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a b s t r a c t 

Long-tail distribution is widespread in many practical applications, where most categories contain only a 

small number of samples. As sufficient instances cannot be obtained for describing the intra-class diver- 

sity of the minority classes, the separating hyperplanes learned by traditional machine learning methods 

are usually heavily skewed. Resampling techniques and cost-sensitive algorithms have been introduced to 

enhance the statistical power of the minority classes, but they cannot infer more reliable class boundaries 

beyond the description of samples in the training set. To address this issue, we cluster the original cat- 

egories into super-class to produce a relatively balanced distribution in the super-class space. Moreover, 

the knowledge shared among categories belonging to a certain super-class can facilitate the generalization 

of the minority classes. However, existing super-class construction methods have some inherent disad- 

vantages. Specifically, taxonomy-based methods suffer a gap between the semantic space and the feature 

space, and the performance of learning-based algorithms strongly depends on the features and data dis- 

tribution. In this paper, we propose a deep super-class learning (DSCL) model to tackle the problem of 

long-tail distributed image classification. Motivated by the observation that classes belonging to the same 

super-class usually have more similar evaluations on the features than those belonging to different super- 

classes, we design a block-structured sparse constraint and attach it on the top of a convolutional neural 

network. Thus, the proposed DSCL model can accomplish representation learning, classifier training, and 

super-class construction in a unified end-to-end learning procedure. We compared the proposed model 

with several super-class construction methods on two public image datasets. Experimental results show 

that the super-class construction strategy is effective for the long-tail distributed classification, and the 

DSCL model can achieve better results than the other methods. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Long-tail distribution learning is a special classification task,

where more than hundreds of labels should be learned, and dif-

ferent categories of samples are long-tail distributed, such as Ox-

ford 102 Flowers Dataset [1] and SUN 397 Scene Categorization

Dataset [2] . In fact, the long-tail distribution widely exists in var-

ious real-world applications, such as object detection [3–5] , scene

parsing [6–8] , document processing [9–11] , and item recommenda-

tion [12,13] . 

It is challenging to model the long-tail distribution well for

traditional machine learning methods, and even for deep mod-

els which have achieved state-of-the-art performance in various

tasks [14] . There are three main challenges. Firstly, the minority

classes in the tail jointly make up an important portion of the en-

tire dataset. Therefore, they are very significant and cannot be ex-
∗ Corresponding author. Tel.: +862227401839, fax: +862227401839. 
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luded merely to obtain a uniform distribution. Secondly, the weak

tatistical ability of the minority classes makes the training loss

ominated by the majority classes, resulting in the separating hy-

erplane heavily skewed to the minority classes. Thirdly, samples

f the minority class are incapable of describing its intra-class di-

ersity. So the class boundary is condensed heavily around these

amples in the training set. Thus, an instance with different fea-

ures from samples of the same category in the training set cannot

e recognized correctly. 

Some imbalance learning techniques can be introduced to solve

he long-tail distribution problem. In general, these methods can

e divided into two categories: the data-preprocessing techniques

nd the algorithmic approaches. The data-preprocessing techniques

nclude under-sampling [15] , up-sampling [16] , and synthetic data

eneration [17] . These methods attempt to generate balanced

atasets. However, the under-sampling method may lose valuable

amples in the majority classes, and the up-sampling method and

he synthetic data generation method increase the computational

ost. In an algorithmic approach, the minority class is regarded as

he anomaly, then, one-class learning methods are applied to rec-
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Fig. 1. Example of balanced sample distribution in the super-class space. Each dot in the figure represents a category. 
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gnize samples belonging to that class [18–20] . As there are many

inority classes in the long-tail distribution learning, transferring

o the anomaly detection is not applicable. Cost-sensitive learning

s another algorithmic approach dealing with the imbalanced clas-

ification. It aims to shift the bias of a classifier to favor the mi-

ority class by maximizing a weighted loss function defined by a

ost matrix based on the dataset [21,22] . Since the minority class is

avorable, there is a high probability that the classifier will misclas-

ify some samples of the majority class. Some new loss functions

23,24] have also been designed on the sample pairs or triplets to

educe the impact of imbalance. Yuan et al. propose a regularized

nsemble framework for imbalanced training data, which penalizes

he classifier when it misclassifies examples that were correctly

lassified in the previous learning phase [25] . 

