Math-Net.Ru

S. V. Znamenskij, A model and algorithm for
sequence alignment, Program Systems: Theory and
Applications, 2015, Volume 6, Issue 1, 189-197

Use of the all-Russian mathematical portal Math-Net.Ru implies that you
have read and agreed to these terms of use
http://www.mathnet.ru/eng/agreement

Download details:
IP: 140.117.168.57
September 29, 2018, 15:41:35

ISSN 2079-3316 PROGRAM SYSTEMS: THEORY AND APPLICATIONS No.1(24), 2015, pp. 189-197

S. V. Znamenskij

A model and algorithm for sequence alignment

ABSTRACT. The change detection problem is aimed at identifying common and
different strings and usually has non-unique solutions. The identification of the
best alignment is canonically based on finding a longest common subsequence

(LCS) and is widely used for various purposes. However, many recent version

control systems prefer alternative heuristic algorithms which not only are faster

but also usually produce better alignment than finding an LCS.
Two basic shortcomings of known alignment algorithms are outlined in the
paper:

(1) even when the length of the longest common substring is close to that of
the LCS, the latter may consist of a great number of short uninformative
substrings;

(2) known alternative algorithms start with identifying the most informative
common string, which sometimes omits from consideration common sub-
sequence containing arbitrarily many aligned substrings of similar quality.

The sequence alignment problem is considered to be an abstract model for
change detection in collaborative text editing designed to minimize the prob-
ability of merge conflict. A new cost function is defined as the probability
of overlap between detected changes and a random string. This optimization
avoids both shortcomings mentioned above. The simple cubic algorithm is pro-
posed.

Key Words and Phrases: similarity of strings, sequence alignment, software development, diff,
LCS, edit distance, Levenshtein metric.

2010 Mathematics Subject Classification: 68T37; 68P10, 68W32.

Introduction

It is generally taken that the problem of aligning two abstract se-
quences was properly solved in the mid-1970s. The basic alignment ob-
jective function is the length of the LCS (Longest common subsequence).
The most common optimized algorithm for diff utility calculating the
changes between two files was described in [1]. There are many other

© S. V. ZNAMENSKLJ, 2015
© AILAMAZYAN PROGRAM SYSTEM INSTITUTE OF RAS, 2015
© PROGRAM SYSTEMS: THEORY AND APPLICATIONS, 2015

http://psta.psiras.ru
http://www.botik.ru/PSI/
http://psta.psiras.ru

190 Sergej Znamenskij

EXTRA TETRAHEDRA
111 7 27 S
TETRAHEDRAL HEADETR

TEXTRA-FHE FDRAL HEADERA

(a) fragmented alignment

EXTRA TETRAHEDRA

e

TETRAHEDRAL HEADETR
BEXTRA-TETRAHEDRAL HEADER

(b) better alignment

FIGURE 1. Fragmented alignment wins with the score 11 to
10 of LCS length

publications about calculating the LCS length and various similarity mea-
sures, such as Levenshtein distance, which are closely related to LCS, as
explained e.g. in [2].

The well-known problem with the LCS-optimal alignment is that it
is often unsatisfactory in practical applications.

The search for the most appropriate objective function was limited to
variations of the Levenshtein’s distance with varying weight coefficients
and variously selected gap functions [3,4].

For the alignment of different source code versions, alternative heuris-
tic algorithms are often used rather than the search for an optimal solu-
tion. Somehow these algorithms manage to produce better results than
the optimal solution [5,7].

We would like to understand how and why the optimal solution ap-
pears not to be the best. The main ideas have been outlined in Rus-
sian [8].

1. Subsequence fragmentation and match scarcity

Figures 1 and 2 display typical cases of alignment that is unsuccessful
in different ways. The right objective function should be sensitive to
fragmentation, which means at least it should be able to handle properly
the situation in Figure 1. At the same time, it should be sensitive to the

http://psta.psiras.ru/read/psta2015_1_189-197.pdf#englishindex

A model and algorithm for sequence alignment 191

power of alignment, which means at least handle correctly the case in
Figure 2.

