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ABSTRACT
Data compression is a fundamental building block in a wide range
of applications. Besides its intended purpose to save valuable stor-
age on hard disks, compression can be utilized to increase the
effective bandwidth to attached storage as realized by state-of-the-
art file systems. In the foreseeing future, on-the-fly compression
and decompression will gain utmost importance for the process-
ing of data-intensive applications such as streamed Deep Learn-
ing tasks or Next Generation Sequencing pipelines, which estab-
lishes the need for fast parallel implementations. Huffman coding
is an integral part of a number of compression methods. How-
ever, efficient parallel implementation of Huffman decompression
is difficult due to inherent data dependencies (i.e. the location of
a decoded symbol depends on its predecessors). In this paper, we
present the first massively parallel decoder implementation that
is compatible with Huffman’s original method by taking advan-
tage of the self-synchronization property of Huffman codes. Our
performance evaluation on three different CUDA-enabled GPUs
(TITAN V, TITAN XP, GTX 1080) demonstrates speedups of over
one order-of-magnitude compared to the state-of-art CPU-based
Zstandard Huffman decoder. Our implementation is available at
https://github.com/weissenberger/gpuhd.
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1 INTRODUCTION
Since its introduction in 1952, Huffman coding [17] has been
adopted as an entropy coding stage for a wide variety of com-
pression schemes, including different standards for multimedia
compression, like JPEG and MP3, as well as for general purpose
compression applications, like DEFLATE [7] (ZIP) or gzip [8]. At this
point, alternative coding methods such as arithmetic coding [22]
or Asymmetric Numeral Systems (ANS) [9] exist and also provide
superior compression results compared to Huffman coding. Never-
theless, Huffman’s method remains popular as an integral part of
recent compression software, such as Brotli [1] and Zstandard [3],
due to its favorable cost to performance ratio.

In recent years, data compression gained significant importance
in the field of high performance computing. Efficient storage solu-
tions are needed by file systems supporting compression features,
hence increasing effective memory bandwidth. Furthermore, data
compression techniques hold the potential of accelerating network
communication in Big Data and HPC applications. Hadoop [10], and
similar processing frameworks allow for the use of different algo-
rithms to compress and decompress the data exchanged throughout
the network, leading to significantly lower communication over-
head. With modern HPC applications relying on multi-core and
GPU architectures, it seems natural to parallelize data compression
and decompression as well. Specifications and implementations of
multi-threaded compression formats already exist. Recently, Zstan-
dard has been extended to be capable of compressing and decom-
pressing archives utilizing multiple CPU cores.

Regarding GPUs, potential performance improvements are con-
siderable: applications relying on graphics processors and similar
accelerators are often bottlenecked by network- and PCIe band-
width. With sufficiently fast compression software for GPUs, data
transfer costs could be reduced by compressing and decompressing
data directly in Video RAM.

Huffman coding is frequently used for entropy coding. Thus,
the question arises whether the Huffman encoding and decoding
procedures can be parallelized and implemented on GPU architec-
tures. In this paper, we will put our emphasis on parallel decoding.
Improvements of decompression speeds are particularly important
in application scenarios where data is compressed only once but
decompressed frequently. However, parallelization of Huffman de-
coding is made challenging by the fact the location of a decoded
symbol depends on the locations of all predecessors. As a con-
sequence, existing GPU implementations have altered Huffman’s
original method by splitting data into independent chunks which
can be compressed and decompressed independently. Even though
this approach enables parallelism, it is not compatible with the
mentioned file formats and also reduces compression efficiency.

https://github.com/weissenberger/gpuhd
https://doi.org/10.1145/3225058.3225076
https://doi.org/10.1145/3225058.3225076
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In this paper, we present the first GPU-based decoder that is
compatible with Huffman’s original method. The solution is based
on a special property of Huffman codes which can be exploited to
enable parallel decoding: the self-synchronizing property. Perfor-
mance evaluation shows that our implementation is able to achieve
speedups of over one order-of-magnitude compared to the state-
of-art CPU-based Zstandard Huffman decoder implementation on
three different GPUs (TITAN V, TITAN XP, GTX 1080).

The rest of this paper is organized as follows. Section 2 provides
necessary background information on Huffman coding and reviews
related work. The self-synchronizing property of Huffman codes is
discussed in Section 3. Section 4 presents our GPU-based decoder
and focuses on practical implementation of the algorithm using
CUDA. Section 5 presents experimental results. Section 6 concludes.

2 BACKGROUND
2.1 Huffman Coding
Let Σ be a source, sequentially emitting symbols from a finite al-
phabet A = {a0, . . . ,an−1} of cardinality n. Each symbol is emit-
ted with a certain probability P(ai ). Thus, a probability vector
can be defined for Σ, representing all of the source probabilities:
®p(Σ) B (P(a0), . . . , P(an−1))T ∈ [0, 1]n .

