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Abstract— Time series data are evidently ubiquitous, as we could 
see them in all kinds of domains and applications. As a result, 
various data mining tasks are often performed to discover useful 
knowledge, including commonly performed tasks like time series 
classification and clustering. Dynamic Time Warping (DTW) is 
accepted as one of the best available similarity measures, which 
has been used for distance calculation in both classification and 
clustering algorithms. However, its known drawback is its 
exceedingly high computational cost. Recently, data condensation 
method through template averaging is applied; each class of data 
can be represented by one template which could greatly speed up 
the classification with DTW especially in large datasets, with the 
trade off in lower classification accuracies. Subsequently, various 
attempts have been made to increase the number of 
representative templates to boost up the accuracies while keeping 
the computation complexity not too high. However, those 
algorithms still suffer from many predefined and hard-to-set 
parameters, while some require high computation time for high 
accuracy results. Therefore, in this work, we propose an accurate 
yet simple template averaging method that is parameter free and 
has much less computation time. The experiment results on 20 
UCR time series benchmark datasets demonstrate that our 
proposed method can achieve a few orders of magnitude speedup 
while maintaining high classification accuracies. 

Keywords-component; Time Series Classification, Dynamic 
Time Warping, Time Series Template Averaging 

I.  INTRODUCTION  
Time series classification is widely used in many domains 

such as medicine, finance, and education, among many others 
[1-5]. One nearest neighbor (1-NN) classifier with Dynamic 
Time Warping (DTW) distance function is one of the most 
popular time series classifiers, which has been demonstrated to 
work extremely well and quite difficult to beat. Although 1-NN 
with DTW is quite effective, it still has the known weaknesses 
in its high computational time especially in very large training 
data. Therefore, shape-based averaging technique [6] has been 
proposed to meaningfully reduce the number of instances in the 
training data, representing each class of data by a single 
template or class prototype through DTW averaging. The class 
templates are then used instead of the original training data in 
the classification task. This DTW averaging technique can also 
be used in time series clustering algorithms, such as a popular 

K-means clustering for time series data, where an average of 
the cluster is needed to represent the cluster center.  

However, for time series classification problems, it has 
been demonstrated that reducing the training data to one 
template per class is often insufficient and could greatly reduce 
the accuracies, as subclasses are typically present in most real-
world datasets [7-10]. Fig.1 shows an example of data in the 
same class with two noticeable characteristics that can be 
divided to two subclasses. Therefore, combining the different-
shape sequences across subclasses would result in the template 
that loses the class’s characteristics and looks like neither of 
the subclass sequences. Being aware of this problem, most 
recently, Petijean et al. [11] have proposed a novel technique to 
discover subclasses using clustering techniques, such as K-
means, K-medoids, and Agglomerative Hierarchical Clustering 
(AHC), to group the data within each class into two or more 
subclasses before shape averaging. The experiment results 
show that their approach can achieve exceptionally high 
classification accuracy, and even beat the full 1-nearest 
neighbor (1NN) Classification with DTW. Nevertheless, its 
major drawback is its high computation time and the need in 
hard-to-predefined parameters. 

 

 

 

 

 

 

 

 

 
 
 

Class 1 

Subclass 1 Subclass 2 
Figure 1. An example of class 1 of Gun-point dataset with two obvious 

characteristics that can be nicely grouped into two subclasses. 
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Therefore, our main objective is to develop a very efficient 
and parameter-free template averaging method, yet maintaining 
high classification accuracies. Our proposed method simply 
uses the distances between data sequences to split data into 
subclasses before shape averaging, where nearest neighbor 
information is utilized to automatically determine the 
parameter in the averaging steps. Thus, our proposed method 
can quickly select the proper number of templates for each 
class. Then, the shape-averaging algorithm based on DTW will 
produce high-quality templates that would contribute to higher 
classification accuracies. 

