
An LCS-based 2D Fragmented Image Reassembly Algorithm

Houman Kamran1, Kang Zhang1, Maoqing Li2, and Xin Li1*

1 School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, USA
2 Department of Automation, Xiamen University, Xiamen, China

1 Email: {hkamra1|zhangk4|xinli}@lsu.edu, 2 Email: mqli@xmu.edu.cn

Abstract—We propose an algorithm for 2D image fragment
reassembly problem based on solving a variation of Longest
Common Subsequence (LCS) problem. Our processing pipeline
has three steps. First, the boundary of each fragment is extracted
automatically from its scanned image, with paper tissue and
scanning artifacts removed. Second, inter-fragment boundary
matching is computed between each pair of fragments by solving
a Longest Common Subsequence problem. The goal is to identify
the best possible adjacency relationship among image fragment
pairs. Finally, a multi-piece alignment is used to prune incorrect
matches and globally compose the final image. We perform
experiments on various image fragment datasets and compare our
results with existing methods to show the improved efficiency and
robustness with respect to images of different resolutions and
different levels of noise on boundary pixels.

Keywords— Fragmented image reassembly; longest common
subsequence; curve matching.

I. INTRODUCTION

Fragmented Image reassembly is to reconstruct a 2D image
back to its original state, after it has been torn or damaged for
various reasons. Being able to accomplish such a task with
computers will save us the human labor and time. Analyses
show [1] that computers will be able to carry out such a task
much faster than humans can do. There are many different types
of real world applications that can benefit from solving such a
problem. For example, forensic experts can save substantial
amount of time and energy if the task of reassembling pieces of
an evidence, torn apart as an attempt to destroy it, can be handled
automatically. Another application is for archeologists trying to
reassemble pieces of artifacts they find through excavation,
especially when the pieces are almost flat and smooth, and can
be approximated as 2D image fragments. The reassembly
process can be faster and more accurate if the task is done
automatically by a program compared to when it is done
manually.

Existing automatic image reassembly algorithms can be
generally categorized into two main groups: color-based
approaches and geometry-based approaches. In color-based
approaches, the color information of the image fragments are
used to guide the reassembly process. This approach can be
sensitive to noisy pixel values and also may fail if there exist a
few image fragments with similar texture close to the border
areas. Geometry-based approaches, on the other hand, use the
shapes of image fragments and their borders to find the proper
matches between adjacent pieces. These methods could align the
fragments more effectively when their contour shapes are
irregular. However, reliable partial geometric matching [17, 18]
itself could be challenging. Lack of taking advantage of the

fragment’s color information can be a drawback of this type of
approaches.

There is another way of categorizing automatic image
reassembly algorithms. Some algorithms operate on the pixel
level to guide the reassembly process. These methods are also
sensitive to noise. Others reassemble fragments by treating them
as 2D geometric regions. Therefore, the time complexity will
reduce for the latter approaches compared to the other category.
Our idea is to combine the positive aspects of different
approaches mentioned above. We propose a three step
composition algorithm that takes advantage of both color and
geometry information of curve segments on the border of each
image fragment, as illustrated in Fig. 1.

A. Artifacts Removal

Each image fragment will be scanned and digitized before it
is used as an input. The scanning process often creates
undesirable artifacts, especially on and around the border area.
A preprocessing step is introduced that ensures a proper
execution of all next steps.

B. Pairwise matching

In an effort to find potential matching between each pair of
image fragments, we formulate the pairwise matching as solving
a variant of Longest Common Subsequence (LCS) problem.
Compared with existing pairwise matching techniques, this
algorithm improves the time complexity as well as robustness in
handling images with possibly noisy values on borders.

C. Global matching

The pairwise matching step of the algorithm runs for each
pair of image fragments without global understanding of the
layout of the other fragmented pieces. Therefore, alignments
suggested by pairwise matching step can be incorrect. We keep
many potential alignments between each pair of fragments.
Then, a global matching is adopted to select correct alignments
offered by the previous step, by optimizing the mutual
consistency of alignments of multiple pieces together.

The Main contributions of this paper are as follows:

We develop a simple but necessary artifact removal
preprocessing step to eliminate noisy boundary tissues.

Effective partial matching is essential to the process. We
develop a novel polygonization algorithm to model
image fragment's boundary shape feature, and a pairwise
matching algorithm based on a revised LCS algorithm.
This algorithm effectively utilizes both geometric and
color characteristics of image fragments.