In practice, a file saved on a hard drive is a common example for
such a source. ®p(Σ) can be determined by counting the occurrences
of each entry in the file.

In the following, the source is assumed to be memoryless, mean-
ing that the probability of a certain symbol being emitted by Σ is
conditionally independent on previously emitted symbols.

A finite length string of concatenated symbols s0, . . . , sm−1 emit-
ted by Σ is referred to as a message. Huffman coding works by
replacing each symbol si with an appropriate binary codeword ci ,
leading to a compressed message c0, . . . , cm−1. A Huffman encoder
assigns shorter codewords to symbols that are more common in
the source, and longer codewords to symbols that are less common.
This results in a binary representation which generally consumes
fewer bits than the original message.

The codewords can be extracted from a binary tree constructed
using the source probabilities from ®p(Σ). For example, consider a
source Σ1 with source alphabet A1 B {A,B,C,D,E} and a corre-
sponding probability vector

®p(Σ1) B
1
8
(3, 1, 1, 1, 2)T .

The process of constructing the binary tree starts by creating
a leaf node Li for each symbol of the alphabet. Leaf nodes, in the
following referred to by the symbol they represent, shall feature
two attributes: Li .s , which contains the symbol and Li .p, which
contains the corresponding probability. The set of all leaf nodes is
referred to by L. Internal nodes Ii do not contain any symbol, but
also have a probability Ii .p as well as a left and right child: Ii .l and
Ii .r .

For the next step, two nodes have to be selected. It is crucial to
always select the nodes with the lowest probability out of all nodes
available at a given point of time. This can be simplified by keeping
the nodes in a min-priority queue Q , with the least probable nodes
having the highest priority. After two nodes have been popped
out from Q , a new internal node is created to become their parent

Algorithm 1: Constructing a Huffman tree
input :A source alphabet A of size n and a corresponding

probability vector ®p
output :An optimal Huffman tree for the source

1 Q ← empty min-priority queue;
2 for i ← 0 to n − 1 do
3 create node x; x.s ← Ai ; x.p← ®pi ;
4 Q .insert_with_priority(x, ®pi);
5 end
6 while number of elements in Q > 1 do
7 a← Q .get_min(); b← Q .get_min();
8 create node I;
9 I.l ← a; I.r ← b;

10 I.p ← a.p + b.p;
11 Q .insert_with_priority(I, I.p);
12 end
13 return Q .get_min() ; // root of the finished tree

Table 1: A Huffman table retrieved from the tree in Figure 1.

Symbol Code Frequency

A 00 3/8
B 10 1/8
E 11 2/8
C 010 1/8
D 011 1/8

node. The new parent is assigned the sum of the probabilities of
its children and is added to Q afterwards. In the example, B.p =
C .p = 1/8 ⩽ X .p for allX ∈ L, so B andC are merged to become the
children of a new internal node I0, with I0.p = B.p+C .p = 2/8. After
the new node has been added to the queue, this step is repeated
until only one node is left. This node is the root of the Huffman
tree. Algorithm 1 represents a formal description of the process.

Proceeding with the example, B and E are merged into I1 with a
probability of 3/8, then I1 is merged with A to I2 with a probability
of 5/8, so only I1 and I2 remain in the queue. Finally, I1 and I2 are
merged into the root node I3, which has probability 1. The final
tree is shown in Figure 1. All of the left edges in the tree are labeled
with 0, all of the right edges are labeled with 1. The codewords can
now be retrieved by concatenating the labels on the path from the
root to each symbol, e.g. the codeword for symbol C is 010 in this
example. Due to the way the tree is constructed, it is guaranteed
that a codeword never can be a prefix of any other codeword. This
property is referred to as the prefix property 1 of Huffman codes.
Furthermore, Huffman codes are complete, meaning that all nodes
in the Huffman tree either are leaves or have exactly two children.
Thus, Huffman codes are an example of complete prefix codes.

Codewords are often stored in a Huffman table, together with
their respective symbols. Table 1 shows the Huffman table for our
example.

1It is beyond question that prefix-freewould be a more suitable description, in literature,
however, prefix property is the predominant term.

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight



Massively Parallel Huffman Decoding on GPUs ICPP 2018, August 13–16, 2018, Eugene, OR, USA

1

5/8

A3/8

0

2/8

C1/8

0

D1/8

1

1

0

3/8

B1/8

0

E2/8

1

1

Figure 1: A simple Huffman tree, each node is shown with
its respective probability at the left.

Now it is possible to encode messages from the source
Σ1. For example, the message ABAEECDA is encoded as
001000111101001100, just by replacing the symbols with their re-
spective codewords. Because Huffman codes are prefix free, de-
coding is especially simple as a decoder can read the next symbol
without knowing the length of the codeword. By comparing the
first bits of the input to the entries in the Huffman table, the symbol
can be identified and written to the output.

