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Abstract—We propose an algorithm for 2D image fragment 
reassembly problem based on solving a variation of Longest 
Common Subsequence (LCS) problem. Our processing pipeline 
has three steps. First, the boundary of each fragment is extracted 
automatically from its scanned image, with paper tissue and 
scanning artifacts removed. Second, inter-fragment boundary 
matching is computed between each pair of fragments by solving 
a Longest Common Subsequence problem. The goal is to identify 
the best possible adjacency relationship among image fragment 
pairs. Finally, a multi-piece alignment is used to prune incorrect 
matches and globally compose the final image. We perform 
experiments on various image fragment datasets and compare our 
results with existing methods to show the improved efficiency and 
robustness with respect to images of different resolutions and 
different levels of noise on boundary pixels.

Keywords— Fragmented image reassembly; longest common 
subsequence; curve matching.

I. INTRODUCTION

Fragmented Image reassembly is to reconstruct a 2D image 
back to its original state, after it has been torn or damaged for 
various reasons. Being able to accomplish such a task with 
computers will save us the human labor and time. Analyses 
show [1] that computers will be able to carry out such a task 
much faster than humans can do. There are many different types 
of real world applications that can benefit from solving such a 
problem. For example, forensic experts can save substantial 
amount of time and energy if the task of reassembling pieces of 
an evidence, torn apart as an attempt to destroy it, can be handled 
automatically. Another application is for archeologists trying to 
reassemble pieces of artifacts they find through excavation, 
especially when the pieces are almost flat and smooth, and can 
be approximated as 2D image fragments. The reassembly 
process can be faster and more accurate if the task is done 
automatically by a program compared to when it is done 
manually. 

Existing automatic image reassembly algorithms can be 
generally categorized into two main groups: color-based 
approaches and geometry-based approaches. In color-based 
approaches, the color information of the image fragments are 
used to guide the reassembly process. This approach can be 
sensitive to noisy pixel values and also may fail if there exist a 
few image fragments with similar texture close to the border 
areas. Geometry-based approaches, on the other hand, use the 
shapes of image fragments and their borders to find the proper 
matches between adjacent pieces. These methods could align the 
fragments more effectively when their contour shapes are 
irregular. However, reliable partial geometric matching [17, 18] 
itself could be challenging. Lack of taking advantage of the 

fragment’s color information can be a drawback of this type of 
approaches.

There is another way of categorizing automatic image 
reassembly algorithms. Some algorithms operate on the pixel 
level to guide the reassembly process. These methods are also 
sensitive to noise. Others reassemble fragments by treating them 
as 2D geometric regions. Therefore, the time complexity will 
reduce for the latter approaches compared to the other category.
Our idea is to combine the positive aspects of different 
approaches mentioned above. We propose a three step 
composition algorithm that takes advantage of both color and 
geometry information of curve segments on the border of each 
image fragment, as illustrated in Fig. 1.

A. Artifacts Removal

Each image fragment will be scanned and digitized before it 
is used as an input. The scanning process often creates 
undesirable artifacts, especially on and around the border area. 
A preprocessing step is introduced that ensures a proper 
execution of all next steps. 

B. Pairwise matching

In an effort to find potential matching between each pair of 
image fragments, we formulate the pairwise matching as solving 
a variant of Longest Common Subsequence (LCS) problem. 
Compared with existing pairwise matching techniques, this
algorithm improves the time complexity as well as robustness in 
handling images with possibly noisy values on borders.

C. Global matching

The pairwise matching step of the algorithm runs for each 
pair of image fragments without global understanding of the 
layout of the other fragmented pieces. Therefore, alignments 
suggested by pairwise matching step can be incorrect. We keep 
many potential alignments between each pair of fragments. 
Then, a global matching is adopted to select correct alignments 
offered by the previous step, by optimizing the mutual 
consistency of alignments of multiple pieces together.

The Main contributions of this paper are as follows:

We develop a simple but necessary artifact removal
preprocessing step to eliminate noisy boundary tissues.

Effective partial matching is essential to the process. We
develop a novel polygonization algorithm to model
image fragment's boundary shape feature, and a pairwise
matching algorithm based on a revised LCS algorithm.
This algorithm effectively utilizes both geometric and
color characteristics of image fragments.
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Fig. 1. A demonstration of the 3-step pipeline

II. RELATED WORK 
Finding a relative transformation between adjacent image 

fragments is the essence of most proposed automatic reassembly 
algorithms. Different authors utilize different measures to 
investigate a pair of image fragments for any possible matches. 
The two main approaches are based on color properties of the 
pixels on and around the border areas and geometry properties 
of the image fragments such as shape and curvature of the 
borders. 