978-1-5386-5495-8/18/$31.00 ©2018 IEEE

The 13th International Conference on
Computer Science & Education (ICCSE 2018)
August 8-11, 2018. Colombo, Sri Lanka

 687

FriB3.5

Fig. 1. A demonstration of the 3-step pipeline

II. RELATED WORK
Finding a relative transformation between adjacent image

fragments is the essence of most proposed automatic reassembly
algorithms. Different authors utilize different measures to
investigate a pair of image fragments for any possible matches.
The two main approaches are based on color properties of the
pixels on and around the border areas and geometry properties
of the image fragments such as shape and curvature of the
borders.

Color-based Approaches. In color-based approaches, the
color information of the image fragments are used to guide the
reassembly process. Tsamoura and Pitas [1] form a list of pairs
of image fragments that are likely to be adjacent. They use a
novel approach to color histograms based on what Cinque et al.
proposed in [10], called spatial-chromatic histograms, which not
only considers color information but also considers spatial
distribution of color. Authors in [1] then present an algorithm
based on LCS for identifying matching partial contour curves
for each pair of fragments. Their approach to fragment contour
matching is based exclusively on pixel color information on the
contours. As a result, it loses some efficiency and is sensitive to
noisy pixel values on the borders. In [12], the authors focus on
the task of matching two image fragments only using the
information extracted from the outlines and from the color
contents of the fragments. In [15], the texture of a band outside
the border of pieces is predicted by inpainting and texture
synthesis methods proposed in [16]. An FFT-based registration
algorithm is then utilized to find the alignment of the fragment
pieces. Color-based approaches can be sensitive to noisy pixel
values.

Geometry-based Approaches. In geometry-based approaches,
fragment borders are usually modeled as a 2D curve. Some use
polygon approximation of the curves and some use curvature
information and local shape features of the curves to match
image fragments alongside their boundaries. Justino, Oliveira
and Freitas in [4] solve the problem of reconstructing shredded
documents by first doing a polygonal approximation of the
borders to reduce possible complexity of the boundaries. Then
relevant features of each polygon, i.e. angle of each vertex with
respect to its two neighbors and distances between each vertex
and its neighbors, are extracted to lead the matching. In [5], a
shape feature, referred to as the turning function, is calculated
and used to investigate the matching of fragment pairs. Wolfson
in [14] finds the longest curve subsection being shared between
polygonised fragment borders through geometric hashing. It

does not allow for deletion or mismatch between curve segments
while detecting the longest common subsection between two
border curves. He does not introduce a global matching step and
the focus of the proposed method is on pairwise matching.
Zhang and Li in [6] suggest to approximate the border with a
polygon. Instead of working on pixel level, the alignment is
found alongside the polygon sides. The method used to
polygonise the border curve is adapted and improved by our
work. Also, in the pairwise matching step, an exhaustive search
is used which is affecting the efficiency of the proposed method
considering the large search space of the pairwise matching step.
They, then, formulate a global matching scheme as solving a
maximal compatible edge set from a given graph to reconstruct
the original image from calculated local matches. Others, like
[1], have proposed global matching steps in the pipeline of their
algorithms. However, global matching step is not the focus of
this work.The polygonization, in general, could be globally
affected by the initial pose of the image fragments and the
approximation error bound, and hence, is not completely
rotation-invariant and will affect the subsequent matching and
reassembly results. Local curvatures of pixels on the contour
curve as the fragment’s descriptor, on the other hand, will be
rotation-invariant but is sensitive to geometric noise on the
image boundary, which is often inevitable.

LCS-based Matching algorithms. Based on an algorithm
Smith and Waterman propose in [8], some algorithms [3,11] try
to find a common subsection between two neigboring border
curves. Based on color values or curvature values at pixels they
suggest a sequence of pixels as a possible common border
subsection. In [3] the boundaries are represented by shape
feature strings. A Shape feature representing each pixel in the
string is an average of the curvature values of the neighboring
pixels. A method based on LCS detects similar subsequences
between strings representing two image fragments at
progressively increasing scales of resolution. A similar approach
is taken in [11] by Kong and Kimia. They try to find the largest
common subsequence with the similar color and curvature
information and their focus is on pairwise matching. They use
dynamic programing to create a coarse alignment on the reduced
version of the borders. However, all the LCS-based methods
mentioned above operate on pixel level and do not take
advantage of polygonization technique to estimate a border
curve as a polygon. The algorithms operating on pixel level are
sensitive to noisy pixel values on the border. Also their time
complexity can be big due to the large number of pixels on each
border.