Neither the data-preprocessing techniques nor the algorithmic

pproaches can guarantee an improved performance on the un-

een data of the minority class. Moreover, a flat scheme is usually

dopted to transfer the binary classification to the multi-class clas-

ification, i.e., one-vs.-all or one-vs.-one classifiers. For a dataset

ontaining L categories, the one-vs.-all strategy needs to compute

 classifiers, and the one-vs.-one strategy requires L (L − 1) / 2 com-

utations, when predicting a sample in the testing phase. When L

s large, prediction using either of these two flat methods is time-

onsuming. 

To address these issues, we cluster categories into different

uper-classes. The effectiveness of this strategy for large-scale clas-

ification has been verified in some recent papers [14,26] . It has

hree main advantages. Firstly, when the original classes have been

lustered into some super-classes, distribution of the samples in

he super-class space can be relatively balanced (as shown in

ig. 1 ). Secondly, classes belonging to the same super-class can

hare their knowledge, which helps the minority classes generalize

ell [27] . Fig. 2 presents an example that illustrates the benefit of

he shared knowledge among categories in a super-class. When the

raining set contains only a few images and cannot describe the

arieties of the petunia (containing only light-colored samples), it

s almost impossible to recognize a dark purple petunia. However,

iven the knowledge that the petunia is similar to the mirabilis in

he shape of its flowers, comparable to the glory in its stamens,

nd similar to the euphorbia milii in the form of its leaves, the

ark purple petunia can meet these criteria and be probably rec-

gnized. Thirdly, for the tree-like label structure (from the super-

lass to the original class), a hierarchical classifier can be applied.

hus, the prediction time can be reduced to O ( log K L ), where K is

he number of super-class. Moreover, the searching space (i.e., the

abel space) is compressed for each classifier in the hierarchy. 

To automatically learn an effective super-class structure, a deep

uper-class learning (DSCL) model is proposed in this paper. Fig. 3

t  
hows an example of a dataset containing images of birds and

owers. In the bird set, the color of the feathers, shape and length

f the tail, the beak, and the shape of the claw are relatively im-

ortant for distinguishing different kinds of birds. In the flower

et, however, features such as the color and number of the petals,

hape of the leaves, and shape and size of the stamen are more

iscriminative than others. Thus, we can conclude that different

lusters of classes (i.e., the super-classes) value different subsets of

eatures. Based on this observation, a block-structured sparse reg-

larization term on the weight matrix of the classification layer is

ttached to the objective function of a convolutional neural net-

ork (CNN). This regularization term is a trade-off between the

ommon feature space selection and the characteristic preserva-

ion, which will make the weight matrix aggregated into different

ets. Therefore, the proposed model can accomplish the tasks of

epresentation learning, classifier training, and label structure ex-

raction simultaneously. 

The main contributions of this paper are summarized as fol-

ows. 

• We propose a DSCL model for long-tail distribution classifica-

tion. A block-structured sparse regularization term is designed

and attached to the objective function. Thus, the deep model

can obtain the super-class structure while learning the features

and the classifier in an end-to-end procedure. 
• The weight matrix of the classification layer learned by the pro-

posed model indicates the different importance evaluations on

the learned representation, which implies the cluster structure

of the original classes. 
• We present the performance evaluation of the proposed model

on two real-world image datasets. The experimental results

demonstrate that the super-class construction strategy can

achieve better results for the long-tail distribution classification,

and the super-class structure learned with the DSCL model can

further improve the performance. 

