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Abstract. Approximate string matching is a fundamental and challeng-
ing problem in computer science, for which a fast algorithm is highly
demanded in many applications including text processing and DNA se-
quence analysis. In this paper, we present a fast algorithm for approxi-
mate string matching, called FAAST. It aims at solving a popular variant
of the approximate string matching problem, the k-mismatch problem,
whose objective is to find all occurrences of a short pattern in a long text
string with at most k mismatches. FAAST generalizes the well-known
Tarhio-Ukkonen algorithm by requiring two or more matches when cal-
culating shift distances, which makes the approximate string matching
process significantly faster than the Tarhio-Ukkonen algorithm. Theoret-
ically, we prove that FAAST on average skips more characters than the
Tarhio-Ukkonen algorithm in a single shift, and makes fewer character
comparisons in an entire matching process. Experiments on both simu-
lated data sets and real gene sequences also demonstrate that FAAST
runs several times faster than the Tarhio-Ukkonen algorithm in all the
cases that we tested.

1 Introduction

Approximate string matching is a fundamental and challenging problem in com-
puter science. It is an operation that usually costs a large amount of compu-
tational resources. Therefore, a fast algorithm for approximate string matching
is highly demanded in many applications including text processing and gene
sequence analysis. There are two important variants of the approximate string
matching problem: the k-mismatch problem and the k-difference problem. In
both, we are given a short pattern string P = p1p2 · · · pm and a long text string
T = t1t2 · · · tn over an alphabet Σ, and an integer k. The k-mismatch problem is
to find all occurrences of the pattern P in the text T with at most k mismatches
(i.e., substitutions) allowed, whereas the k-difference problem finds all substrings
of T with edit distance at most k to P . We are interested in the former problem
in this paper.

There are many various algorithms dealing with the k-mismatch problem
in the string matching literature. In 1992, Baeza-Yates and Gonnet [1] first
proposed the Shift-Add algorithm for exact string matching, and then naturally
generalized it to handle mismatches. El-Mabrouk and Crochemore [5] tackled

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 79–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



80 Zheng Liu et al.

the k-mismatch problem by incorporating the Boyer-Moore technique [3] into the
Shift-Add algorithm. Two algorithms that are the most relevant to ours are those
proposed by Tarhio and Ukkonen [9] and by Baeza-Yates and Gonnet [2]. Both
can be considered as generalizations of the Boyer-Moore algorithm [3] for exact
string matching, but they employ different methods to calculate shift distances.
A basic principle of these algorithms is to skip as many characters as possible
while not missing any pattern occurrence. The Baeza-Yates-Gonnet algorithm
takes advantage of the good suffix rule. If the shifted pattern matches the pattern
of the previous alignment with at most 2k mismatches, further comparisons are
needed to check a possible match at the shifted position. Therefore, the shift
distance is the minimum distance (> 0) so that the shifted pattern matches
this pattern at the previous alignment with at most 2k mismatches. The Tarhio-
Ukkonen algorithm instead takes advantage of the bad character rule. When more
than k mismatches occur, the last k + 1 characters of the text in the current
alignment need have at least one match after the pattern is shifted to the right.
The shift distance is thus calculated as the minimum distance (> 0) so that the
shifted pattern has at least one match to the last k + 1 characters of the text in
the previous alignment.

In this paper, we present a fast approximate string matching algorithm, called
FAAST, which further generalizes the Tarhio-Ukkonen algorithm. Instead of
requiring at least one match in the last k + 1 characters of the text in the
previous alignment, the new algorithm requires at least x matches in the last
k + x characters when calculating shift distances, where x is a small integer
value (typically 2 or 3 in our experiments). Apparently, the new algorithm will
be the Tarhio-Ukkonen algorithm if we define x = 1. Although it seems a trivial
modification, FAAST could run significantly faster than the Tarhio-Ukkonen
algorithm, as demonstrated in our experiments.

In the ongoing Oligonucleotide Fingerprinting Ribosomal Genes (OFRG)
project [10], we have applied the FAAST algorithm to the gene sequence acqui-
sition problem. The problem of gene sequence acquisition is, given a collection
of gene DNA sequences and a primer, how to extract all the gene sequences
that contain the primer sequence (allowing a few mismatches). From the com-
putational point of view, it is equivalent to the k-mismatch problem. In some
cases, however, there are degenerate characters (i.e., representing more than one
character in an alphabet) in the primer sequence. This problem has traditionally
been tackled by constructing a nondeterministic finite automata (NFA) [7, 8],
which unfortunately requires a long preprocessing time and a large amount of
memory space. In this paper, we will propose a simple approach to deal with
degenerate characters based on the FAAST algorithm.