Color-based Approaches. In color-based approaches, the 
color information of the image fragments are used to guide the 
reassembly process. Tsamoura and Pitas [1] form a list of pairs 
of image fragments that are likely to be adjacent. They use a 
novel approach to color histograms based on what Cinque et al. 
proposed in [10], called spatial-chromatic histograms, which not 
only considers color information but also considers spatial 
distribution of color. Authors in [1] then present an algorithm 
based on LCS for identifying matching partial contour curves 
for each pair of fragments. Their approach to fragment contour 
matching is based exclusively on pixel color information on the 
contours. As a result, it loses some efficiency and is sensitive to 
noisy pixel values on the borders. In [12], the authors focus on 
the task of matching two image fragments only using the 
information extracted from the outlines and from the color 
contents of the fragments. In [15], the texture of a band outside 
the border of pieces is predicted by inpainting and texture 
synthesis methods proposed in [16]. An FFT-based registration 
algorithm is then utilized to find the alignment of the fragment 
pieces. Color-based approaches can be sensitive to noisy pixel 
values. 

Geometry-based Approaches. In geometry-based approaches, 
fragment borders are usually modeled as a 2D curve. Some use 
polygon approximation of the curves and some use curvature 
information and local shape features of the curves to match 
image fragments alongside their boundaries. Justino, Oliveira 
and Freitas in [4] solve the problem of reconstructing shredded 
documents by first doing a polygonal approximation of the 
borders to reduce possible complexity of the boundaries. Then 
relevant features of each polygon, i.e. angle of each vertex with 
respect to its two neighbors and distances between each vertex 
and its neighbors, are extracted to lead the matching. In [5], a 
shape feature, referred to as the turning function, is calculated 
and used to investigate the matching of fragment pairs. Wolfson 
in [14] finds the longest curve subsection being shared between 
polygonised fragment borders through geometric hashing. It 

does not allow for deletion or mismatch between curve segments 
while detecting the longest common subsection between two 
border curves. He does not introduce a global matching step and 
the focus of the proposed method is on pairwise matching. 
Zhang and Li in [6] suggest to approximate the border with a 
polygon. Instead of working on pixel level, the alignment is 
found alongside the polygon sides. The method used to 
polygonise the border curve is adapted and improved by our 
work. Also, in the pairwise matching step, an exhaustive search 
is used which is affecting the efficiency of the proposed method 
considering the large search space of the pairwise matching step. 
They, then, formulate a global matching scheme as solving a 
maximal compatible edge set from a given graph to reconstruct 
the original image from calculated local matches. Others, like 
[1], have proposed global matching steps in the pipeline of their 
algorithms. However, global matching step is not the focus of 
this work.The polygonization, in general, could be globally 
affected by the initial pose of the image fragments and the 
approximation error bound, and hence, is not completely 
rotation-invariant and will affect the subsequent matching and 
reassembly results. Local curvatures of pixels on the contour 
curve as the fragment’s descriptor, on the other hand, will be 
rotation-invariant but is sensitive to geometric noise on the 
image boundary, which is often inevitable. 

LCS-based Matching algorithms. Based on an algorithm 
Smith and Waterman propose in [8], some algorithms [3,11] try 
to find a common subsection between two neigboring border 
curves. Based on color values or curvature values at pixels they 
suggest a sequence of pixels as a possible common border 
subsection. In [3] the boundaries are represented by shape 
feature strings. A Shape feature representing each pixel in the 
string is an average of the curvature values of the neighboring 
pixels. A method based on LCS detects similar subsequences 
between strings representing two image fragments at 
progressively increasing scales of resolution. A similar approach 
is taken in [11] by Kong and Kimia. They try to find the largest 
common subsequence with the similar color and curvature 
information and their focus is on pairwise matching. They use 
dynamic programing to create a coarse alignment on the reduced 
version of the borders. However, all the LCS-based methods 
mentioned above operate on pixel level and do not take 
advantage of polygonization technique to estimate a border 
curve as a polygon. The algorithms operating on pixel level are 
sensitive to noisy pixel values on the border. Also their time 
complexity can be big due to the large number of pixels on each 
border. 
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Fig. 2. A demonstration for first step. (a) Artifacts on and around the border 
area. (b) Paper tissues removed, noise reduced. 

III. LSC-BASED IMAGE REASSEMBLY 
To reassemble 2D image fragments back into their original 

form, a wide range of approaches are being introduced in 
existing literature. In this paper, a novel method is devised in 
three steps that builds on recent research and combines the 
strengths of previous ideas.    