The rest of this paper is organized as follows. In Section 2 , re-

ated work is introduced. In Section 3 , the proposed DSCL model

nd the corresponding algorithm are described in detail. Experi-

ental results and analysis are provided in Section 4 . Finally, we

onclude this paper and discuss future work in Section 5 . 

. Related Work 

.1. Super-class learning 

In general, there are two strategies to construct the super-class

tructure for the original classes. 

The first strategy depends on a given high-level semantic struc-

ure (e.g., WordNet), which is commonly used to build the label hi-
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Fig. 2. Illustration of the shared knowledge. 

Fig. 3. Illustration of the fact that categories from the same species will attach im- 

portance to a more similar feature subset than those from different groups. 
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erarchy to obtain a better performance [28–30] . However, extract-

ing the super-class structure from the large-scale WordNet is time-

consuming, especially when there is quite a large number of cate-

gories. In addition, the knowledge of semantic relations is usually

not available in practical applications. It is noteworthy that there

is a very wide gap between the semantic structure and the visual

features, which may confuse the training of classifiers. For exam-

ple, “whale” and “shark” have similar visual features, but they be-

long to different semantic clusters, i.e., mammal and fish [31] . Sun

et al. show that the classification accuracy decreases when the se-

mantic structure is introduced into training hierarchical classifiers

[32] . 

The second strategy learns the super-class structure automat-

ically based on certain criteria. An intuitional approach for con-

structing the label structure is to use the confusion matrix of a

certain classifier. In a confusion matrix, elements in the main diag-

onal show the numbers of the samples that are correctly classified,
nd the others are the numbers of the samples that the classifier

annot distinguish, indicating the differentiation of the two classes.

ome researchers [33,34] construct the label structure by assign-

ng the confused classes to one set. However, the calculation of the

onfusion matrix is usually time-consuming. More importantly, the

onfusion matrix may not be reliable because of the heavily imbal-

nced data distribution. 

To reduce the impact of the data distribution, the affinity ma-

rix was introduced. Zhou et al. use the mean Euclidean distance

f all the sample-pairs of any two categories to define the affini-

ies of different categories [35] . Dong et al. compute it by averaging

he kernel distances of all the instances from each two categories

36] . In these methods, it takes O ( L 2 N 

2 ) calculations to obtain the

ffinity matrix, where L is the number of the labels and N is the

umber of samples in the dataset. Qu et al. reduced the computa-

ional complexity to O ( LN ) by calculating the affinity matrix with

ertain statistical values rather than the pairwise distances [37] . Al-

hough the similarity-based methods have shown improvements in

ccuracy, their performance relies heavily on the feature represen-

ation. Generally, the learning-based methods consist of two steps:

hen a confusion matrix or an affinity matrix has been calculated,

 clustering method [35,38,39] is applied to obtain the super-class

tructure. Therefore, the construction procedure of the super-class

tructure is separated into classifier training and feature learning,

aking it nonadjustable. 

.2. Deep learning 

In recent years, deep learning has achieved noteworthy accu-

acy in many complicated real-word applications, including image

ecognition [40] , speech processing [41] , video analysis [42] , and

thers [43,44] , when a large amount of training data is available.

he main contribution of deep learning is that it simplifies the

earning paradigm of many complicated tasks into an end-to-end

rocedure. For object classification, speech recognition, and natu-

al language processing, instead of the carefully hand-crafted fea-

ures, raw data is required by deep models [40,45] . By slicing one

utput layer into multiple output layers, deep models can perform

ulti-task learning [46] . Moreover, deep models do transfer learn-

ng by transferring parameters of the source to the target [47] .

hen training data, architecture, and loss function are available,
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eature extraction and classification can be accomplished simulta-

eously through the back-propagation algorithm. 

To avoid overfitting and improve performance on limited

atasets, sparse assumptions on the connectivity (i.e., the weight

atrix) are introduced. The � 2 norm minimizes the quadratic sum

f each element in the weight matrix [48–50] during the train-

ng, while the � 1 norm restricts the sum of absolute values of the

eights [51,52] . Zou and Hastie [53] and Kang et al. [54] suggest si-

ultaneously imposing the � 1 norm and � 2 norm. Scardapane et al.