The rest of the paper is organized as follows. The next section reviews the
Tarhio-Ukkonen algorithm. In Section 3, we focus on discussing our new al-
gorithm FAAST. Experiments on simulated data and real gene sequences are
presented in Section 4, and some concluding remarks are given in Section 5.
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2 The Tarhio-Ukkonen Algorithm

Based on the Boyer-Moore-Horspool (BMH) algorithm [6], the Tarhio-Ukkonen
algorithm [9] generalizes both the right-to-left scanning of the pattern and the
computation of shift distances to allow string matching with k-mismatches. The
BMH algorithm always tries to match the text character above the rightmost
character of the pattern no matter where a mismatch occurs during an alignment.
Similarly, when there are more than k mismatches occur, the Tarhio-Ukkonen
algorithm shifts the pattern to a position such that the rightmost k + 1 text
characters in the previous alignment have at least one match. The shift distance
is defined as the minimum one that satisfies the above condition.

Assume a substring tj−k...tj of the text is aligned with the rightmost k + 1
characters pm−k...pm of P , and a shift is needed. For each i ∈ [m − k, m] and
each a ∈ Σ, we denote by dk[i, a] the minimum distance between pl and pi such
that pl = a and l < i. Precisely, for a given i, dk[i, a] is initially set as m− k and
then updated if a smaller distance value is found, that is

dk[i, a] = min{{m− k} ∪ {s|pi−s = a, s ∈ [1, i − 1], a ∈ Σ}} (1)

Similarly, denote by d[tj−k...tj ] the minimum distance to shift the pattern to a
position so that there is at least one match in the text substring above pm−k...pm.
Then, we have

dk[tj−k, tj−k+1, ..., tj ] = min{dk[m − i, tj−i], i ∈ [0, k]} (2)

The Tarhio-Ukkonen algorithm can solve the k-mismatch problem in ex-
pected time O(kn(1/m−k+k/c)), where c is the alphabet size [9]. In the follow-
ing, we give a simple example to illustrate, how the Tarhio-Ukkonen works in an
approximate string matching process. The example uses pattern P = AAGTCG-
TAAC and text T = AACTGTTAACTTGCGACTAG, with k = 2. The Tarhio-
Ukkonen algorithm constructs a shift table of dk[i, a] for P by (1), as shown in
Table 1. The first two shifts in the approximate matching process is detailed in
Table 2.

3 Our Algorithm

FAAST – a fast algorithm for approximate string match – can find all occurrences
of a pattern P = p1...pm in a text string T = t1...tn with up to k mismatches.
In this section, we first describe the idea and implementation of the FAAST

Table 1. A shift table of dk[i, a] (k = 2, m = 10, n = 20)

position A C G T

8 6 3 2 1

9 1 4 3 2

10 1 5 4 3
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Table 2. An example of running Tarhio-Ukkonen algorithm(k = 2, m = 10, n = 20)

Text: AACTGTTAACTTGCGACTAG
Pattern: AAGTCGTAAC (Shift 1)

AAGTCGTAAC (Shift 2)
AAGTCGTAAC

Shift 1: The 3rd mismatch occurs at the 3rd position of the pattern string. The
shift distance is calculated based on the last 3 characters of the aligned
text, i.e., AAC. dk[AAC] = min{dk[8, A], dk[9, A], dk[10, C]} = 1

Shift 2: The 3rd mismatch occurs at the 7th position of the pattern string. The
shift distance is calculated based on the last 3 characters of the aligned
text, i.e., ACT. dk[ACT ] = min{dk[8, A], dk[9, C], dk[10, T ]} = 3

algorithm. Then, its correctness and efficiency are proved and analyzed. Finally,
a special consideration is taken in FAAST to enable it to work for patterns with
degenerate characters.

3.1 Algorithm Description

Note that, in the Tarhio-Ukkonen algorithm, the shift distance is calculated as
the minimum one such that there exists at least one match when aligning the
rightmost k + 1 text characters in the current alignment with the pattern after
a shift. In order to achieve faster matching process, FAAST instead calculates
the shift distance as the minimum one such that the rightmost k + x characters
of the current aligned text will have at least x matches after the shift. Here, x
generally takes a small integer value, e.g., two or three. An example will be given
at the end of this subsection to demonstrate that FAAST generally skips more
characters than the Tarhio-Ukkonen algorithm in a shift.