2.2 Related Work
In the past, different techniques dealing with GPU-based Huffman
coding and decoding have been developed. Angulo et al. [2] im-
plemented Huffman compression and decompression on GPUs for
seismic data. In this approach, the encoding scheme is altered, such
that chunk sizes are fixed at encoding time. The chunks are em-
bedded into discrete packets, which are aligned to byte boundaries
in the output stream. Although these modifications enable parallel
decoding, the respective algorithms are obviously not suitable for
decoding data generated with Huffman’s original method, including
the file formats mentioned in the introduction.

Recently, a lot of research regarding general GPU-based compres-
sion and decompression schemes has been accomplished. Sitaridi
et al. [23] published a specification of a file format enabling GPU
based compression and decompression, consisting of LZ77 compres-
sion and optional Huffman coding. In this format, the input is split
into chunks, which are compressed and decompressed individually.
Patel et al. [21] developed a similar block-based format, which, in
addition to Huffman coding, relies on the Burrows-Wheeler and
move-to-front transformation. However, practical decoding on the
GPU proved to be slower than the corresponding CPU-based im-
plementation for this approach.

Funasaka et al. [14, 15] presented a run-length- and dictionary
based compression scheme for GPUs, however, their approach to
entropy coding is only loosely related to Huffman’s method.

CULZSS [20] is an implementation of the Lempel-Ziv-Storer-
Szymanski (LZSS) algorithm for NVIDIA GPUs. Funasaka et al. also
implemented the Lempel-Ziv-Welch (LZW) [13] algorithm using
CUDA.

Klein and Wiseman [18] constructed a parallel algorithm for
multi-core processors capable of decoding data that has been com-
pressed using Huffman’s original method. It relies on the so-called
self-synchronizing property, which many Huffman codes possess.

Obviously, a parallel decoder exploiting the self-synchronizing
property can only be useful if at least a major part of all codes
encountered in practice possesses this property. In Section 3, we
will further discuss this problem and conclude that almost all codes
constructed by real-life encoders possess the self-synchronizing
property.

3 SYNCHRONIZATION
Klein and Wiseman’s decoder, as well as the GPU-based solu-
tion presented in this paper, exploit the self-synchronizing prop-
erty of Huffman codes. A Huffman code which possesses the self-
synchronizing property is called self-synchronizing. In the following,
we will explain the effect of this property by giving an example.
Afterwards, we will discuss under which conditions a Huffman
code is self-synchronizing, and substantiate that codes that are not
self-synchronizing are rarely encountered in practice.

Suppose that two decoders, A and B, are processing the message
001000111101001100 from Subsection 2.1. The process is illustrated
in Table 2. The first row represents the indices of the respective
bits, the second row contains the message itself. The last two rows
contain the output of the decoders. Vertical bars are used to indicate
codeword boundaries.

We assume that decoder A starts decoding the message from the
beginning, i.e. at index 0. Decoder B shall start decoding at index 3,
indicated by the arrow. As B starts processing the message at the
suffix of another codeword, its decoding will initially be erroneous.
B decodes the stringADE, whileA correctly decodesAEE. However,
bit 7 completes a codeword for both processes (indicated by the
circle), so B decodes the next symbol, and hence the rest of the
message correctly. Therefore, bit 7 is referred to as a synchronization
point, as both decoders became synchronous.

After a synchronization point has been encountered, decoders
will always generate the correct output. This property can be used
to construct amulti-threaded decoder:When partitioning amessage
into multiple blocks, codewords are cut by block boundaries. Thus,
the first symbols decoded in most of the blocks may be erroneous.
However, threads can overflow to subsequent blocks and correct
those errors until a synchronization point is encountered. The
decoder can easily detect synchronization points by keeping track
of codeword boundaries: when a codeword boundary detected by
the current thread is aligned with a previously detected boundary,
synchronization has been achieved.

There are two central questions regarding the capability of
this approach: which sets of Huffman codes posses the self-
synchronizing property, and what is the expected number of bits
that have to be processed before a synchronization point is reached?

Klein and Wiseman [18] already presented a thorough analysis
regarding the second question. They evaluated the expected number
of bits E by

E B
W

P(S) ,
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Table 2: Illustration of the self-synchronizing property.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0

↑ ◦
Decoder A A B A E E C D A
Decoder B A D E C D A

whereW is the weighted average codeword length and P(S) repre-
sents the probability of the synchronization point being directly
at the end of the codeword that was cut by the block boundary.
In practical tests, this estimation proved to approximate the mea-
sured number of bits well. Synchronization was achieved after less
than 73 bits on average for the nine tested plain text and binary
files. Hence, as the second question has already been addressed, the
remainder of this section will focus on the first question.