55] and Zhao et al. [56] introduce group sparse regularization to

ccomplish feature selection while training a deep classifier. Yuan

t al. designed a manifold regularizer to exploit the structural se-

antic information between images [57] . Our proposed model is

ifferent from these previous methods. Instead of a certain sparse

ssumption on the whole weight matrix of a deep neural network

DNN), we designed a block-structured sparse constraint only for

he connectivity to the classifier layer. Then, this connectivity is

sed to obtain the super-classes. 

. Proposed model 

We now present the deep super-class learning model for long-

ail distribution classification. We first provide basic knowledge

nd notations of deep learning. In Section 3.1 , we describe the ar-

hitecture of the proposed DSCL model and the principle for learn-

ng the super-class structure with this model. Then, the objective

unction of DSCL, especially the regularization term, is introduced

n detail in Section 3.2 . In the following subsection, we focus on

nferring the derivative, which is required by the batch gradient

escent optimization algorithm ( Section 3.3 ). 

A general DNN can be denoted by the function y = f (x ; W ) . It

ropagates an input vector x ∈ R D through H hidden layers to obtain

he output vector y ∈ R L . W represents all the adaptable parameters

f the network, where 1 ≤ k ≤ H + 1 . For the k th hidden layer, op-

rations on an input vector h k to return the output vector h k +1 can

e defined as: 

 k +1 = g k (W k h k + b k ) , (1)

here { W k ; b k } represents the adaptable parameters of this

ayer, and g k ( · ) is an activation function to be applied element-

ise. Given a specific training set containing N samples

 (x 1 , l 1 ) , (x 2 , l 2 ) , . . . , (x N , l N ) } of L classes, where each input x i is

abeled as class l i , the network is optimized by minimizing a stan-

ard regularized cost function: 

 

∗ = arg min 

W 

{ 

1 

N 

N ∑ 

i =1 

L (l i , f (x i , y )) + λR (w ) 

} 

, (2) 

here L ( · , · ) is a proper cost function, R ( · ) is the regularization

erm, which reflects certain prior knowledge, and the scalar coeffi-

ient λ∈ (0, 1) weights the importance of these two terms. 

.1. Framework of deep super-class learning 

The proposed method can be readily applied to other network

rchitectures. Here, we give an implementation on the VGG-S [58] ,

 typical CNN. Fig. 4 shows the architecture of the DSCL model for

arge-scale image classification with long-tail distribution. The tar-

et is to learn the high-level abstract representations, a deep and

owerful classifier, and label structure in an end-to-end learning

rocedure. Given a batch of training images and their label ( x, y ),

e propagate them through the network until they reach the out-

ut layer, and compute the loss and gradient. Then, the deriva-

ive of the loss is back-propagated to each layer. After adding the

erivative of the regularization term for parameters in every layer,

he parameters of the entire network are updated. Usually, the
eight parameters of all layers share the same regularization for-

ula. 

In this paper, we introduce a new type of regularization on the

eight parameters of the last fully connected layer. This new regu-

arization term contains a column sparsity constraint and an item-

ise constraint, which operate together to group the weight pa-

ameters into different clusters. Then, the label structure can be in-

erred from this weight matrix. Here, we denote the weight matrix

f the classification layer by W c , and the other weight parameters

y W o . 

.2. Deep super-class learning 

As mentioned, the parameters of the network are optimized by

inimizing a loss function and a regularization term (as shown in

ormula (3) ) on the training dataset. 