FAAST consists of a preprocessing step and a matching step, as the Tarhio-
Ukkonen does. In the preprocessing step, FAAST will calculate the shift distances
of all possible strings of length k + x in the alphabet Σ and tabulate them in a
table dkx, as follows. First, given a pattern string P = p1p2 · · · pm and a position
i (i ∈ [m − k − x + 1, m]), we denote by Ukx[i, a] a set of distances between pi

and all occurrences of the character a to the left of pi in P . That is,

Ukx[i, a] = {s|pi−s = a, s ∈ [1, i − 1], a ∈ Σ} (3)

Then, given a string tj−k−x+1 · · · tj of length k + x and a shift distance l (l ∈
[1, m − k]), we define a set as

Vkx[tj−k−x+1 · · · tj , l] = {i|l ∈ Ukx[m − i, tj−i], i ∈ [0, k + x − 1]} (4)

In Vkx[tj−k−x+1 · · · tj , l], we store the position offsets (relative to tj) of all char-
acters in tj−k−x+1 · · · tj that will be matched after shifting the pattern to the
right by l characters. For example, if only tj and tj−2 are matched after shifting
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Algorithm 1: Computation of table dkx

1. for a in Σ
2. for i := m downto m − k − x + 1
3. Ukx[i, a] := {m − k}; {Set initialization}
4. for i := m downto m − k − x + 1
5. for s := i − 1 downto 1
6. if i − s < m − k then
7. Ukx[i, ps] := Ukx[i, ps] ∪ {i − s}; {Set union}
8. for each string tj−k−x+1 · · · tj in Σ
9. for l := 1 to m − k

10. |Vkx[tj−k−x+1 · · · tj , l]| := 0; {Set size initialization}
11. for l := 1 to m − k
12. for i := m downto m − k − x + 1
13. if l ∈ Ukx[i, tj−m+i] then
14. |Vkx[tj−k−x+1 · · · tj , l]| := |Vkx[tj−k−x+1 · · · tj , l]| + 1;
15. if |Vkx[tj−k−x+1 · · · tj , l]| ≥ min[x, m − k − l]
16. dkx[tj−k−x+1 · · · tj ] := l;
17. break; {Go to step 8}

the pattern to the right by l characters, the value of Vkx[tj−k−x+1 · · · tj , l] would
be {0, 2}. Finally, the shift distance dkx[tj−k−x+1 · · · tj ] can be calculated using
the following formula, where | · | is the size of a set:

dkx[tj−k−x+1 · · · tj ]

= min{l||Vkx[tj−k−x+1 · · · tj , l]| ≥ min{x, m− k − l}, l ∈ [1, m − k]} (5)

This formula guarantees that the minimum l distance is made such that either
the current aligned rightmost k+x text characters have at least x matches in the
next alignment when all these text characters are aligned with the pattern after
the shift, or the current aligned rightmost k + x text characters have at least
m − l − k (< x) matches in the next alignment when only m − l (< k + x) text
characters are aligned with the pattern after the shift. Both cases requires no
more than k mismatches in the new alignment between the k+x text characters
and the shifted pattern.

The details of the preprocessing algorithm are provided in pseudocode as
Algorithm 1: Step 1-7 describes the construction of set Ukx[i, a]. The details of
the size calculation for set Vkx[tj−k−x+1 · · · tj , l] is covered in step 9-14, and the
rest part of Algorithm 1 fills out the table dkx[tj−k−x+1 · · · tj ]. Note that the
calculation of dkx uses a pattern as input, but does not depend on any text.

In the matching step, we compare a pattern P with a text string T . We
denote by h the index of a character that is currently scanned in T and by i the
index of the corresponding character in P . tj−k−x+1...tj refers to the text string
that is aligned above pm−k−x+1...pm. The matching process remains similar to
that in the Tarhio-Ukkonen algorithm except that, when there are more than k
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mismatches occur, we look up a different table for shift distances. The details of
this step are provided in pseudocode as Algorithm 2:

Algorithm 2: Approximate string matching

1. j := m;
2. while j ≤ n do begin
3. h := j; i := m; e := 0; {e: the number of mismatches}
4. while i > 0 and e ≤ k do begin
8. if th �= pi then
9. e := e + 1;
9. i := i − 1; h := h − 1;

10. end of while
11. if e ≤ k then
12. record the occurrence position j;
13. j := j + dkx[tj−k−x+1 · · · tj ];
14. end of while.