 688

FriB3.5

(a)

(b)

Fig. 2. A demonstration for first step. (a) Artifacts on and around the border
area. (b) Paper tissues removed, noise reduced.

III. LSC-BASED IMAGE REASSEMBLY
To reassemble 2D image fragments back into their original

form, a wide range of approaches are being introduced in
existing literature. In this paper, a novel method is devised in
three steps that builds on recent research and combines the
strengths of previous ideas.

A. Removing Artifacts

Each image fragment has to be digitized before it can be used
as an input. A knowledgeable choice for background color
during scanning process can enhance future steps to a great
extent. The color properties and color histograms of all image
fragments are investigated for successful choices. The best
possible choice for background color is a color that not only does
not exist in the image fragment, but also is furthest from all the
existing colors.This will facilitate segmentation and border
extraction during next steps.

As a result of the scanning process, there will be scanning
artifacts such as shadow around the borderlines of each image
fragment. Also, as the foreground of an image is extracted from
the background, there will be some undesirable narrow white
regions attached to the main body of the image, i.e. paper tissues.
The paper tissue artifacts could have happened as the original
image was being torn apart. These artifacts will affect both the
geometry and color properties of image fragments on and around
the border area. Without these artifacts removed, the algorithm
will fail. To eliminate these artifacts, the idea is to start with a
white-colored pixel on or close to the border and remove that
pixel together with all the other connected white components in
its neighboring area. The goal is to remove the tissue but keep
the main body of the foreground intact. After removing the
tissue, some unconnected components might still remain outside
of the main body of the image which will be eliminated using
some morphological operations [2].

Considering the fact that potential matches between a pair of
image fragments are investigated on the border areas, noisy
borders can lead to undesired results. After removing the paper
tissues and as a result of morphological operations, border
curves will have nuances too small that can be considered as
noise. Smoothing the curves can help reduce these noise-like

nuances. The border for each image fragment is extracted as a
curve and each pixel on the curve is pushed toward a position in
between its right and left neighboring pixels over several
iterations. As a result, the noise on the curve will reduce and the
border will become smooth. Failing to smooth the boundary
curve can cause these noise-like nuances to be mistaken as
feature points. Detecting the correct feature points is vital to our
algorithm because correct polygonization, which is a part of next
step, depends on it. Fig. 2 depicts a zoomed in version of the
result for better illustration, once before paper tissue and noise
on the border are removed and once after.

B. Pairwise Matching

The goal of pairwise matching step is to find border
subsections on a pair of image fragments that are possibly
common between the two of them. This step of the algorithm
runs for each pair of image fragments without global
understanding of the layout of the other fragmented pieces.
Therefore, this step suggests some correct and some incorrect
alignments. The global matching (to be discussed in Section C)
will detect and eliminate incorrect alignments offered by
pairwise matching step.

Some existing pairwise matching algorithms investigate the
borderlines on the pixel level while others [6] suggest to
approximate the border with a polygon. Therefore, instead of
working on pixel level, the alignment is found alongside one of
the polygon sides. The border of each image fragment,
approximated by a polygon, can be represented as a sequence of
sides. The novelty of our idea is based on the observation that if
two image fragments are adjacent, their simplified polygons
usually share more than only one side. Therefore, a more
effective method to describe a common border subsection is by
matching a subsequence of sides, rather than considering one
side at a time. We can formulate this as finding the longest
subsequence of sides shared between the two polygons.
Therefore, for two image fragments, finding that possible
common border subsection will reduce to the problem of finding
the longest common subsequence between two sequences
representing the two borders. Smith and Waterman [8] propose
a solution to a similar problem based on a dynamic
programming approach. The goal for the pairwise matching step
can be stated as calculating a 3 × 3 rigid transformation, Ti,j,
which aligns ith and jth image fragments alongside their
common border subsections. Our pairwise matching step is
formulated in four steps.

1) To extract border curve for each image fragment and
approximate it with a polygon.

2) To calculate a descriptor to represent each segment.
3) To apply a revised LCS approach to find the best

sequence of matching segments.
4) To calculate final transformation.