Assume an encoded message that is cut by a block boundary
within a codeword, such that at least n bits remain after the cut. We
shall consider the sequence of n bits following the cut point as a
concatenation of two sequences, y and z. Let x denote the sequence
preceding the cut point. z is referred to as a synchronizing sequence
for x and y if the concatenations yz and xyz both are sequences of
complete codewords. If this is the case, there is a synchronization
point after the last bit of z. In the example of Table 2, x equals 001,
y equals 00 and z equals 011.

Using this definition, Gilbert and Moore [16] differentiate prefix
codes with a maximal codeword length of greater than 1 into three
different categories. A given code is said to be

(1) completely self-synchronizing, if for each x and y there is a
synchronizing sequence z.

(2) never self-synchronizing, if there is no z such that z is a syn-
chronizing sequence for all x and y.

(3) partially self-synchronizing, if only for some x and y there is
a synchronizing sequence z.

Furthermore, a sequence z is universally synchronizing, if the
same sequence z is a synchronizing sequence for all x and y for
a given code. It can be shown that a prefix code C is completely
self-synchronizing, if, and only if, there exists a universal synchro-
nizing sequence for C . In the example, the sequence 011 is univer-
sally synchronizing, which makes the Huffman code constructed
in Subsection 2.1 a completely self-synchronizing code. Note that
the root of the Huffman tree is reachable via the sequence 011 from
any internal node.

A synchronizing sequence does not necessarily need to be a
codeword as in the example, but its suffix has to. Thus, if a given
code C is an affix code, meaning that no codeword in C is a proper
suffix of any other codeword, C must be never self-synchronizing.
It follows immediately that fixed-length codes are never self syn-
chronizing. Given a fixed-length code N B {00, 01, 10, 11} and an
arbitrary message that was encoded using N , a decoder starting
to process that message within a codeword will obviously never
be able to regain synchronization. Nevertheless, messages encoded
with fixed-length codes can easily be decompressed in parallel by
simply choosing the block size as a multiple of the codeword length.

sequence

subsequence unit

input

Figure 2: Exemplary input formatting for N = 8, Nu = 2,
B = 4 and hence, Nb = 2.

Apart from the very common fixed-length codes, there also exist
infinitely many variable-length codes that are never self synchro-
nizing. However, the work of Gilbert and Moore revealed that those
codes are nevertheless extremely rare, and that completely- or
partially-self synchronizing codes occur much more commonly. It
was stated further that it is very difficult to construct examples for
never self-synchronizing codes without any deliberate intention.
Klein and Wiseman [18] state that only for rare artificial distribu-
tions they were able to construct affix codes, which, in those cases,
had to be carefully designed. Fraenkel and Klein [11] came to a
similar conclusion in their work.

Another indicative result in regard to the self-synchronizing
property is the following theorem, as defined and proven by Freiling
et al. [12]: LetQ be the set of all complete prefix codes and let β(n) be
the number of codes inQ with n codewords. Let α(n) be the number
of codes in Q with n codewords that posses a certain property. If

lim
n→∞

α(n)
β(n) = 1,

we say that almost all codes in Q have that certain property.
The theorem states: Almost all complete prefix codes have a self-

synchronizing string.
From those results, it can safely be concluded that the approach

tomassively parallel decoding presented in this paper can be applied
effectively and reliably in practical applications.

4 MASSIVELY PARALLEL DECODING
4.1 Parallel Algorithm Design
The algorithm presented here divides the input data into N equally
sized chunks, in the following referred to as subsequences. Each
subsequence is further split into Nu smaller chunks, referred to as
units. B adjacent subsequences are grouped into a sequence. If N
is not a multiple of B, the last sequence will contain less than B
subsequences. In consequence, the number of sequences Nb equals
⌈N /B⌉. Input data is accessible at unit level. Figure 2 illustrates this
division step for an example with eight subsequences.
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Figure 3: Illustration of Phase 1.

The decoder allocates simple arrays for input and output, as
well as an auxiliary array of size N used to detect synchronization
points, in the following referred to as sync_info. The elements
of sync_info are structures, consisting of three integers: (unit,
bit, num_symbols). The element at index i in the sync_info
array corresponds to the input subsequence of the same index. The
unit and bit fields are used to save the presumed position of the
last codeword’s first bit in the respective subsequence. Analogously,
the num_symbols field holds the presumed number of symbols in
that subsequence.

A second auxiliary array is required to record in which sequences
synchronization has been achieved. Corresponding to the num-
ber of sequences, its size equals Nb and the elements it contains
are Boolean. In the following, this array will be referred to as

sequence_synced. After all required data structures are set up,
decoding consists of four phases:

Phase 1: Intra-sequence synchronization.
Phase 2: Inter-sequence synchronization.
Phase 3: Exclusive prefix sum over all num_symbols fields in

the sync_info array to determine output array indices of
decoded strings.

Phase 4: Write the output utilizing the information of the
sync_info array.