1.1. Explanation of figures

For clarity, the sequences to be aligned are represented as text strings.
The worse alignment is shown by red arrows. The better alignment is
shown by green arrows.

Underneath each picture, the same alignment is visually presented
as a result of editing. Deletions are marked with a red strikethrough,
insertions are underlined.

1.2. The flaws of existing diff utilities

Various version control systems [5] use the classic diff utility or its
alternatives to align sequences of lines in different versions of the source
code.

The LCS-based algorithms focus on avoiding scarcity of matches and
therefore ignore fragmentation, see Figure 1. They often align only the
lines which are most frequently used in source code: blank lines and
separate lines containing a single brace. When the text is regarded as
a sequence of words rather than a sequence of lines, the LCS algorithm
tends to align most frequently occurring words.

The alternative heuristic algorithms explore the following approaches
for diff-based software:

(1) selecting the longest common subsequence of unique elements based
on patience sorting [6] (e.g. Bazaar system),
(2) selecting the longest common substring (e.g. Mercurial, difflib) [7].

Figure 2 shows that in certain cases both approaches inevitably lead
to scarce alignments. Therefore, none of known approaches work properly
in both cases in the pictures.

2. Non-conflicting substrings count

A proper objective function should be sensible, in a natural and ob-
vious way, to both fragmentation and power of alignment. It has to select
the best alignment in both situations shown in figures 1 and 2.

The idea of LCS apparently originates from version control system
design. The idea addresses the following problem of change merging: if
Bill edits the source A and saves it as B and Cathy independently edits
her copy of A and saves the result as C, then how to detect from (A, B)

http://psta.psiras.ru/read/psta2015_1_189-197.pdf#englishcontents

192 Sergej Znamenskij

EFDEABCEBCAECABECBAEBACEACB

S

SN

ABDEBCDECADECBDEBADEACDEFDE

ABDEBCDECADECBDEBADEACDEFDEABEEBCAECABECBAEBACEACB

(a) scarce alignment

EFDEABCEBCAECABECBAEBACEACSB

e

DEBCD ADECBDEBADEA

EFDEABEDEBCADECABDECBADEBACDEACBDEFDE
(b) better alignment

FIGURE 2. The case of scarce alignment for alternative diff algorithms

and separately from (A, C) the minimal changes which should be merged
automatically if no conflict arises.

A merge conflict means that changes detected in (A,B) overlap with
those detected in (A,C).

The commonly adopted idea assumes that minimal changes are the
changes of minimal summary length. In practice this usually means
choosing a wrong way to minimize the probability of merge conflict. If
only a single element was changed in (A, C) then LCS is obviously the
proper solution. But since any substring potentially can be detected in
(A, C) as having being changed, it would make more sense to minimize
the overall number of potentially conflicting substrings in A.

Alternatively, we have to maximize the Number of all Common (or in
other words unchanged, or non-conflicting, or aligned) Substrings (NCS)
in A. It is an equivalent dual formulation because the total number of
all substrings in A is a constant.

It is easy to count NCS: string of length [contains exactly l(lH)
different substrings. Therefore, the cost function should be

¢:Zz(z;r1)

where summation over all the aligned substrings is assumed. For the first

http://psta.psiras.ru/read/psta2015_1_189-197.pdf#englishindex

A model and algorithm for sequence alignment 193

example (Figure 1), it is equal to = 55 non-conflicting substrings
. 12 34 1.2 , 23 23 1.2 | 12 _
against 5= + %5 + 5~ + %5 + 5~ + &5 + 5 = 16 for the fragmented
: . o 2:3 34 _
solution. Fo4rSthe second example (Figure 2), it is equal to <> 4 55 =

33 against <> = 10 for scarce alignment.