The rest of the paper is organized as follows. The next 
section gives brief details on background and related works. 
Section 3 provides details of our proposed method. Section 4 
provides details on our experiment setup, evaluation methods, 
results, and discussion, and the last section concludes our work. 

II. BACKGOUND AND RELATED WORK 

A. Dynamic Time Warping (DTW) 
For time series data, Dynamic Time Warping (DTW) is a 

similarity measure that has gained its popularity over Euclidean 
distance metric due to its higher accuracy and more flexibility 
in non-linear alignments between two data sequences [12]. 
Given two time series sequences, Q and C of length m and n, 
respectively: 

 � ����
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To align the two time series, an  by matrix is  
constructed to hold cumulative distances  between all 
pairs of data points from these two time series sequences. The 
cumulative distance in each cell is calculated from a sum of the 
distance of the current element, , and the 
minimum of the cumulative distance of the three adjacent 
elements: 

� ����

Dynamic programming is used to obtain optimal alignment 
and cumulative distance from the elements (1,1) to (m, n). The 
optimal warping path  is obtained 
by backtracking. The DTW distance is calculated by equation 
(4). Note that the squared root can also be omitted to speed up 
the calculation. 

  (�) 

B. Dynamic time warping Barycenter Averaging(DBA) 
DBA is the most recently proposed time series averaging 

method for DTW that has shown to outperform all existing 
averaging techniques [11][13]. Unlike previous approach that 
can average 2 sequences at a time, DBA simultaneously 
averages all of the sequences together. Consequently, DBA can 
reduce the effect of the averaging order. However, DBA 
requires a user-specified parameter, which is the number of 

iterations in the averaging process. In each iteration, DBA 
consists of two important steps: 

	 Compute DTW distances between the selected pivot 
sequence and other sequences to obtain the warping 
paths that will be used to align all of the sequences. 

	 Once the warping paths are obtained, they are used to 
align all of the sequences and calculate the average 
sequence, and this new averaged sequence will be a 
new pivot in the next iteration. 

The pseudocode of DBA is shown in Table I. 

TABLE I. GENERAL ALGORITHM FOR DBA [10] 

Algorithm 1. DBA (D, I ) 
 
require D : The set of sequences with length l 
require I : number of iterations 
 
 
T  = medoid (D) 
Do I times T = DBA_update ( D,T ) 
return T 
 
Algorithm 2. DBA_update(D,P) 
 
require P : the average sequence to refine (with length l) 
require D : the set of sequences with length l 
 
 
alignment = [Ø,Ø,...,Ø]  //array of empty set with length l 
for each S in D 
 alignment_for_S = DTW_multiple_alignment (P,S) 
 for i = 1 to l  
  alignment[i] = alignment [i] U alignment_for_S[i] 
 end for 
end for 
T = sequences with length l 
for i = 1 to l  
 T(i) = mean(alignment[i]) 
end for 
return T 
 
Algorithm 3. DTW_multiple_alignment (R,S) 
 
require R : the main sequence for which the alignment is computed 
require S : the sequence to align to R using DTW 
 
 
cost = DTW(R,S) //compute the cumulative matrix of DTW between R 
and S 
L = length(R) 
alignment = [Ø,Ø,...,Ø] //array of empty set with length L 
[i , j] = size (cost) //iterates over the element of R and S 
while (i>1) && (j>1)  
 alignment[i] = alignment[i] U S(j) 
 if (i == 1) j = j-1 
 else if (j == 1) i = i-1 
 else  
  score = min (cost[i-1][j-1],cost[i,j-1] , cost[i-1,j]) 
  if (score == cost[i-1][j-1] ) 
   i = i -1 
   j = j - 1 
  else if ( score == cost[i-1][j]) then i = i - 1 
  else j = j -1 
  end if 
 end if  
end while 
return alignment 
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C. Related work 
There are good quantities of works in time series averaging 

