O(n3) 2k

Signed reversal and transposition WDM Walter et al. [14] O(n3) 2

BRPT Walter et al. [14] O(n2) 3

BRPR Walter et al. [14] O(n2) 3

Signed reversal HPB Hannenhalli and Pevzner [10] O(n2) 1

Bader et al. [1] O(n) 1

Transposition BP Bafna and Pevzner [2] O(n2) 1.5

• RSH: An algorithm for the Sorting Unsigned Permutations by Reversals and
Transpositions problem with an approximation factor of 2k, where k is the
approximation of the algorithm that decomposes π in cycles. If applied on
signed permutations, it outputs valid solution with approximation factor of 2.

• WDM: An algorithm for the Sorting Signed Permutations by Reversals and
Transpositions problem that guarantees an approximation factor of 2.

• BRPT: An algorithm for the Sorting Signed Permutations by Reversals and
Transpositions problem with an approximation factor of 3. The algorithm
greedly removes the largest number of breakpoints. In case of ties between
reversals and transpositions, a transposition is chosen.

• BRPR: A variation of BRPT that favours reversals instead of transpositions.
• HPB: An exact algorithm for the Sorting Signed Permutations by Reversals

problem. Since Look Ahead needs a distance estimation, we used a linear time
algorithm that outputs only the distance. Since Sliding Window requires an
initial sequence of rearrangement events, we used a quadratic algorithm. The
implementations were provided by Tesler [12,13].

• BP: An approximation algorithm for the Sorting Unsigned Permutations by
Transpositions problem with an approximation factor of 3

2 . To ensure a valid
solution for the Sorting Signed Permutations by Reversals and Transpositions
problem, we first reverse all negative strips before applying this algorithm.
The final sorting sequence is composed by the reversal operations that were
first applied and the result of this algorithm.

5 Results

The heuristics and the algorithms implemented from literature received the same
set of permutations that were randomly generated with the maximum number
of breakpoints. The sizes of permutations ranged from 10 to 500 and increased
in intervals of 10 from 10 to 100, and in intervals of 50 from 150 up to 500. For
each size, we created a set of 1000 permutations. We executed Look Ahead on
permutations with size up to 100 due to the slow running time. We executed
Sliding Window on all permutations.
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Fig. 3. Average approximation factor of each (a) original algorithm, (b) Sliding Win-
dow, and (c) Look Ahead. We can see a significant improvement in the average approx-
imation factor in almost all the algorithms where Sliding Window was applied. Look
Ahead improved the average approximation factor of all algorithms.
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To compute the approximation factors, we used the lower bound � (n+1)−c(π)
2 �,

where c(π) is the number of cycles in the cycle graph [14].
Figure 3 shows the average approximation factor of the original algorithms

and our heuristics. Comparing the Fig. 3(a) and (b) we observe improvement
in the average approximation factor in almost all the algorithms provided by
Sliding Window. We make similar comparison with Fig. 3(a) and (c) and see
a significant reduction in average approximation factor in all algorithms using
Look Ahead. In most cases, the results provided by Look Ahead showed better
performance than those provided by Sliding Window, except for the case where
the WDM algorithm was used.
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Fig. 4. Percentage of sorting sequences that have been improved using (a) Sliding
Window and (b) Look Ahead. We can see that in almost all cases Sliding Window
improved the initial sorting sequence of a significant amount of permutations. The only
case in which this behavior was not observed was when we used the BP algorithm. Look
Ahead improved the initial sorting sequence of a significant amount of permutations.
For all permutations with size greater than 10, this value exceeded 90%.
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Figure 4 shows the percentage of permutations where the original sorting
sequence was improved by Sliding Window and Look Ahead, respectively.

Applying Sliding Window in permutations of size 10 up to 100, we obtained
an improvement in 75.6% of cases, and for permutations of size 150 up to 500,
we obtained an improvement in 77.4% of cases. Look Ahead was executed with
permutations up to size 100 and improved the original sorting sequence in 97.6%
of cases. All algorithms presented significant improvements.

Table 2 reports the average running time in seconds. The abbreviations ALG,
SW, LA, represents the original algorithm, Sliding Window, and Look Ahead. We
see that Sliding Window runs extremely fast, whereas Look Ahead is more time-
consuming.

Table 2. Average running time in seconds. In all cases, Sliding Window outputs a
solution in less than 0.1 s. Look Ahead is more time-consuming, but it runs fast when
an algorithm with low time complexity like HBP is used.

Algorithm Size of permutations

100 500

ALG SW LA ALG SW

RSH 0.003 0.016 11378.694 0.048 0.085

WDM 0.003 0.017 15330.229 0.047 0.092

BRPT 0.001 0.007 1676.322 0.006 0.021

BRPR 0.001 0.007 1445.922 0.005 0.019

HPB 0.003 0.009 72.803 0.029 0.049

BP 0.002 0.005 3941.291 0.025 0.035

Table 3. Average approximation factor provided by the original algorithms and our
heuristics. Look Ahead significantly improved the average approximation factor of all
algorithms. Sliding Window showed better results when applied to specific algorithms
for the Sorting Signed Permutations by Reversals and Transpositions Problem.

Algorithm Permutation size

100 500

ALG SW LA ALG SW

RSH 1.559 1.347 1.208 1.520 1.322

WDM 1.982 1.368 1.575 1.997 1.356

BRPT 1.402 1.376 1.091 1.277 1.272

BRPR 1.180 1.155 1.075 1.052 1.046

HPB 1.990 1.920 1.459 1.998 1.974

BP 1.540 1.539 1.450 1.514 1.514
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Table 3 shows a comparison between the average approximation factor of
the original algorithms and our heuristics. The abbreviations ALG, SW, LA,
represents the original algorithm, Sliding Window, and Look Ahead.

6 Conclusion

The heuristics presented in this work significantly improved the sorting sequence
provided by several algorithms known in the literature for the Sorting Signed
Permutations by Reversals and Transpositions Problem. The heuristics Sliding
Window and Look Ahead improved the sorting sequence in 76.4% and 97.6% of
cases, respectively.

These heuristics can be applied in scenarios with different needs. If time is a
crucial factor, the Sliding Window stands out since it presents good results and
suffer less variation in execution time when permutation size increases. If time
is not a priority, then Look Ahead is a better fit, presenting more remarkable
results.

The next step is to use these heuristics on variants of the Sorting Signed
Permutations by Reversals and Transpositions problem and check if it is possible
to obtain results similar to those shown in this work.
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