10-11
2

3. The algorithms and complexity issues

We use the following notation:
m — the length of the sequence A = {a1,...,am},
n — the length of the sequence B = {by,...,b,},
A[l..1] — the starting subsequence of A of the length i < m,
BJ[1..j] — the starting subsequence of B of the length j < n,
L(i,7) — the length of the aligned common ending without gaps for
A[l..4] and BJ[1..j],
T(i,7) — the NCS score for the optimal alignment of A[l..i] with
B[1..4],
Then we have a recursion for 7'(4, j):

Recursion —

T(i,5) = max(T(i —1,5),T(i,5 — 1))
1:=0
while Q] = bj_l
i T(,j) < T(i-1j—10)+ U
T(i,j) = T(i—1,j-1)+ "2
Il = [+1

We can write now a straightforward serial algorithm to find the best
score for NCS:

lgorithm —

T = array(0..m, 0..n)
for j=1..m

T[0,j] =0
fori=1..n
T[i,0] := 0

for j =1 .. m
T(i,3j) := max (T(i-1,3j),T(i,j-1))
for1 =1 ..
if i <1
last
if ali-11 == b[j-1]
last
if T(i,j) < TGi-1,j-1)+ 1(1+1)/2
T(i,j) := T(i-1,j-1)+ 1(1+1)/2

http://psta.psiras.ru/read/psta2015_1_189-197.pdf#englishcontents

194 Sergej Znamenskij

The alignment itself can be calculated stepwise. Starting from (m,n)
each step returns the previous aligned positions:

lgorithm —

function backstep(i, j)

if i=0o0r j=0
return NONE

if T(@-1,3) == T(@,j5)
return backstep(i-1,j)

if T(@,j-1) == T(,j)
return backstep(i,j-1)

return (i-1,j-1)

Unfortunately, such a straightforward technique produces an algo-
rithm of time and space complexity O(mn?). It is worse then O(mn)
of the LCS dynamic programming. Optimization is required for better
performance.

4. New questions to be considered

The NCS approach suggested in the paper appears to be a more rea-
sonable basis for the diff-utility than currently used algorithms. Among
the questions it raises are:

(1) So far, the approach has been theoretically grounded for the only
area of application — selecting source code changes for merging.
May NCS be a better choice for other application tasks?

(2) There are many highly optimised algorithms for LCS computation
[9-14]. Can fast algorithms for NCS be developed to make it prac-
tically acceptable?

(3) Unlike LCS, NCS might become helpful in the detecting of block
permutations and other non-monotonic sequence changes. How to
formulate the appropriate model for such tasks? Can some effective
algorithm be found to solve the corresponding optimization problem?

Acknowledgments

The author is grateful to Elena Suleymanova and Seda Egikian for
their insightful assistance with the language of this article.

http://psta.psiras.ru/read/psta2015_1_189-197.pdf#englishindex

[10]

[11]
[12]

[13]

[14]

A model and algorithm for sequence alignment 195

References

J.W. Hunt, M. D. Mcllroy. An algorithm for differential file comparison,
Bell Laboratories, 1976, 7 pp. T 189.

E.W. Myers. “An O(ND) difference algorithm and its variations”,
Algorithmica, 1 (1986), pp. 251-266 1 190.

W.R. Pearson. “Comparison of methods for searching protein sequence
databases”, Protein Science, 4:6 (1995), pp. 1145-1160 1 190.

T.F. Smith, M.S. Waterman, W.M. Fitch. “Comparative biosequence
metrics”, Journal of Molecular Evolution, 18:1 (1981), pp. 3846 1 190.
P. Baudis. Current concepts in wversion control systems, 2014, arXiv:
1405.3496 1 190, 191.

D. Aldous, P. Diaconis. “Longest Increasing Subsequences: From Patience
Sorting to the Baik-Dieft-Johansson Theorem”, Bull. Amer. Math. Soc.,
36:4 (1999), pp. 413-432 | 191.