methods [6,11,13-15]. Started in 1996, Gupta et al. proposed 
method that used nonlinear alignment to average two time 
series data call Non-linear Alignment and Averaging Filters 
(NLAFF) [6]. This method averages sequences in hierarchical 
manner, with some limitation that the number of sequences to 
be averaged should be a power of two to reduce biases in the 
averaged results, and the order of sequences to be averaged   
has large effect on the shape of the template. In 2009, 
Prioritized Shape Averaging (PSA) [14] was proposed to 
heuristically rearrange the order of the sequences before 
averaging based on their distances. In 2011, Petitjean et al. 
proposed Dynamic time warping Barycenter Averaging (DBA) 
[13] that can average all sequences at once to reduce the effect 
from different data ordering and to speed up the calculation. 
Next, in 2012, Shape-based Template Matching Framework 
(STMF) [15] based on PSA that utilizes both cubic spline 
interpolation and weights to reduce the effect of the data that 
are far from the centroid. Finally, in 2014, Petitjean et al. [11] 
proposed a state-of-the-art Nearest Centroid Classifier (NCC) 
that applies DBA to 1-NN classification with DTW by using 
K-means and other clustering algorithms to condense or group 
the data before averaging, which in turn impressively improves 
the classification accuracies by very large margins, and in some 
cases even outperforms 1-NN classification accuracies that 
uses the whole training data. However, all of the methods that 
cluster data before averaging do have high computation time 
and have to spend a lot of time on parameter tuning to get good 
results.  

In this work, we proposed a parameter-free shape averaging 
method based on DBA, which could speed up the averaging 
process by large margins while maintaining satisfactorily high 
classification accuracies.  

III. PROPOSED METHOD 
Our proposed method consists of three major steps: finding 

initial pivoting sequence for each class, subclass splitting, and 
shape averaging.  

A. Find initial pivoting sequence for each class 
In this step, we propose a quick approach to pick an initial 

sequence in each class, which will be used in the next step to 
discover subclasses and later for sequence averaging. Note that 
we can always select the sequence at random, but good-quality 
sequence will lead to better classification accuracies. Given 
that data T is a set of k time series sequences of the same class 
with the length l as follows: 
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We then sum up all the values within each sequence to 
calculate the mean value to this particular class of data. 

 � ����
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The sequence that has its sum closest to the mean will be 
selected as the initial pivot in the next step.  

� �� ����

B. Subclass splitting 
In typical training data, sequences in one same class may 

have different characteristics, so called subclass. If we average 
sequences from different subclasses together, it usually create 
the template that looks like none of the sequences being 
averaged from. Therefore, if we could discover subclasses 
within each class of the data before averaging, the resulting 
template will be more expressive and distinguishable, which 
would result in better classification results. 

First, we use the sequence selected from the previous step 
as the pivot for the subclass splitting steps: 

	 Calculate Euclidean distance between the pivot 
sequence and all other data sequences within the class. 

	 Sort these distance values, and then compute adjacent 
discrepancies of the values. Then the standard 
deviation value of these adjacent discrepancies will be 
used as a threshold to split data into subclasses. 

	 Separate the data into subclasses by splitting at the 
sequence that has difference larger than half of the 
computed standard deviation [16]. 

The pseudocode of subclass splitting is shown in Table II. 

TABLE II. ALGORITHM FOR SUBCLASS SPLITTING 

Algorithm 2. SubclassSplitting (D,P) 
 
require D : the set of sequences with length l 
require P : pivot data that used to calculate distance  
 