An example is given to illustrate how a shift table dkx is calculated and
how an approximate string matching proceeds. We use the same pattern and
text as those used in the previous section for the Tarhio-Ukkonen algorithm.
The set of shift distances, i.e., Ukx, is listed in Table 3 and a part of the table
Vkx[tj−k−x+1 · · · tj , l] is listed in Table 4. The first two shifts in the approximate
matching process is detailed in Table 5. As we have seen earlier, distances of
the first two shifts made by the Tarhio-Ukkonen algorithm are 1 and 3, whereas
they are 7 and 7 by FAAST, respectively. Therefore, our algorithm FAAST can
generally skip many more characters than the Tarhio-Ukkonen algorithm in a
single shift. As a result, FAAST could significantly speed up the approximate
string matching process, as proved theoretically in the next subsection.

Table 3. A set of shift distances of Ukx (k = 2, x = 3, m = 10, n = 20)

position A C G T

6 4,5 1 3 2

7 5,6 2 1,4 3

8 6,7 3 2,5 1,4

9 1,7,8 4 3,6 2,5

10 1,2,8,9 5 4,7 3,6

3.2 Algorithm Analysis

In this section, we discuss in detail the correctness of FAAST, its time and space
complexity, the average shift distance, and the total character comparisons.

Correctness. We establish the correctness of FAAST by the following theorem.
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Table 4. An example of Vkx[tj−k−x+1 · · · tj , l] (k = 2, x = 3, m = 10, n = 20, l = [1..8])

l 1 2 3 4 5 6 7 8

AAAAA 0,1 0 4 3,4 2,3 1,2 0,1

...

GCGAC 1 2,3 4 0,2 1 1

...

GTCGT 0,1,2,3,4 0,1

...

TTAAC 0 4 3 0 2 1,2 1

...

TTTTT 2 1,4 0,3 2 1 0

Table 5. An example of running FAAST(k = 2, x = 3, m = 10, n = 20)

Text: AACTGTTAACTTGCGACTAG
Pattern: AAGTCGTAAC (Shift 1)

AAGTCGTAAC (Shift 2)
AAGTCGTAAC

Shift 1: The 3rd mismatch occurs at the 3rd position of the pattern string.
The shift distance is calculated based on the last 5 characters of
the aligned text, i.e., TTAAC. dkx[TTAAC] = 7

Shift 2: The 3rd mismatch occurs at the 5th position of the pattern string.
The shift distance is calculated based on the last 5 characters of
the aligned text, i.e., GCGAC. dkx[GCGAC] = 7

Theorem 1. Given any alignment between P and tj−m+1...tj in T , P can be
shifted by dkx[tj−k−x+1 · · · tj ] characters to the right without passing by any ap-
proximate occurrences of P in T .

Proof. Denote by pi−k−x+1...pi the substring of P that is aligned below tj−k−x+1

. . . tj after shifting dkx[tj−k−x+1 · · · tj ] characters to the right. Note that P may
be aligned with only a part of tj−k−x+1...tj , and we omit such cases in our proof
just for simplicity. Assume that an occurrence of P is passed by during the shift.
When aligning this occurrence with P , we have a substring of P , denoted by
pi′−k−x+1...pi′ , that is aligned below tj−k−x+1...tj , such that there are at most
k mismatches in the alignment of pi′−k−x+1...pi′ with tj−k−x+1...tj , and i < i

′
.

These lead to a contradiction to the definition of dkx[tj−k−x+1 · · · tj ], and the
theorem thus follows. ��

Time and space complexity. In the preprocessing part, calculation of Ukx

takes time O(m(k + x)) and space O((m − k)(k + x)c), where c is the alphabet
size of Σ, which is 4 for DNA sequences. Meanwhile, it takes time O(ck+x(m −
k)(k + x)) and space O(ck+x) to tabulate dkx. Therefore, the total time spent
on preprocessing is O((k +x)((m−k)ck+x +m)) and space is O(ck+x + c(m−k)
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(k +x))). In the matching part, it needs O(mn) time in the worst case. Instead,
we are more interested in its performance in the average case.

Average shift distance. The average shift distance refers to the number of
characters in the text that the pattern is expected to skip in one shift. Intuitively,
the larger the average shift distance is, the faster the approximate matching, and
thus the better the algorithm performs.