M. Mackall, “Towards a Better SCM: Revlog and Mercurial”, Proceedings
of Linuz Symposium. V. 2 (July 19-22, 2006, Ottawa, Ontario,
Canada), 2006, pp. 83-90, URL http://mercurial.selenic.com/wiki/
Presentations?action=AttachFile&do=get&target=ols-mercurial-paper.pdf 7
190, 191.

S. V. Znamenskij. “Modeling of the optimal sequence alignment problem”,
Program systems: theory and applications, 5:4(22) (2014), pp. 257-267
(in Russian) 1 190.

W.J. Masek, M. S. Paterson. “A faster algorithm computing string edit
distances”, Journal of Computer and System Sciences, 20:1 (1980),
pp. 18-31 7| 194.

J.W. Hunt, Th.G. Szymanski. “Computing Longest Common
Subsequences”, Communications of the ACM, 20:5 (1977), pp. 350-353 *
194.

E. Ukkonen. “Algorithms for approximate string matching”, Information
and Control, 64:1-3 (1985), pp. 100-118 1 194.

E. W. Myers, W. Miller. “Optimal alignments in linear space”, Computer
applications in the biosciences, 4:1 (1988), pp. 11-17 | 194.

A. Apostolico, “String editing and longest common subsequences”,
Handbook of Formal Languages, Springer, Berlin—Heidelberg, 1997,
pp. 361-398 1 194.

A. G. Panin. “One algorithm to solve the longest common subsequence
problem”, Vector nauki TGU, 2010, no.4(14), pp. 19-22 (in Russian) 7
194.

Submitted by dr. Fvgeny Kurshev

http://psta.psiras.ru/read/psta2015_1_189-197.pdf#englishcontents
http://arxiv.org/abs/1405.3496
http://mercurial.selenic.com/wiki/Presentations?action=AttachFile&do=get&target=ols-mercurial-paper.pdf
http://mercurial.selenic.com/wiki/Presentations?action=AttachFile&do=get&target=ols-mercurial-paper.pdf

196 Sergej Znamenskij

About the author:

Sergej Vital’evich Znamenskij
Chair of Mathematics in the Ailamazyan Pereslavl University,
head of laboratory in Ailamazyan Program Systems Institute
of RAS. Research interests migrate from research in Functional
Analysis, Complex Analysis and finite-dimensional Projective
Geometry (analogues of Convexity) to the foundations of Col-
laborative Software Development.

e-mail: svz@latex.pereslavl.ru

Sample citation of this publication

S. V. Znamenskij. “A model and algorithm for sequence alignment”,
Program systems: theory and applications, 2015, 6:1(24), pp. 189-197.

URL http://psta.psiras.ru/read/psta2015_1_189-197.pdf

http://psta.psiras.ru/read/psta2015_1_189-197.pdf#russianindex
mailto:svz@latex.pereslavl.ru
http://psta.psiras.ru
http://psta.psiras.ru/read/psta2015_1_189-197.pdf

A model and algorithm for sequence alignment 197

VK 004.416

C. B. Bnamenckuii. Modead U ar20pumm 8vipasHUBAHUSA NOCAEIOBAMEALHOCTEN.

AHHOTALMA. 3ajada BbIpaBHUBAHUs (COMOCTABJIEHNS) ABYX TEKCTOB C IEJIBbIO BbIJEIe-
HUs O0IUX U pasindaiomuxcs dparMeHTOB O6bIYHO UMEET He eJUHCTBEHHOE PEeIICHUE.
Bpruuciienue jydiero cornocraBeHUsI KAHOHUYECKN 6a3upyeTcsi Ha IIOUCKEe JaurHell-
wetll obweli nodnocaedosamenvrocmu cosnadenutt (LCS) M IMMPOKO HMCIOIB3YeTCst
B pas3HbIX nejsax. OQHakKo MHOIME M3 COBPEMEHHBIX CHCTEM YIPAaBJIEHHSI BEPCUSIMU
PEJINOYUTAIOT AJbTEPHATUBHBIC 9BPUCTUYECKUE AJIOPUTMbI, paboTalonue He TOJIbKO
6bIcTpee, HO OOBIYHO C JIydIHIuM 4deM rnouck LCS pesysbrarom.