Note that no output is written in phases 1 and 2, as their purpose
is to locate the correct codeword boundaries inside each subse-
quence. In Phase 1, N threads are launched, each of which is as-
signed to decoding a different subsequence. Once a thread finishes
decoding at the last complete codeword, it writes the position of the
last codeword’s first bit as well as the number of decoded symbols
to the corresponding sync_info entry. In order to prevent data
races, a thread has to wait at this point until all threads of the same
thread block have finished decoding their assigned subsequence.

Algorithm 2: Phase 1, from a thread’s perspective
input :An array of subsequences SQ of size N
output :An array of triples sync_info of size N

1 current_subseq← global thread id;
2 current_subseq_in_block← local thread id;
3 last_codeword← decode_subseq(SQ, sync_info,

current_subseq, false);
4 ++current_subseq;
5 ++current_subseq_in_block;
6 __syncthreads();

7 sync_achieved← false;
8 for i ← 1 to B do
9 if not sync_achieved and current_subseq_in_block < B

then
10 last_codeword← sync_info[current_subseq];
11 current_codeword← decode_subseq(SQ, sync_info,

current_subseq, true);
12 if last_codeword equals current_codeword then
13 sync_achieved← true;
14 end
15 else
16 sync_info[current_subseq]← current_codeword;
17 end
18 end
19 ++current_subseq;
20 ++current_subseq_in_block;
21 __syncthreads();
22 end

Part (1) of Figure 3 shows an example of this situation: Five
subsequences (horizontal bars) are being processed by five parallel
threads (arrows) which pass several codeword boundaries (vertical
bars). Threads 0, 1, 2, and 4 detect erroneous codewords (dashed)
before reaching a synchronization point (red). In consequence, they
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decode the rest of the subsequence correctly, including the bound-
ary of the last complete codeword (bold line). Subsequence 3 does
not contain any synchronization point, hence all boundary posi-
tions detected by Thread 3 are incorrect, including the last one
(bold and dashed).

Once threads have synchronized, they continue with overflowing
to the next subsequence (illustrated in Part (2) of Figure 3) whereby
decoding is picked up directly after the last complete codeword
in the previous subsequence. Each thread then finishes decoding
the current subsequence, possibly passing a synchronization point.
In this case the position of the last codeword in the subsequence
detected by the current thread will match the one detected by the
previous thread. The current thread can validate that by consult-
ing the sync_info array at the respective index. If the positions
match, the thread disables itself. Otherwise, the thread waits for
the other threads to finish decoding their subsequences and then
overwrites the position data in the sync_info entry with its own
values. The number of symbols detected is updated as well. After-
wards, all threads that are still active will overflow to the following
subsequences as they have not passed a synchronization point yet.
Thread 2 in Figure 3 corrects the position of the last codeword in
Subsequence 3 but remains enabled as it was not possible to achieve
synchronization. This procedure is repeated B times such that the

Algorithm 3: decode_subseq, decoding a single subsequence
input :An array of subsequences SQ of size N

An array of triples sync_info of size N
An index i
A boolean value overflow

output :A triple of integers (unit, bit, num_symbols)

1 if overflow then
2 pos_last← sync_info[i − 1];
3 decode the subsequence at i − 1, starting at pos_last;
4 overflow to the subsequence at i;
5 end
6 decode the subsequence at i;
7 unit← index of the unit within the subsequence where the

last bit of the last complete codeword was located;
8 bit← index of the last bit;
9 num_symbols← number of symbols found in the

subsequence;
10 return (unit, bit, num_symbols)

first thread in a sequence would be able to reach the last subse-
quence. Thread 3 in Part (3) of Figure 3 is the only active thread
after the first iteration, and detects synchronization in Subsequence
4, thereby completing Phase 1 for the example.

Disabled threads need to wait for other threads in every iteration,
but will not perform any further tasks. This is necessary for the
algorithm to comply with the limitations of GPU architectures. In
addition, if any thread reaches the end of the last subsequence in a
sequence, it will disable itself regardless of whether synchronization
was achieved or not. Hence, threads never overflow to the next
sequence in this first phase. Pseudocode for the first phase is shown

in Algorithm 2 and for the function to decode a single subsequence
in Algorithm 3.

Phase 2 serves the purpose of achieving synchronization between
sequences. Nb threads are launched. Each thread is assigned to a
sequence, beginning with the second one, and starts to decode
the first subsequence by continuing at the last subsequence of
the previous sequence. Afterwards, each thread overflows to the
following subsequences, correcting any erroneous information in
the sync_info array. If a thread detects a synchronization point in
Sequence i , it sets the flag at the i-th index of the sequence_synced
array and disables itself afterwards. Analogously to Phase 1, threads
wait for all other threads from the same thread block to finish
with their subsequences before they continue decoding. Again,
this procedure repeats B times, so each thread can reach the last
subsequence of the sequence it was assigned to. Phase 2 is repeated
until all flags in sequence_synced are set. As soon as this is the case,
synchronization has been achieved for all subsequences and hence,
sync_info contains the correct codeword positions and symbol
counts. Pseudocode for the second phase is shown in Algorithm 4.