We use the random string assumption in our analysis. It assumes that each
character in P and T is independently chosen at random from the alphabet set
Σ. Also, we assume that the probability that two characters give rise to a match
is p. Under this assumption, we have

Lemma 1. The probability Pkx for the last k + x characters of P to have at
least x matches in an alignment with T is Pkx = 1−∑x−1

i=0 Ci
k+x(1− p)k+x−ipi.

Proof. Note that the probability, denoted as Pkx,i, of k + x characters having
exactly i matches in an alignment forms a binomial distribution, i.e.,

Pkx,i = Ci
k+x(1 − p)k+x−ipi (6)

By summing up Pk+x,i with i from 0 to x − 1, we obtain

Pkx = 1 −
x−1∑

i=0

Ci
k+x(1 − p)k+x−ipi (7)

��
We simplify the calculation of the average shift distance, without taking

into account the effect of the limit length of a pattern. Therefore, the shift
distance can take a value up to the infinity in the calculation, which provides an
approximation to the real average shift distance.

Theorem 2. The average shift distance Ed
kx of the algorithm is Ed

kx ≈ 1/Pkx.

Proof. We denote by Ps,kx the probability that the shift distance s is taken.
Then,

Ps,kx = (1 − Pkx)s−1Pkx, s > 0 (8)

Therefore, we have

Ed
kx ≈

∞∑

s=1

sPs,kx =
∞∑

s=1

s(1 − Pkx)s−1Pkx = 1/Pkx (9)

��
In the following, k is set to be 3, as used in our gene sequence analysis

application [10]. We plot the curves of the average shift distances against the
character matching probability p, in Fig. 1(a). Different values of x are employed,
including one, which is used in the Tarhio-Ukkonen algorithm. As shown in the
figure, the average shift distances become much larger as we increase x from 1 to
3, for small values of p. Therefore, FAAST can provide a very fast approximate
matching process, in particular for gene DNA sequences where p is about 0.25
(the alphabet size is 4).
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Fig. 1. (a) Comparison of average shift distances under different numbers of matches
in the last k + x characters, where k = 3. (b) The expected total number of character
comparisons under different numbers of matches in the last k + x characters, where
k = 3

Total character comparisons. The total number of character comparisons
made in an entire matching process is proportional to the running time of the
program. Therefore, it is a very useful criterion to measure the performance of
a string matching algorithm. Here, we again use the random string assumption
and ignore the effect of the limit length of a pattern, as discussed above, to
simplify our calculations.

Lemma 2. The expected number Ec
kx of comparisons made between two succes-

sive shifts, is Ec
kx ≈ (k + x)/(1 − p).

Proof. Note that the matching process between two successive shifts does not ter-
minate until we find the (k+1)th mismatch in an alignment. As discussed in [9],
the distribution of Ec

kx − (k + x) converges to a negative binomial distribution
when the pattern size increases to infinity. The expected value of Ec

kx − (k + x)
under this distribution is (k+x)p/(1−p). That is, Ec

kx−(k+x) ≈ (k+x)p/(1−p),
and thus the lemma follows. ��

By the above lemma and Theorem 3, we can easily obtain

Theorem 3. The expected total number TEc
kx of character comparisons made

for a text of length n is TEc
kx ≈ nPkx(k + x)/(1 − p).

Fig. 1(b) shows the expected total number of comparisons TEc
kx made under

different values of x and p. We can see that, if more matches are required in the
calculation of shift distances and if the character matching probability is p < 0.5,
a large amount of comparisons could be saved in a string matching process. For
example, given a gene DNA sequence of length n and p = 0.25, a total of 2.29n
character comparisons will be saved as x increases from 1 to 3.

3.3 Degenerate Characters

In many applications, we need to find in a text all occurrences of a pattern
string that contains degenerate characters. For example, in the gene sequence
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acquisition problem, degeneracy in a DNA sequence refers to the phenomenon
that one character may represent several nucleotide bases. In the official IUPAC-
IUB single-letter base codes [4], R stands for G/A, Y for T/C, and H for A/C/T,
etc. A naive method treats the pattern string with degeneracy as a set of multiple
patterns, which makes string matching several times slower.

Degeneracy brings up two new issues for the FAAST algorithm. One is the
new definition of match, and the other occurs in the calculation of shift dis-
tances. We consider two degenerate characters as a match if they share a com-
mon non-degenerate character, e.g., R and H is a match when aligning them.
When calculating shift distances, FAAST treats a degenerate character as any
of its corresponding non-degenerate characters, and takes the minimum shift
distance given by these non-degenerate characters as the shift distance of the
degenerate character. The procedure in the matching step of FAAST remains
unchanged. We notice that, in this way, FAAST will not miss any occurrence
of pattern with at most k mismatches. Experiments on strings with degenerate
characters are presented in the next section.