       
Dist = [Ø,Ø,...,Ø]  
//Array of empty set with length equal to number of data in D. 
for each S in D 
 for i = 1 to l 
  Dist[S] = Dist[S] + (Pi - Si)2  
 end for 
                  Dist[S] = sqrt(Dist[S]) 
end for 
// compute the distance between pivot and all sequences 
Sort_ascending (Dist) 
Diff = [0,0,...,0] //Array of zeros with length equals to number of data in D-1. 
 for i = 2 to number of data in D 
 Diff = Dist[i] - Dist[i-1]  
end for 
// compute the difference between all distances 
T = Std(Diff) / 2 ; 
Class = [Ø, Ø,..., Ø]  
//Array of empty set with equal to number of data in D + 1.  
Class[1] = 1  //Assign Class 1 to pivot data 
C = 1; //variable to collect subclass number 
for i = 1 to number of data in D - 1 
 if (i = 1 ) Class [i+1] = 1 //Assign Class 1 to first data 
 else if ( Diff [i] > T )   
  Class = C+1 
  C = C+1 
 end if 
end for 
return Class 
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The main reason why we use Euclidean distance instead of 
DTW in this step is that other than being much faster to 
compute, Euclidean distance can better illustrate the 
differences between the two sequences than DTW could [17]. 
As demonstrated in Fig.2, DTW uses non-linear alignment to 
‘warp’ two sequences with discrepancies in the X axis together 
very nicely, but it may not be suitable to split data into 
subclasses where all discrepancies should be counted; 
Euclidean distance can show underlying difference between 
sequences (two blue shaded areas) better. 

 
Figure 2. DTW could ‘warp’ two sequences with discrepancies in the X axis 

together very nicely and does not quite catch the underlying difference, 
whereas Euclidean distance can show underlying difference between 

sequences (two blue shaded areas) better. 

C. Shape Averaging 
In this step, we globally average all the sequences at the 

same time within each subclass using DBA algorithm 
described in section II, but instead of using DTW calculation to 
find medoid of each class, we use much faster method to find 
the pivot that can obtain satisfying template when averaging. 
We perform an experiment that shows the importance of 
choosing the good pivot for the algorithm. Table III shows the 
error rates of Synthetic control and SwendishLeaf dataset when 
using different pivots for averaging. Though our approach may 
not guarantee the optimal values, it always picks a ‘better-than-
average’ pivot.  

TABLE III. ERROR RATES OF SYNTHETIC CONTROL AND SWEDISHLEAF 
DATASET WHEN USING DIFFERENT PIVOTS 

Order of pivot 
Error rate (%) 

Synthetic_control SwedishLeaf 

1st 0.67 21.12 
2nd 0.67 21.12 
3rd 1.67 21.12 
4th 1.67 22.08 
5th 0.67 20.00 
6th 1.33 23.20 
7th 1.67 21.60 
8th 1.00 21.76 

Our chosen pivot 0.67 21.12 
 

Our DBA pivot is selected by the following algorithm. 
Given Q is a set of k time series sequences, each with length l. 

A k-by-k matrix, E, is created to hold Euclidean distances 
between all pairs of sequences (n, m) in Q, and another k-by-k 
matrix, NN, is created to hold nearest-neighbor points. 

 � �����

The nearest neighbor for each time series sequence is 
determined by looking at the distance values within matrix E. 
An example of NN-points calculations is shown in Fig.3, 
where sequences 1, 2 and 3 are of class 1 and sequences 4 and 
5 are of class 2. After the distance calculation, we could scan 
matrix E row by row to locate the smallest distance (shaded 
cells). If the sequence itself and its nearest neighbor have the 
same class label, we will increment NN-point in the 
corresponding NN matrix cells by one; the rest of the cells in 
the NN matrix will still be zeros. After summing the points in 
each column, the sequence with highest NN-points in each 
class will be the pivot for DBA method. In this example, Seq 1 
and Seq 4 with the highest sum of NN-points will be used as a 
pivot for class 1, and 2, respectively. 

E Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 

Seq 1 (1) - 2 3 8 7 

Seq 2 (1) 2 - 5 3 5 

Seq 3 (1) 3 5 - 6 6 

Seq 4 (2) 8 3 6 - 4 

Seq 5 (2) 7 5 6 4 - 

 

NN Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 

Seq 1 (1) - 1 0 0 0 

Seq 2 (1) 1 - 0 0 0 

Seq 3 (1) 1 0 - 0 0 

Seq 4 (2) 0 0 0 - 0 

Seq 5 (2) 0 0 0 1 - 

Sum of 
NN-point 2 1 0 1 0 

Figure 3. Example of distance matrix E, and NN-point matrix. Highlighted 
cells denote the nearest-neighbor information. 