A. Removing Artifacts 

Each image fragment has to be digitized before it can be used 
as an input. A knowledgeable choice for background color 
during scanning process can enhance future steps to a great 
extent. The color properties and color histograms of all image 
fragments are investigated for successful choices. The best 
possible choice for background color is a color that not only does 
not exist in the image fragment, but also is furthest from all the 
existing colors.This will facilitate segmentation and border 
extraction during next steps. 

As a result of the scanning process, there will be scanning 
artifacts such as shadow around the borderlines of each image 
fragment. Also, as the foreground of an image is extracted from 
the background, there will be some undesirable narrow white 
regions attached to the main body of the image, i.e. paper tissues. 
The paper tissue artifacts could have happened as the original 
image was being torn apart. These artifacts will affect both the 
geometry and color properties of image fragments on and around 
the border area. Without these artifacts removed, the algorithm 
will fail. To eliminate these artifacts, the idea is to start with a 
white-colored pixel on or close to the border and remove that 
pixel together with all the other connected white components in 
its neighboring area. The goal is to remove the tissue but keep 
the main body of the foreground intact. After removing the 
tissue, some unconnected components might still remain outside 
of the main body of the image which will be eliminated using 
some morphological operations [2].  

Considering the fact that potential matches between a pair of 
image fragments are investigated on the border areas, noisy 
borders can lead to undesired results. After removing the paper 
tissues and as a result of morphological operations, border 
curves will have nuances too small that can be considered as 
noise. Smoothing the curves can help reduce these noise-like 

nuances. The border for each image fragment is extracted as a 
curve and each pixel on the curve is pushed toward a position in 
between its right and left neighboring pixels over several 
iterations. As a result, the noise on the curve will reduce and the 
border will become smooth. Failing to smooth the boundary 
curve can cause these noise-like nuances to be mistaken as 
feature points. Detecting the correct feature points is vital to our 
algorithm because correct polygonization, which is a part of next 
step, depends on it. Fig. 2 depicts a zoomed in version of the 
result for better illustration, once before paper tissue and noise 
on the border are removed and once after. 

B. Pairwise Matching 

The goal of pairwise matching step is to find border 
subsections on a pair of image fragments that are possibly 
common between the two of them. This step of the algorithm 
runs for each pair of image fragments without global 
understanding of the layout of the other fragmented pieces. 
Therefore, this step suggests some correct and some incorrect 
alignments. The global matching (to be discussed in Section C) 
will detect and eliminate incorrect alignments offered by 
pairwise matching step.  

Some existing pairwise matching algorithms investigate the 
borderlines on the pixel level while others [6] suggest to 
approximate the border with a polygon. Therefore, instead of 
working on pixel level, the alignment is found alongside one of 
the polygon sides. The border of each image fragment, 
approximated by a polygon, can be represented as a sequence of 
sides. The novelty of our idea is based on the observation that if 
two image fragments are adjacent, their simplified polygons 
usually share more than only one side. Therefore, a more 
effective method to describe a common border subsection is by 
matching a subsequence of sides, rather than considering one 
side at a time. We can formulate this as finding the longest 
subsequence of sides shared between the two polygons. 
Therefore, for two image fragments, finding that possible 
common border subsection will reduce to the problem of finding 
the longest common subsequence between two sequences 
representing the two borders. Smith and Waterman [8] propose 
a solution to a similar problem based on a dynamic 
programming approach. The goal for the pairwise matching step 
can be stated as calculating a 3 × 3 rigid transformation, Ti,j, 
which aligns ith and jth image fragments alongside their 
common border subsections. Our pairwise matching step is 
formulated in four steps. 

1) To extract border curve for each image fragment and 
approximate it with a polygon. 

2) To calculate a descriptor to represent each segment.  
3) To apply a revised LCS approach to find the best 

sequence of matching segments. 
4) To calculate final transformation. 