4 Experimental Results

We have tested FAAST on both simulated data sets and real DNA gene sequence
data on a PC with Intel Pentium CPU (2.8GHz and 1G memory), and compared
its performance with that of the Tarhio-Ukkonen algorithm [9].

To produce simulated data sets, we used a random generator to select four
DNA bases {A, C, G, T} randomly with equal probabilities. Text sequences we
tested are 2M (i.e., two millions) bases long, and a pattern with 39 bases. We
listed in Table 6 the average shift distances, total numbers of character com-
parisons, preprocessing time, and the total running time. The results show a
clear tendency that, as x increases from one to seven, FAAST can shift by larger
distances on average and make fewer comparisons. Though the preprocessing
time is increasing, the total running time is consistently decreasing. For exam-
ple, FAAST needs only 11.2 seconds with x = 5, whereas the Tarhio-Ukkonen
algorithm (i.e., x = 1) takes 210.2 seconds, which is about 18 times slower.

Table 6. The average shift distances, total character comparisons, preprocessing time,
and total running time of FAAST on simulated DNA sequences of 2M bases. The
pattern size is 39, and k = 3

x 1 2 3 4 5 6 7

Average shift distance 1.41 2.76 5.59 16.38 31.31 37.77 38.87

Total Comparisons(×2M) 6.70 3.68 1.86 0.65 0.34 0.28 0.27

Total running time(sec) 210.2 114.4 58.1 20.6 11.2 10.8 16.7

Preprocessing time(sec) 0.01 0.01 0.03 0.08 0.36 1.58 6.90

To test the performance of our algorithm on real gene DNA sequence data,
we downloaded 18,491 18S ribosomal fungal DNA sequences and 81,343 16S ri-
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bosomal bacterial DNA sequences from the NCBI DNA sequence database. We
randomly picked 150 sequences to form a test set and compared the preprocess-
ing time, string matching time and total running time of the Tarhio-Ukkonen
algorithm with our generalized algorithm FAAST. This was repeated 5 times
and the average result was reported. The bacterial sequence set includes totally
170K bases and the fungal sequence set includes 179K bases. The detailed results
are shown in Table 7 and Table 8 for bacterial sequences and fungal sequences,
respectively. For 150 random bacterial sequences, if we choose x as 5, our algo-
rithm needs a total running time of 2.63 seconds whereas the Tarhio-Ukkonen
algorithm (i.e., x = 1) needs 18.78 seconds. Similarly, for 150 random fungal
sequences, our algorithm needs only 5.62 seconds but the Tarhio-Ukkonen al-
gorithm needs 16.45 seconds. Therefore, our algorithm with x = 5 runs about
7 times and 3 times faster than the Tarhio-Ukkonen algorithm on the bacterial
and fungal sequences that we tested, respectively.

Table 7. The total running time, preprocessing time, and string matching time of
FAAST on 150 bacterial DNA sequences with different x values and k = 3. The pattern
used is AGRRTTTGATYHTGGYTCAG

x 1 2 3 4 5 6 7

Total running time(sec) 18.78 13.05 7.74 3.84 2.63 3.21 8.55

Preprocessing time(sec) 0.01 0.01 0.02 0.09 0.35 1.57 6.96

String matching time(sec) 18.77 13.04 7.72 3.75 2.28 1.64 1.59

Table 8. The total running time, preprocessing time, and string matching time of
FAAST on 150 fungal DNA sequences with different x values and k = 3. The pattern
used is TTAGCATGGAATAATRRAATAGGA

x 1 2 3 4 5 6 7

Running time(sec) 16.45 11.43 9.24 6.78 5.62 8.24 26.48

Preprocessing time(sec) 0.02 0.03 0.08 0.32 1.34 5.77 23.86

String matching time(sec) 16.43 11.40 9.16 6.46 4.28 2.47 2.62

5 Conclusion

FAAST has been embedded in a web-based system to enable biologists to build
their own gene sequence databases. The whole system has been successfully used
in the OFRG project [10]. The algorithm is designed especially for gene DNA
sequences with an alphabet of size 4, to solve the gene sequence acquisition
problem. As the alphabet size and the x value get large, we notice that the time
and memory required for the shift distance calculation increase quickly, which in
turn deteriorates the performance of FAAST. We plan to look into this problem
in the future.
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