The first step is to extract the border loop on each image
fragment. Let us assume ܥ௜ and ܥ௝ are the boundary curves
extracted for the pair of image fragments at hand. Polygonising
each contour curve means it is partitioned into a sequence of
curve segments, each of which flat enough to be approximated
by a line segment. ௜ܵ,௞ will be used to denote the ݇௧௛ of such
curve segments on ܥ௜ for example. The process of decomposing

 689

FriB3.5

Fig. 3. The importance of incorporating the curvature values into the segmentation process. (a,a’) The original curve to be segmented. (b,c) The decision on
where to break the curve is made, solely, based on the Euclidean distance each pixels makes with the line segment describing the curve. (b’,c’,d’,e’) The

Euclidean distance a pixel makes with the approximating line segment is scaled based on the curvature value at that specific pixel. As a result, pixels with high
curvature values are more likely to be picked as vertices during segmentation process. For example, the first vertex to be picked in (b’) is v3 due to its high

curvature value, while there are points on the curve that have bigger Euclidean distance to the line segment (ଵܸ, ଶܸ).

each boundary loop into small segments is accomplished by
employing a revised Douglas-Peucker (DP) algorithm [9]. For a
curve segment denoted as ܵ = VଵVଶ෫, where ଵܸ and ଶܸ are the
starting and ending points of the segment, our DP algorithm first
uses a line segment connecting ଵܸ and ଶܸ to approximate the
curve, denoted as (ଵܸ, ଶܸ). The distance from each point ௜ܸ on
the curve to line segment (ଵܸ, ଶܸ) is calculated and scaled by a
value reciprocal to the curvature at ௜ܸ. If there exists a point, ଵܸ,
on the curve whose scaled distance to (ଵܸ, ଶܸ) is bigger than a
predefined threshold, denoted as the DP-threshold, the segment
VଵVଶ෫ is decomposed into two smaller segments VଵVଷ෫ and VଷVଶ෫.
The DP algorithm then runs recursively on VଵVଷ෫ and VଷVଶ෫ until
no curve segment can be further decomposed. To start the
process on a boundary loop ܥ௜, the two points, ଵܸ and ଶܸ, are
chosen such that they are furthest from one another on the
boundary. The DP algorithm just described will run on VଵVଶ෫ and
VଶVଵ෫ respectively. As a result, the boundary loop ܥ௜ will be
partitioned into a sequence of smaller curve segments ௜ܵ,௞. Fig.
3 is devised for illustration purposes to emphasize the
importance of including curvature value at each point on a curve
into its segmentation process. To calculate a reliable curvature
value for each point on the curve, a small number of neighboring
pixels, before and after the point of interest, are approximated
by two line segments. The angle between these lines define the
curvature value at the point of interest unambiguously. Picking
pixels with higher curvature values as vertices of the polygon,
during segmentation process, is closer to the way a human would
do such a task compared to the previous methods proposed. Fig.
3 is explaining why using this approach creates better final
results compared to other methods through a synthetic example.

Next is to define, for each curve segment ܵ ௜,௞ on a border like
)݀ ,௜, a descriptorܥ ௜ܵ,௞), based on its color and geometric
properties. ݀ (௜ܵ,௞) is chosen to be a 6-tuple value in ℝ଺. The first
value is the length of ௜ܵ,௞ in pixels. The second, third and fourth
values are the average of red, blue and green component values
for all the pixels on the curve segment. Finally, the fifth and sixth
values are the angles a curve segment makes with its right and
left neighboring segments respectively. Matching border curves

on two adjacent image fragments are usually composed of more
than only one segment. To ensure these matching curves have
similar geometric shape, the angles each segment on one curve
makes with its neighboring segments must be the same as the
angles its counterpart on the other curve makes with its own
neighboring segments. For a pair of curve segments ௜ܵ,௞ and ܵ ௝,௟,
on borders ܥ௜ and ܥ௝ respectively, a ܵ݅݉(௜ܵ,௞, ௝ܵ,௟) will be
calculated based on how similar ݀(௜ܵ,௞) and ݀(௝ܵ,௟) are. If they
are similar enough, ௜ܵ,௞ and ௝ܵ,௟ will be considered a match and
ܵ݅݉(௜ܵ,௞, ௝ܵ,௟) will hold a positive value; otherwise, in case of a
mismatch, ܵ݅݉(௜ܵ,௞, ௝ܵ,௟) will be negative.