(x, l) = 

1 

N 

N ∑ 

i =1 

L (l i , f (x i , y )) + λR (W ) . (3) 

raditionally, softmax with loss is employed in a CNN for im-

ge categorization with high accuracy. Given the output of the

ast classification layer f ( x, y ) ∈ R L , where each item represents the

robability of the input x belonging to each category, the loss of

oftmax can be defined as the negative log-likelihood on ( x, l ): 

f s (x, l) = −log 
e f (x,l) ∑ 

l ′ e 
f (x,l ′ ) ︸ ︷︷ ︸ 

P(l| x ) 

, (4)

here P ( l | x ) is the posterior probability of the input x being classi-

ed as the l th class. 

In fact, this loss function attempts to squeeze training data from

he same class into a corner of the feature space to obtain the

inimum loss. Thus, the intra-class variance cannot be preserved,

hich may lead to overfitting on the training data. To solve this

roblem, the regularization strategy is recommended. The squared

 2 norm and the l 1 formulation are the two most common con-

traints on the weights, which are defined as Formulas (5) and (6) ,

espectively. In this study, we used the l 2 norm for regularizing W o .

 l 2 (W ) = ‖ W ‖ 

2 
2 = 

∑ 

i, j 

w 

2 
i, j , (5)

 l 1 (W ) = ‖ W ‖ 1 = 

∑ 

i, j 

∣∣w i, j 

∣∣. (6)

The structure of the weight parameters W c implies the super-

lass information of the original labels, which is the main pri-

ary target. Motivated by the observation that some categories are

trongly related, since they give relatively similar values to the fea-

ures, and the fact that W c reflects the feature evaluation of each

ategory, we propose a block-structured sparse regularization term

or W c . 

 ( W c ) = αR l cs 
(W c ) + (1 − α) R l 1 , 1 (W c ) , (7)

here 

R l cs 
(W ) = ‖ W 

T ‖ 2 , 1 = 

∑ 

i 

‖ 

∑ 

j 

w 

2 
i, j ‖ , 

 l 1 , 1 (W ) = 

∑ 

l 

‖ W l ‖ 1 = 

∑ 

i 

‖ 

∑ 

j 

∣∣w i, j 

∣∣‖ 1 

= 

∑ 

i, j 

∣∣w i, j 

∣∣ = R l 1 . 

(8) 

n Formula (7) , there are two regularization terms. The first,

 l cs 
(W c ) , encourages all labels to fall into one cluster by eliminat-

ng the shared features that are not valuable for all the categories,
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Fig. 4. Architecture of the proposed model for long-tail distribution classification. 
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c  
and the second, R l 1 , 1 (W c ) , reflects an element-wise sparse struc-

ture, and prompts every class to be unique and to choose features

that are of use only for itself. In summary, the penalties of R l cs 
(W c )

and R l 1 , 1 (W c ) operate together to choose different sets of features

for different clusters, and thus the super-class structure can be dis-

covered, while the parameter α balances the importance of these

two regularization terms. 

Finally, our objective function to train the CNN is 

min 

W o , W c 

1 

N 

N ∑ 

i =1 

−log 
e f (x i ,l i ) ∑ L 

y i =1 e 
f (x i ,y i ) 

+ λ‖ W o ‖ 

2 
2 

+ γ (α‖ W 

T 
c ‖ 2 , 1 + (1 − α) ‖ W c ‖ 1 ) , 

(9)

where λ∈ [0, 1), γ ∈ [0, 1), and α ∈ [0, 1). 

3.3. Optimization 

We optimize the DSCL model by using a batch gradient descent

algorithm. The core of a gradient-based optimization algorithm is

the computation of the first derivative of the objective function. So

that the development of the algorithm is convenient, we rewrite

Formula (9) in the form 

min 

W o , W c 

1 

N 

N ∑ 

i =1 

−log 
e f (x i ,l i ) ∑ L 

y i =1 e 
f (x i ,y i ) ︸ ︷︷ ︸ 

J 1 

+ λ‖ W o ‖ 

2 
2 ︸ ︷︷ ︸ 

J 2 

+ α‖ W 

T 
c ‖ 2 , 1 + β‖ W c ‖ 1 ︸ ︷︷ ︸ 

J 3 

, 

(10)

where λ∈ [0, 1), α ∈ [0, 1), and β ∈ [0, 1). 