After DBA is complete, we will obtain several templates for 
each class that will be used as representatives of the training 
data ready for further classification or other tasks. 

IV. EXPERIMENT AND RESULTS 
In our experiments, 20 benchmark datasets are used to 

compare the computation time for template construction 
between our method and the state-of-the-art NCC approach, as 
well as to compare classification error rates under DTW among 
our proposed method, a single-template STMF approach, and 
the state-of-the art NCC approach. The templates are 
constructed in each class of the training data, and then are used 
to classify test data using 1NN classifier under DTW. All of the 

DTW 

Euclidean 
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experiments were carried out using MATLAB software 
(MATLAB2010b) on desktop with core i7-2600K 3.40 GHz 
CPU 16GB of RAM. 

A. Datasets 
The 20 benchmark datasets are obtained from the UCR 

Time Series Classification Archive [18]. The information about 
size of the training data, size of the testing data, the number of 
classes, and length of sequences can be found in the archive. 
All datasets are z-normalized so that every data sequence will 
have a zero mean and a standard deviation of 1. 

B. Preprocessing  
We use the same train/test split as provided on the Time 

Series Classification Archive. For template construction, only 
the training data is used. In STMF, it averages every training 
data in each class to produce one template per class, whereas 
NCC uses K-means to cluster each class with various K values, 
and then averages sequences in the same cluster to produce 
templates, yielding multiple templates for each class. Our 
proposed work also constructs multiple templates, but no 
parameter is required from the user, then automatically decides 
and constructs multiple templates for each class. After template 
construction process, only these templates will be used as a 
new set of training data for 1-nearest-neighbor classification 
with DTW to test how accurate each approach could perform. 
In terms of the running time, only the time during template 
construction is recorded since it is the key difference among 
different approaches. The classification processes in all three 
approaches are the same, so we then only focus on the 
classification accuracies. 

C. Results 
Comparison of error rates among our proposed method, 

STMF, and NCC is shown in Table IV. STMF is the best 
method in local template averaging that uses hierarchical 
clustering to determine the averaging order which is one pair of 
sequences at a time, and eventually obtain one single template 
per class. NCC is the state-of-the-art method in template 
averaging that performs the averaging globally and obtains 
multiple templates per class, and could achieve exceptionally 
high classification accuracies. However, to reach such high  
accuracies, many iterations are required, giving exceedingly  
high computation time in many cases.  Our proposed work tries  
 
 

to reduce the complexity of the averaging method while 
maintaining the high accuracies comparing to STMF and NCC.  
Table IV Classification error rates on 20 benchmark datasets, comparing our 

proposed method with STMF and NCC. 

 
We can see from the results that the accuracies of our 

method generally beats STMF and are quite comparable to 
NCC except for 2 datasets, FISH and YOGA datasets. But 
when we look at the running time, our method can achieve a 
few magnitudes speedup, comparing with the running time of 
NCC, as shown in Fig.4. We also look at the number of 
subclass K of NCC that are set to run until it beats 1-NN with 
DTW classification, and we found that the number of subclass 
K required to beat 1-NN is so high that in many cases is the 
same as the number of all sequences in the training data 
themselves. However, some datasets have relatively small 
speedup like FaceAll, FaceFour, Lightning7, OliveOil and 
Trace dataset. The reason of this small speedup is that NCC 
aborts when its error rate is better than normal 1-NN with 
DTW. Therefore, if its error rate beats the normal 1-NN DTW 
at the small value of K parameter in K-mean, the computation 
time is low. However, in practice, we do not know K value in 
advance, so several values of K will generally have to be tested 
on. 

 
 

 

 

 
 

 

 

 
Figure 4. Speedup of our proposed method over NCC.