Algorithm 4: Phase 2, from a thread’s perspective
input :An array of subsequences SQ of size N

An array of triples sync_info of size N
An array of flags sequence_synced of size Nb

output :The modified sync_info array
The modified sequence_synced array

1 current_subseq← (global thread id) ·B + B;
2 current_block← thread block id +1;

3 sync_achieved← false;
4 for i ← 0 to B do
5 if not sync_achieved then
6 last_codeword← sync_info[current_subseq];
7 current_codeword← decode_subseq(SQ, sync_info,

current_subseq, true);
8 if last_codeword equals current_codeword then
9 sync_achieved← true;

10 sequence_synced[current_block]← true;
11 end
12 else
13 sync_info[current_subseq]← current_codeword;
14 end
15 end
16 ++current_subseq;
17 __syncthreads();
18 end

Phase 3 performs a parallel exclusive prefix summation on the
num_symbols fields in the sync_info array. When finished, the
value of num_symbols at indexm equals

m∑
i=1

sync_info[i − 1].num_symbols

with sync_info[0].num_symbols set to 0 afterwards. Now, for each
subsequence sync_info contains the index at which the decoded

user
Highlight
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string has to be written to the output. As parallel scan algorithms
have already been subject to extensive research, they are out-of-
scope for this paper.

In Phase 4, N threads are launched. Like in Phase 1, Thread i
is assigned to decode Subsequence i . Using the information from
sync_info[i − 1] and sync_info[i], Thread i is able to correctly
decode the contents of that subsequence and write them to the
correct index in the output array. Algorithm 5 lists the pseudocode
for the complete decoding process from the perspective of the host
system.

Algorithm 5: GPU-based Huffman decoding
input :An array in of compressed data
output :An array out containing the decoded data

1 divide in into units and subsequences;
2 allocate all arrays necessary;
3 transfer in to the device;
4 launch phase 1;
5 while there are unset flags in sequence_synced do
6 launch phase 2;
7 end
8 launch phase 3;
9 launch phase 4;

10 transfer the output from the device to out ;

4.2 CUDA Implementation
For implementation and testing, NVIDIA’s CUDA SDK has been
used. However, as the algorithm does not rely on any specific CUDA
features, implementations for related parallel programming inter-
faces such as OpenCL are conceivable.

In addition, we have created an implementation for multicore
processors using native C++-11 threads. Here, the input is split
into N sequences for N threads. Each thread is assigned to a se-
quence for decoding, and overflows to the next sequence. In this
case, subsequences only serve the purpose of recording codeword
boundaries.

We compare both implementations to Zstandard’s state-of-the-
art Huffman decoder. By default, this decoder only supports input
of a size up to 128 kilobytes, so it had to be modified in order
to remove this restriction for the tests. Using special codeword
tables, Zstandard’s decoder is capable of decoding one, two or four
symbols with a single access to the table. We used the second of
those variants in our tests. This decoder has a look-ahead distance
of a certain number of bits. If two complete codewords are contained
within that certain number of bits, both of themwill be decodedwith
a single table access. However, if the codewords are too long, they
will not fit entirely inside the look-ahead distance and only the first
symbol will be decoded. Our CPU- and GPU-based implementations
decode only one symbol per access.

For all three implementations, decoding works by looking up the
next n bits from the input in a hash table using direct addressing,
i.e. n bits are used as the key. The length of the next codeword, k , is
retrieved and k bits are removed from the input. The corresponding

symbol is stored together with its length. This technique works for
a maximum codeword length of up to approximately 13, before the
table becomes too large to fit inside the L1-Cache of the respective
processor. Thus, the maximum codeword length has to be limited
at encoding time. In practice, however, the impact on compression
ratio is marginal in most of the cases. In our tests, a maximum
codeword length of 11 has been used throughout, which also is the
default for Zstandard. For the CUDA-based implementation, the
table is kept in texture memory to achieve maximum throughput
at random access. Input and output, as well as the sync_info and
sequence_synced arrays are kept in global memory. The units a
subsequence consists of are implemented as 32 bit wide unsigned
integers. For all tests, decoded symbols have the size of one byte.

Phases 1, 2, and 4 have been implemented as individual CUDA
kernels. To calculate the parallel prefix sum in Phase 3, the
exclusive_scanmethod from the Thrust library [4] has been used.

Once all necessary arrays are allocated in global memory, the
input is being copied to the device. Next, the kernel for Phase 1
launches. Threads decode the individual subsequences and update
the sync_info array. Necessary thread block synchronization is
realized by a __syncthreads() command.