Considering ݀(௜ܵ,௞), the descriptor for a curve segment,
equivalent to a character, a boundary curve can be represented
as a string. The length of the string representing a boundary will
be equal to the number of segments on that boundary. Therefore,
the problem of finding the longest sequence of curve segments
shared between two borders will be equivalent to the problem of
finding the longest subsequence shared between two given
strings. To solve this problem, we revise the Smith-Waterman
algorithm [8], which uses a dynamic programming approach to
find the longest common subsequence (LCS) between two given
strings. To make matching between characters flexible, jumping
over a character in either one of the subsequences and simply
leaving it unmatched with any of the characters from the other
subsequence is allowed. This act is called a deletion and is
justified when, doing so, there will be a prospect of being able
to make more promising matches along the path as we go
forward. This means dissimilarity between two subsequences at
hand. Therefore, a penalty is considered for such a case which is
the value represented by ܹ in line 7 of Fig 4.

Fig 4. explains revised Smith-Waterman algorithm in pseudo-
code when used to solve our problem. This algorithm builds a
matrix called ܪ. The pair of subsequences with maximum
similarity is found by first locating the maximum element of ܪ.
The other matrix elements leading to this maximum value are
then sequentially determined with a trace-back procedure ending
with an element of ܪ equal to zero. This procedure identifies the

 690

FriB3.5

Fig. 4. Algorithm for finding the Longest Common Subsequence between

two strings of length n and m respectively.

subsequences as well as produces the corresponding matches
between their composing characters which leads, eventually, to
a transformation between two image fragments. Fig. 5 shows the
most similar pair of curve segment sequences, one from each
border, recovered using our version of revised LCS.

C. Global Matching

Pairwise matching step runs for all possible pairs of image
fragments without global understanding of the layout of the
other fragmented pieces. Therefore, it suggests one or more
possible transformations between each pair of image fragments,
among which only some can be correct and the others are
incorrect. We adopt a global matching step from our previous
work in [6] to detect and eliminate incorrect alignments offered
in the previous pairwise matching step. Global matching step,
in fact, is used to complement the work of pairwise matching.
If we develop a simple pairwise matching step, we are simply
pushing more work down the pipeline to be accomplished
during the global matching step. For example, in [6], due to the
relatively simple pairwise matching strategy, there is a need for
a powerful global matching scheme. On the other hand, using
the pairwise matching method proposed here, the obtained
pairwise alignments are more reliable compared to [6]; and
consequently, a simpler global matching algorithm should
suffice. Nonetheless, the method proposed in [6] is being
adopted here for global matching step. The global matching
scheme is formulated, in [6], as solving a maximal compatible
edge set from a given graph. A greedy algorithm is proposed to
iteratively insert an alignment that is consistent with all existing
selected alignments and has the highest accumulated matching
scores with all the other pieces.

IV. EXPERIMENTAL RESULTS
We perform multiple experiments to evaluate our assembly
algorithm. In our experiments, we print out randomly selected
digital images on papers. Then, we randomly tear an image into
multiple pieces and scan each image fragment. Our reassembly
algorithm is then used to recompose the scanned digital image
fragments. The results in Fig 6 demonstrate the effectiveness
and robustness of our approach for real hand-torn images with

Fig. 5. The result of revised LCS for two image fragments. The matched

segments are color coded. All matched segments marked with blue arrows are
good matches. The only short curve segment marked with a yellow arrow is

showing a case of deletion due to wrong partitioning of the border. Match (7),
marked with a red arrow, shows a case of a bad match. These two choices, i.e.
deletion and mismatch, are being made for the benefit of matches (8) and (9)

that are coming after them.

increasing number of pieces. Comparing the results of this
paper with [6] on the same data sets shown in Fig 6, shows the
big improvement in running time complexity as a result of
reducing the search space in pairwise matching step.

We have selected Tsamoura and Piras [1] method and
implemented their proposed algorithm so that we can compare
its performance with our method. [1] will fail on cases where
the tearing or scanning artifacts on image fragments are not
handled properly. Therefore, in order to create a level ground,
we created input datasets free of artifacts through simulation.
The comparison is performed on cases with 9 and 18 pieces as
shown in Fig 7.

(a) (b)

(c) (d)

Fig. 6. Demonstrating the effectiveness of our method on real hand-torn
images. (a,b) 9-piece input data set, (c,d) 12-piece input data set.