Dataset Error rate (%) 
Our method STMF NCC 

50words 29.23 40.00 31.14 
Adiac 42.97 51.15 40.18 
Beef 40.00 52.23 36.33 
CBF 0.11 4.00 2.20 

Coffee 7.14 3.58 16.07 
ECG200 23.00 30.00 23.00 
FaceAll 19.23 17.04 18.20 

FaceFour 15.91 17.05 15.23 
FISH 25.71 42.29 17.00 

Gun_Point 14.67 36.67 9.40 
Lightning2 13.11 44.26 12.30 
Lightning7 21.92 34.25 24.30 
OliveOil 13.33 23.33 14.67 
OSUleaf 44.21 59.09 40.70 

SwedishLeaf 21.12 31.04 21.12 
synthetic_control 1.00 3.00 6.34 

Trace 0 2.00 0 
Two_Patterns 0 3.00 0 

Wafer 4.19 36.01 2.00 
Yoga 26.33 52.00 16.42 

Sp
ee
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Overall, our method works well on most datasets. However, 
there are two datasets that have the accuracy worse than NCC 
at 5% significance level. We look into the FISH dataset and 
found the misclassification happened in classes 1 and 6 that are 
very similar in shapes and both contain outliers. One way to 
achieve higher classification accuracy is to use a lot of 
templates, since the templates obtained from our algorithms did 
average the outlier with other normal sequences, making the 
shape of the template a little bit off. For YOGA dataset, 
according to dataset information [7], YOGA dataset was 
collected from two actors (actor 1 = class 1; actor 2 = class 2) 
performing various yoga movements. And since both actors 
perform the “same” yoga movements, both classes will contain 
very similar-shape sequences, as shown in Fig.5, and their 
subclasses will also be very similar, which could be considered 
the limitation of our algorithm.  

 

 
Figure 5. 1a and 2a are all data in 2 classes of  YOGA dataset. 1b and 2b are 

sample of data in any class. 

V. CONCLUSION 
In this work, we propose a fast, accurate, and parameter-

free shape averaging method that can automatically discover 
the proper number of subclasses within the training data, and 
then globally average sequences within these subclasses to 
generate multiple templates for classification task. The 
experiment results show that our proposed work can speed up 
the overall classification tasks by very large margin, while 
being able to maintain high accuracies, comparing with the 
state-of-the-art NCC approach. It is also observed that our 
proposed feature can achieve comparable classification 
accuracies (little lower in some and little higher in some, with 
no statistically significance). However, in some datasets where 
the error rates drop down below significant level of 5%, good 
speedups on all other datasets are achieved, indicating the 
tradeoff between the classification accuracies and the running 
time it could save.  

ACKNOWLEDGMENT  
This research is partially supported by CP Chulalongkorn 

Graduate Scholarship (to P. Sathianwiriyakhun) and the 
Thailand Research Fund and Chulalongkorn University given 
through the Royal Golden Jubilee Ph.D. Program 
(PHD/0057/2557 to T. Janyalikit). 

 

REFERENCES 
[1] Y. Sakurai, M. Yoshikawa, and C. Faloutsos, “FTW: Fast similarity 

search under the time warping distance,” Twenty-Fourth ACM 
SIGMOD-SIGACT-SIGART Symposium on Principles of Database 
Systems, 2005, pp.326-337  

[2] H. Sivaraks and C. A. Ratanamahatana, “Robust and Accurate Anomaly 
Detection in ECG Artifacts Using Time Series Motif Discovery,” 
Computational and Mathematical Methods in Medicine, vol. 2015, pp. 
1-20, 2015.  

[3] P. Tsinaslanidis, A. Alexandridis, A. Zapranis, and E. Livanis, 
“Dynamic time warping as a similarity measure: applications in 
finance,” in: 13th Annual Conference of Hellenic Finance and 
Accounting Association (HFAA), December, 2014. 