Phase 2 executes immediately after Phase 1 has been completed.
The kernel is launched repeatedly, until all flags in sequence_sync
are set. The barrier inside the kernel is again realized by a
__syncthreads() command. The barrier between kernel calls is im-
plemented on the host. After each call, sequence_sync is checked
for unset flags. If there are any, the kernel is relaunched. Even
though this procedure is executed sequentially on the host system,
the associated overhead proved to be only marginal. With CUDA 9
and higher, it is possible to synchronize threads from different
thread blocks using cooperative groups. This feature allows threads
to overflow from one sequence to the next without the need for
interaction with the host, rendering multiple kernel launches un-
necessary. However, inter-block synchronization can be fast even
without the use of cooperative groups.

After Phase 2 is complete, the parallel prefix scan over the
sync_info array is performed. When finished, the kernel imple-
menting Phase 4 is launched, and all subsequences are being de-
coded using the correct starting positions. The output is written to
global memory.

For all phases, a thread block size of 128 proved to be optimal in
terms of decoding speed on all tested devices. A subsequence size
of 4 was found to be a good compromise between performance and
memory consumption in most of the test cases.

Dramatic performance degradations were observed with increas-
ing compression ratios. The reason for that is the increasing number
of shorter codewords in the input, implying a higher number of
write operations per thread, as subsequence size remains constant
throughout decoding. The problem was solved by implementing
a simple mechanism which determines a reasonable subsequence
size a-priori.

As some adjacent threads in Algorithms 2 and 4 follow different
execution paths inside the main loop, branch divergence may oc-
cur. However, restructuring the source code in order to keep more
threads in a warp synchronized did not yield any significant per-
formance improvement, as the kernel’s main bottleneck is related
to the device memory access latency.
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5 EXPERIMENTAL RESULTS
5.1 Testing environment
We have used three different systems to evaluate the performance
of our implementation:

A: Core i7-4790 CPU (4 cores in total operating at 3.60 GHz)
running Ubuntu 16.04.4 LTS with Linux kernel 4.4.0-62

B: Core i7-2700K CPU (4 cores in total operating at 3.50 GHz)
with an attached Geforce TITAN XP GPU running Ubuntu
16.04.4 LTS with Linux kernel 4.13.0-37.

C: Dual Xeon E5-2683v4 (32 cores operating at 2.10 GHz) with
attached Geforce GTX 1080 GPU and TITAN V GPU running
Ubuntu 16.04.4 LTS with Linux kernel 4.4.0-116.

The CPU-based decoders (including Zstandard) are compiled
with GCC, version 5.4.0, the GPU-based decoders are compiled
with NVCC, v.9.1.85 for the TITAN V and v.8.0.61 for the remaining
devices. SystemA is used to benchmark our CPU-based implementa-
tion, as well as Zstandard’s decoder. Our reported GPU benchmarks
do not include the cost of memory transfers between CPU and GPU;
i.e. we place the compressed input and the decompressed output in
GPU device memory and ignore PCIe transfers.

5.2 Test data
The following datasets are used for testing.

enwik9: [19] Excerpt of the English Wikipedia, consisting of
UTF8-coded XML data (raw: 1 GB, compressed 0.65 GB, ratio:
1.52).

flan_1565: [5] Sparse matrix from the SuiteSparse Matrix Col-
lection (raw: 1.6 GB, compressed: 0.78 GB, ratio: 2.0).

mozilla: [6] tar-compressed archive of Mozilla 1.0 (raw: 51.2
MB, compressed 40 MB, ratio: 1.28).

webster: [6] 1913 Webster Unabridged Dictionary in HTML
format (raw: 41.5 MB, compressed 26 MB, ratio: 1.6).

In addition to the real-world datasets, we have generated twenty
different sets of random data, each of size 1 GB. For every generated
file, the frequency of certain symbols was increased, leading to
higher compression ratios and steeper Huffman trees. The ratio of
the compressed data ranges from 1.2 to 7.6. Note that ratios greater
than 4 are unrealistic for Huffman coding to achieve for real-world
inputs.

5.3 Results
We have tested our CPU-based implementation on System A to
evaluate multi-core performance at high clock speeds. The line
graph in Figure 4 shows the throughput achieved for the enwik9
and flan_1565 datasets with respect to an increasing thread count
up to 8, while threads 5 to 8 are hyper-threads. With 8 threads, a
throughput of 716 MB/s is achieved for enwik9, and 649 MB/s for
flan_1565. The results indicate that the decoder scales well over
multiple cores and benefits from hyper-threading.