 691

FriB3.5

(a) (b) (c)

(d) (e) (f)

Fig. 7. Comparing our method with the method proposed in [1]. First column is the input data set. Second column shows the result of our method and last
column shows the result of [1]. (a,b,c) 9-piece input data set, (d,e,f) 18-piece input data set

V. CONCLUSION AND FUTURE WORK
We present a novel computational pipeline for the automatic

reassembly of fragmented images. It consists of three main
steps: removing artifacts, pairwise matching between two image
fragments, and global fragment reassembly. We evaluate our
algorithm using various real-world images and demonstrate that
it is fast and robust.

On the global matching front, more effective graph
searching and backtracking algorithms or some stochastic
optimization strategies could be investigated. In addition,
adaptive algorithm to pick the proper DP-threshold for different
data sets with different image resolutions can help generalize our
algorithm even more.

VI. ACKNOWLEDGEMENTS
This work was partly supported by the National Science

Foundation IIS-1320959, and the National Natural Science
Foundation of China 61728206.

REFERENCES
[1] E. Tsamoura and I. Pitas, “Automatic color based reassembly of

fragmented images and paintings,” IEEE Transactions on Image
Processing, vol. 19, No. 3, pp. 680–690, 2010.

[2] S.H. Oguz, Y.H. Hu, and T.Q. Nguyen, “Image coding ringing artifact
reduction using morphological post-filtering,” Proc. Workshop on
Multimedia Signal Processing, pp. 628–633, 1998.

[3] H.C. da Gama Leitao and J. Stolfi, “A multiscale method for the
reassembly of two-dimensional fragmented objects,” IEEE Trans. Pattern
Analysis and Machine Intelligence, 24(9): 1239–1251, 2002.

[4] E. Justino, L.S. Oliveira, and C. Freitas, “Reconstructing shredded
documents through feature matching,” Forensic Science International,
vol. 160, No. 2, pp. 140–147, 2006.

[5] L. Zhu, Z. Zhou, and D. Hu, “Globally consistent reconstruction of
ripped-up documents,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 30, No. 1, pp. 1–13, 2008.

[6] K. Zhang and X. Li, “A graph-based optimization algorithm for
fragmented image reassembly,” Graphical Models, vol. 76, No. 5, pp.
484–495, 2014.

[7] P.J. Besl and N.D. McKay, “A method for registration of 3-D shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14,
No. 2, pp. 239–256, 1992.

[8] T.F. Smith and M.S. Waterman, “Identification of common molecular
subsequences,” J. Molecular Biology, 147(1):195–197, 1981.

[9] D.H. Douglas and T.K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Cartographica: The International Journal for Geographic Information and
Geovisualization, 10(2): 112–122, 1973.

[10] L. Cinque, G. Ciocca, S. Levialdi, A. Pellicano, and R. Schettini, “Color-
based image retrieval using spatial-chromatic histograms,” Image and
Vision Computing, vol. 19, No. 13, pp. 979–986, 2001.

[11] W. Kong and B.B. Kimia, “On solving 2D and 3D puzzles using curve
matching,” Proc. CVPR, vol.2, pp. 583–590, 2001.

[12] F. Amigoni, S. Gazzani, and S. Podico, “A method for reassembling
fragments in image reconstruction,” Proc. ICIP, vol. 3, pp. 581–4, 2003.

[13] Y. Chen and G. Medioni, “Object modeling by registration of multiple
range images,” Image and Vision Computing, 10(3):145–155, 1992.

[14] H.J. Wolfson, “On curve matching,” IEEE Trans. on Pattern Analysis and.
Machine Intelligence, 12(5): 483–489, 1990.

[15] M. Sagiroglu and A. Ercil, “A texture based matching approach for
automated assembly of puzzles,” Proc. ICPR, 3:1036–1041, 2006.

[16] A. Criminisi, P. Perez and K. Toyama, “Region filling and object removal
by exemplar-based image inpainting,” IEEE Trans. Image Processing,
13(9):1200–1212, 2004.

[17] X. Li and S. Iyengar, "On Computing Mapping of 3D Objects: A Survey,"
ACM Computing Surveys, 47(2):34:1 – 34:45, 2015.

[18] K. Zhang, M. Manhein, W. Waggenspack, and X. Li, “3D Fragment
Reassembly using Integrated Template Guidance and Fracture-Region
Matching,” International Conference on Computer Vision (ICCV), 2138-
2146, 2015.

 692

FriB3.5

		2018-09-18T07:11:42-0400
	Preflight Ticket Signature