The first step is to extract the border loop on each image 
fragment. Let us assume ܥ and ܥ are the boundary curves 
extracted for the pair of image fragments at hand. Polygonising 
each contour curve means it is partitioned into a sequence of 
curve segments, each of which flat enough to be approximated 
by a line segment. ܵ, will be used to denote the ݇௧ of such 
curve segments on ܥ for example. The process of decomposing 
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Fig. 3. The importance of incorporating the curvature values into the segmentation process. (a,a’) The original curve to be segmented. (b,c) The decision on 
where to break the curve is made, solely, based on the Euclidean distance each pixels makes with the line segment describing the curve. (b’,c’,d’,e’) The 

Euclidean distance a pixel makes with the approximating line segment is scaled based on the curvature value at that specific pixel. As a result, pixels with high 
curvature values are more likely to be picked as vertices during segmentation process. For example, the first vertex to be picked in (b’) is v3 due to its high 

curvature value, while there are points on the curve that have bigger Euclidean distance to the line segment ( ଵܸ, ଶܸ).

each boundary loop into small segments is accomplished by 
employing a revised Douglas-Peucker (DP) algorithm [9]. For a 
curve segment denoted as ܵ = VଵVଶ෫, where ଵܸ and ଶܸ are the 
starting and ending points of the segment, our DP algorithm first 
uses a line segment connecting ଵܸ and ଶܸ to approximate the 
curve, denoted as ( ଵܸ, ଶܸ). The distance from each point ܸ on 
the curve to line segment ( ଵܸ, ଶܸ) is calculated and scaled by a 
value reciprocal to the curvature at ܸ. If there exists a point, ଵܸ, 
on the curve whose scaled distance to ( ଵܸ, ଶܸ) is bigger than a 
predefined threshold, denoted as the DP-threshold, the segment 
VଵVଶ෫ is decomposed into two smaller segments VଵVଷ෫ and VଷVଶ෫. 
The DP algorithm then runs recursively on VଵVଷ෫ and VଷVଶ෫ until 
no curve segment can be further decomposed. To start the 
process on a boundary loop ܥ, the two points, ଵܸ and ଶܸ, are 
chosen such that they are furthest from one another on the 
boundary. The DP algorithm just described will run on VଵVଶ෫ and 
VଶVଵ෫ respectively. As a result, the boundary loop ܥ will be 
partitioned into a sequence of smaller curve segments ܵ,. Fig. 
3 is devised for illustration purposes to emphasize the 
importance of including curvature value at each point on a curve 
into its segmentation process. To calculate a reliable curvature 
value for each point on the curve, a small number of neighboring 
pixels, before and after the point of interest, are approximated 
by two line segments. The angle between these lines define the 
curvature value at the point of interest unambiguously. Picking 
pixels with higher curvature values as vertices of the polygon, 
during segmentation process, is closer to the way a human would 
do such a task compared to the previous methods proposed. Fig. 
3 is explaining why using this approach creates better final 
results compared to other methods through a synthetic example. 

Next is to define, for each curve segment ܵ , on a border like 
)݀ ,, a descriptorܥ ܵ,), based on its color and geometric 
properties. ݀ ( ܵ,) is chosen to be a 6-tuple value in ℝ. The first 
value is the length of ܵ, in pixels. The second, third and fourth 
values are the average of red, blue and green component values 
for all the pixels on the curve segment. Finally, the fifth and sixth 
values are the angles a curve segment makes with its right and 
left neighboring segments respectively. Matching border curves 

on two adjacent image fragments are usually composed of more 
than only one segment. To ensure these matching curves have 
similar geometric shape, the angles each segment on one curve 
makes with its neighboring segments must be the same as the 
angles its counterpart on the other curve makes with its own 
neighboring segments. For a pair of curve segments ܵ, and ܵ ,, 
on borders ܥ and ܥ respectively, a ܵ݅݉( ܵ,, ܵ,) will be 
calculated based on how similar ݀( ܵ,) and ݀( ܵ,) are. If they 
are similar enough, ܵ, and ܵ,  will be considered a match and 
ܵ݅݉( ܵ,, ܵ,) will hold a positive value; otherwise, in case of a 
mismatch, ܵ݅݉( ܵ,, ܵ,) will be negative. 

Considering ݀( ܵ,), the descriptor for a curve segment, 
equivalent to a character, a boundary curve can be represented 
as a string. The length of the string representing a boundary will 
be equal to the number of segments on that boundary. Therefore, 
the problem of finding the longest sequence of curve segments 
shared between two borders will be equivalent to the problem of 
finding the longest subsequence shared between two given 
strings. To solve this problem, we revise the Smith-Waterman 
algorithm [8], which uses a dynamic programming approach to 
find the longest common subsequence (LCS) between two given 
strings. To make matching between characters flexible, jumping 
over a character in either one of the subsequences and simply 
leaving it unmatched with any of the characters from the other 
subsequence is allowed. This act is called a deletion and is 
justified when, doing so, there will be a prospect of being able 
to make more promising matches along the path as we go 
forward. This means dissimilarity between two subsequences at 
hand. Therefore, a penalty is considered for such a case which is 
the value represented by ܹ in line 7 of Fig 4. 