In Figure 5, the throughput of the CPU-based decoder (running
8 threads) is compared to the single- and double-symbol variants
of the modified Zstandard Huffman decoder for the real-world
datasets. In the bar chart, as well as in the remainder of this sec-
tion, the single-symbol variant is referred to as zstd_X1 and the
double-symbol variant is referred to as zstd_X2. As zstd_X1 is

Figure 4: Throughput of the CPU based implementation for
multiple threads

Figure 5: Throughput of the CPU based implementation (8
threads) compared to Zstandard’s decoder

single-threaded and always decodes one symbol per table access,
its throughput does not vary for different inputs. zstd_X2 is also
single-threaded, however, its performance increases for inputs with
shorter codeword lengths, as it is the case with the flan_1565
dataset. zstd_X1 constantly delivers 294 MB/s, while zstd_X2 de-
livers 412 MB/s for the mozilla dataset, 588 MB/s for the webster
dataset, 716 MB/s for the enwik9 dataset and 649 MB/s for the
flan_1565 dataset. For the webster dataset, zstd_X2 outperforms
our own decoder, and for flan_1565, the performance is compara-
ble.

Figure 6 shows the speedup achieved by the GPU-based decoder
relative to zstd_X2 for the three tested GPUs. For all datasets,
speedup greater than 10 can be achieved, with the TITAN V reach-
ing values of up to 31.1 for the webster dataset and 27.9 for the
enwik9 dataset. Figure 7 shows the throughput achieved by the
GPU-based decoder, again, relative to the values of zstd_X2. The TI-
TAN V achieves a throughput of 18.3 GB/s for the webster dataset
and 9.3 GB/s for the mozilla dataset. None of the GPUs achieve a
throughput of less than 5 GB/s.

We have also measured speedup and throughput for the artificial
datasets. Figure 8 shows the throughput achieved by the CPU-based
implementation, utilizing 8 threads, in comparison to zstd_X1
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Figure 6: Speedup for real-life datasets against zstd_X2 on
various GPUs.

Figure 7: Throughput for real-life datasets on various GPUs.

and zstd_X2. Again, zstd_X1 delivers constant performance at
304.9 MB/s. zstd_X2 achieves 404 MB/s on the first dataset, which
increases up to 669.8 MB/s at a compression ratio of 7.63. Our
multi-threaded decoder delivers results from 775.3 MB/s on the
first dataset, up to 980.8 MB/s on the last set. On average, zstd_X2
and our multi-threaded decoder achieve throughput rates of 646.23
MB/s and 867.1 MB/s respectively.

Figures 9 and 10 show the speedup and throughput of our GPU-
based implementation relative to zstd_X2 for three different GPUs.
At increasing compression ratio, the GTX 1080 on average achieves
a speedup of 14.63 and a throughput of 9.34 GB/s. The TITAN XP
achieves an average speedup of 21.32 and a throughput of 13.68
GB/s. The TITAN V achieves a speedup of 34.31 and a throughput
of 21.89 GB/s on average. At a compression ratio of about 6, the per-
formance of the TITAN V starts to diminish. For those compression
ratios, the minimum subsequence size of 1 is chosen automatically,
however, the subsequences are still to coarse to fully saturate the
processing units of the TITAN V. This can be circumvented by
choosing units of a size less than 32 bits.

6 CONCLUSION
In this paper, we have presented a fully parallel, GPU-based Huff-
man decoder. We have reasoned why almost all Huffman codes
possess the self-synchronizing property, and presented a practical
implementation using CUDA based on that property.

Figure 8: Throughput achieved by Zstandard and the multi-
core variant.

Figure 9: Speedup relative to Zstandard’s Huffman decoder
for various GPUs.

We have evaluated its performance using real-world and artifi-
cially generated datasets. On a NVIDIA TITAN V GPU, speedups of
up to 30 over Zstandard’s double-symbol decoder can be achieved.

Apart from being extremely fast, our decoder works with inputs
encoded using Huffman’s original method, and, is therefore suited
to decode established formats like MP3 and JPEG files. Sodsong
et al. [24] developed a GPU-based JPEG decoder. However, the
codeword positions are sequentially detected on the host system.
Employing our decoder, this step becomes unnecessary, making it
possible to decode JPEG files using solely the GPU.

Our reported GPU benchmarks exclude the cost of transferring
data between CPU and GPU using PCIe or NVLink technology.
Transferring compressed data from host to device could be over-
lapped with kernel execution by a streaming approach. This would
require partitioning the input data stream into batches and stor-
ing the sync_info entry of the CUDA thread responsible for the
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Figure 10: Throughput on various GPUs.

last subsequence of the current batch as input for the subsequent
batch. Transferring decompressed data back to the CPU is often
not required in application scenarios where further processing of
the decompressed data is performed on the device.

Even further speed improvements could be achieved by using
multiple GPUs. Exploiting this additional level of parallelism would
in turn require communicating a limited amount of sync_info
data between GPUs.

The implementation of our massively parallel Huffman decoder
is available at https://github.com/weissenberger/gpuhd.
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