B CcTaThe IIOKa3aHbl IIPDUHIUIINAJIBHBIE HEJOCTATKH HN3BECTHBIX aJITOPUTMOB BBbI-
PaBHUBAHUS IIOCJIEIOBATEILHOCTEMN:

(1) Jarke Korjia JUIMHHeIas1 ob1iasi mojgcrpoka nMeer 6sin3Kyo K LCS qyuny, LCS moxker

COCTOSITH U3 OIPOMHOI0O YHCJIa KOPOTKHUX MaJIONH(OPMATHUBHBIX (pparMeHTOB;
(2) U3BECTHbIE aJIbT€pHaTUBHbIE aJI'OPUTMbl HAYUHAIOT C BbLIAEJIEHUA Hal/l60]lee HNH-

dopmaTuBHOro 06111ET0 DparmenTa, YTO HOPOH UCKIIOYIAET IPOU3BOJILHO JJIMHHY IO

[10CJIEOBATEIBHOCTD 001X hParMeHTOB OJIN3KOro KadecTBa.

A6cTpakTHas 3a/a4a BbIpABHUBAHUS IIOCJIEI0BATEILHOCTEH pACCMOTPEHA KAK MO-
JleJ1b BBIJEJICHUS] ©3MEHEHUH B COBMECTHO PEIAKTUPYEMOM TEKCTE C [[€JIbI0 MUHUMU3AIUKA
BeposITHOCTU KOH(bINKTa (HaJIOXKEHUs) 1Ipu causHuu uaMmenenuil. Llenesass dbynxkuus
BBOJIUTCSI KaK COBOKYIIHOE KOJIMYECTBO BCEX IIOJCTPOK, COJEPIKAIIMUXCS B HE H3Me-
HUBIIUXCA MOACTPOKax. Takasi ONTHMHU3alUsi CBOOOJHA OT YHOMSIHYTBIX HEJIOCTATKOB.
IIpenoxken anropur™ Kybudeckoil cioxkuoctu. (Amnean.)

Karouesvie cr06a u pasvl: cxopcTBo CTPOK, BbIpaBHNBaHNE NOC/ef0BaTeNbHOCTeN, paccTosHNe
penaktuposanusi, diff, LCS, meTpuka JleBeHwTeiliHa, paspaboTka MO, HenpepbiBHas uHTerpauus.

Ilpumep ccourku ma amy nyoasuKrayuIo:

C. B. Buamenckuit «Mopeap u aJropuT™M BbIPpABHUBAHUSI TOCJIEI0BATE b~
HoCcTeit», [Ipoepammmvie cucmemov: meopua u npuaodscernus, 2015, 6:1(24),
c. 189-197. (Anean.)

URL http://psta.psiras.ru/read/psta2015_1_189-197.pdf

Pa6ora BeImosHsIIACH TPU PUHAHCOBOH MOJIEePKKE TOCYIapCTBa YaCTUYHO B JINILE
Muno6puayku Poccun B pamkax npoekra RFMEFI60414X0138.
© C. B. 3HAMEHCKHMI, 2015
© VIHCTUTYT NPOTPAMMHBEIX CUCTEM MMEHM A. K. Alnamazsana PAH, 2015
© TIPOrPAMMHBIE CUCTEMBI: TEOPUSA U MPUJIOXKEHUA, 2015

http://psta.psiras.ru/read/psta2015_1_189-197.pdf#russiancontents
http://psta.psiras.ru
http://psta.psiras.ru/read/psta2015_1_189-197.pdf
http://www.botik.ru/PSI/
http://psta.psiras.ru

	Introduction
	1. Subsequence fragmentation and match scarcity
	2. Non-conflicting substrings count
	3. The algorithms and complexity issues
	4. New questions to be considered
	Acknowledgments
	References