Fig 4. explains revised Smith-Waterman algorithm in pseudo-
code when used to solve our problem. This algorithm builds a 
matrix called ܪ. The pair of subsequences with maximum 
similarity is found by first locating the maximum element of ܪ. 
The other matrix elements leading to this maximum value are 
then sequentially determined with a trace-back procedure ending 
with an element of ܪ equal to zero. This procedure identifies the 
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Fig. 4. Algorithm for finding the Longest Common Subsequence between 

two strings of length n and m respectively. 

subsequences as well as produces the corresponding matches 
between their composing characters which leads, eventually, to 
a transformation between two image fragments. Fig. 5 shows the 
most similar pair of curve segment sequences, one from each 
border, recovered using our version of revised LCS. 

C. Global Matching 

Pairwise matching step runs for all possible pairs of image 
fragments without global understanding of the layout of the 
other fragmented pieces. Therefore, it suggests one or more 
possible transformations between each pair of image fragments, 
among which only some can be correct and the others are 
incorrect. We adopt a global matching step from our previous 
work in [6] to detect and eliminate incorrect alignments offered 
in the previous pairwise matching step. Global matching step, 
in fact, is used to complement the work of pairwise matching. 
If we develop a simple pairwise matching step, we are simply 
pushing more work down the pipeline to be accomplished 
during the global matching step. For example, in [6], due to the 
relatively simple pairwise matching strategy, there is a need for 
a powerful global matching scheme. On the other hand, using 
the pairwise matching method proposed here, the obtained 
pairwise alignments are more reliable compared to [6]; and 
consequently, a simpler global matching algorithm should 
suffice. Nonetheless, the method proposed in [6] is being 
adopted here for global matching step. The global matching 
scheme is formulated, in [6], as solving a maximal compatible 
edge set from a given graph. A greedy algorithm is proposed to 
iteratively insert an alignment that is consistent with all existing 
selected alignments and has the highest accumulated matching 
scores with all the other pieces. 

IV. EXPERIMENTAL RESULTS 
We perform multiple experiments to evaluate our assembly 
algorithm. In our experiments, we print out randomly selected 
digital images on papers. Then, we randomly tear an image into 
multiple pieces and scan each image fragment. Our reassembly 
algorithm is then used to recompose the scanned digital image 
fragments. The results in Fig 6 demonstrate the effectiveness 
and robustness of our approach for real hand-torn images with  

 
Fig. 5. The result of revised LCS for two image fragments. The matched 

segments are color coded. All matched segments marked with blue arrows are 
good matches. The only short curve segment marked with a yellow arrow is 

showing a case of deletion due to wrong partitioning of the border. Match (7), 
marked with a red arrow, shows a case of a bad match. These two choices, i.e. 
deletion and mismatch, are being made for the benefit of matches (8) and (9) 

that are coming after them. 

increasing number of pieces. Comparing the results of this 
paper with [6] on the same data sets shown in Fig 6, shows the 
big improvement in running time complexity as a result of 
reducing the search space in pairwise matching step.  

We have selected Tsamoura and Piras [1] method and 
implemented their proposed algorithm so that we can compare 
its performance with our method. [1] will fail on cases where 
the tearing or scanning artifacts on image fragments are not 
handled properly. Therefore, in order to create a level ground, 
we created input datasets free of artifacts through simulation. 
The comparison is performed on cases with 9 and 18 pieces as 
shown in Fig 7. 

 
(a)                                                                   (b) 

 
(c)                                                                   (d) 

Fig. 6. Demonstrating the effectiveness of our method on real hand-torn 
images. (a,b) 9-piece input data set, (c,d) 12-piece input data set. 
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(a)                                                                                       (b)                                                                                                         (c) 

 
(d)                                                                                       (e)                                                                                                         (f) 

Fig. 7. Comparing our method with the method proposed in [1]. First column is the input data set. Second column shows the result of our method and last 
column shows the result of [1]. (a,b,c) 9-piece input data set, (d,e,f) 18-piece input data set

V. CONCLUSION AND FUTURE WORK 
We present a novel computational pipeline for the automatic 

reassembly of fragmented images. It consists of three main 
steps: removing artifacts, pairwise matching between two image 
fragments, and global fragment reassembly. We evaluate our 
algorithm using various real-world images and demonstrate that 
it is fast and robust.  

On the global matching front, more effective graph 
searching and backtracking algorithms or some stochastic 
optimization strategies could be investigated. In addition, 
adaptive algorithm to pick the proper DP-threshold for different 
data sets with different image resolutions can help generalize our 
algorithm even more. 
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