[4] K. Slaninová, T. Kocyan, J Martinovič, P. Dráždilová, and V. Snášel, 
“Dynamic Time Warping in Analysis of Student Behavioral Patterns,” 
Proceedings of the Dateso 2012 Annual International Workshop on 
DAtabases, TExts, Specifications and Objects, vol.837, pp.49-59, , 2012. 

[5] T. M. Rath and R. Manmatha, “Word image matching using dynamic 
time warping,” Proceedings of the 2003 IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, vol.2, pp 521-
527, June, 2003. 

[6] L. Gupta, D. Molfese, R. Tammana, and P. Simos, “Nonlinear alignment 
and averaging for estimating the evoked potential,” IEEE Transactions 
on Biomedical Engineering, vol.43, no.4, pp.348-356, April, 1996 

[7] X. Xi, E. Keogh, L. Wei, and A. Mafra-Neto, “Finding Motifs in a 
Database of Shapes,” Proceedings of the 2007 SIAM International 
Conference on Data Mining, pp. 249-260, 2007. 

[8] D. Eads, D. Hill, S. Davis, S. Perkinsa,  J. Ma, R.Pertera, and J. Theilera 
“Genetic Algorithms and Support Vector Machines for Time Series 
Classification,” Proceeding of SPIE 4787 , Applications and Science of 
Neural Networks, Fuzzy Systems, and Evolutionary Computation, vol. 
74, December, 2012. 

[9] C. A. Ratanamahatana, and E. Keogh. "Making Time-series 
Classification More Accurate Using Learned Constraints", in SIAM 
International Conference on Data Mining, 2004, pp. 11-22.  

[10] D.J. Lee, R.B. Schoenberger, D.K. Shiozawa, X. Xu, and P. Zhan, 
“Contour Matching for a Fish Recognition and Migration Monitoring 
System”, SPIE Optics East, Two and Three-Dimensional Vision 
Systems for Inspection, Control, and Metrology II, vol. 5606-05, p. 37-
48, Philadelphia, PA, USA, October, 2004. 

[11] F. Petijean, G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, E. 
Keogh, “Dynamic Time Warping Averaging of Time Series allows 
Faster and more Accurate Classification ,” 2014 IEEE International 
Conference on Data Mining, pp.470-479, December, 2014. 

[12] E. Keogh, and M. J. Pazzani, "Scaling up dynamic time warping for 
datamining applications," ACM SIGKDD international conference on 
Knowledge discovery and data mining, pp.285-289, 2000. 

[13] F. Petitjean, A. Ketterlin, and P. Gancarski, “A global averaging method 
for dynamic time warping, with applications to clustering,” Pattern 
Recognition, vol. 44, no. 3, pp. 678–693, 2011. 

[14] V. Niennattrakul and C.A. Ratanamahatana, "Shape Averaging under 
Time Warping," in 6th International Conference on Electrical 
Engineering/Electronics, Computer,Telecommunications, and 
Information Technology (ECTI-CON 2009) vol.2, pp.626-629, Pattaya, 
Thailand, 2009. 

[15] V. Niennattrakul, D. Srisai, and C.A. Ratanamahatana “Shape-based 
template matching for time series data,” in Knowledge-Based Systems, 
vol. 26, pp.1-8, February, 2012. 

[16] G. Norman, J.A. Sloan, and K.W. Wyrwich, “Interpretation of Changes 
in Health-related Quality of Life: The Remarkable Universality of Half a 
Standard Deviation,” in Medical Care, vol. 41, issue 5, pp.582-592, 
May, 2003.  

[17] F. Iglesias and W. Kastner, “Analysis of Similarity Measures in Times 
Series Clustering for the Discovery of Building Energy Patterns,” 
Energies 2013, vol.6, issue 2, pp. 579-597, January, 2013. 

[18] E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei and C.A. 
Ratanamahatana. The UCR Time Series Classification/Clustering. 2011. 
Homepage: www.cs.ucr.edu/~eamonn/time_series_data/  

1a 

2a 

1b 

2b 

 54



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