For W c , the gradient can be computed as 

∇ W c 
(i, j) = 

∂ J 1 
∂ W c (i, j) 

+ 

∂ J 3 
∂ W c (i, j) 

= (P (y i | x ) − 1 [ y i = l] ) ∇ g i h H ( j) 

+ α
W c (i, j) ∑ n H 

j=1 
W c (i, j) 

2 

+ βsign (W c (i, j)) , 

(11)

where P ( y i | x ) is calculated with Formula (4) , and n H is the number

of neurons in the H th layer. With the chain rule, the derivative of

the k th weight matrix, k ∈ [1, H ], is 

∇ W k 
(i, j) = 

n k +2 ∑ 

m =1 

W k +1 (m, i ) ∇ g i h k ( j) 

+ 2 λW k (i, j) . 

(12)

The parameters of the DSCL model are initialized with those

of a pre-trained VGG-S net. Then we fine tune the weights with

Formulas (11) and (12) . 
. Experiments 

In this section, we introduce the experiments that were con-

ucted on two real-world image datasets, i.e., Oxford (Oxford

02 Flowers dataset) [1] and SUN (SUN 397 Scene Categorization

ataset) [2] , in which most categories consists of only a few sam-

les. To show the effectiveness of the label structure learned by the

SCL model, we compare it with the semantic structure and two

dditional structures constructed by applying clustering algorithms

o the confusion matrix and affinity matrix. The experimental re-

ults demonstrate that the super-class-based strategy can achieve a

onsistently inspiring improvement for long-tail distribution learn-

ng, and our method performs better than the other methods on

oth Oxford and SUN. 

In this study, we implement the proposed DSCL

odel with Caffe. To achieve our goal, we design an in-

er_product_block_sparse_layer by adding the block-structured

parse constraint to its weight matrix. Then, we use this

nner_product_block_sparse_layer instead of the original in-

er_product_layer as the output layer of the VGG-S. The

eight_decay parameter of the output layer is set to zero.

herefore, only the block-structured sparse constraint is active in

his layer. 

.1. Datasets 

We conducted our experiments on the Oxford and SUN datasets

o show the performance of different methods, all of which have a

ong-tail data distribution, as shown in Fig. 5 . Moreover, a semantic

tructure is attached to the SUN dataset. For both the datasets, we

andomly selected 75% of all the images as the training set and the

emaining samples formed the testing set. In our experiments, the

ataset partitions were exactly the same for our approach and all

he compared methods to allow a fair comparison. The two image

atasets are now briefly described as follows. 

Oxford 102 Flowers Dataset . This dataset was collected by the

isual Geometry Group in Oxford. It consists of 102 flower cate-

ories that are common in the United Kingdom. In total, it con-

ains 8,189 images, and the number of images in each class varies

rom 40 to 258. The owner offers a partition of the training, test-

ng, and validation set with uniform data distribution in the train-

ng set. Therefore, we split it into a training and testing set again

andomly to ensure the sets share the same data distribution as

he entire dataset. 

SUN 397 Scene Categorization Dataset . This dataset is a well-

ampled subset of the Scene Understanding (SUN) dataset with

97 different scenes. The owners manually built an over-completed

wo-level taxonomy for the scene categories. The 397 classes are

lassified to 15 more general sets at the second level (basic-level

ategories) that are in turn connected to 3 nodes at the first level



Y. Zhou et al. / Pattern Recognition 80 (2018) 118–128 123 

Fig. 5. Sample distribution of Oxford and SUN. 

Table 1 

Classification results on the label level. 

Dataset Method Accuracy mAP 

Oxford Flat 91.597% 90.432% 

ST-Ex – –

AM-SP 87.543% 86.619% 

CM-SP 87.885% 86.781% 

DSCL 95.164% 94.683% 

SUN Flat 66.884% 61.668% 

ST-Ex 66.616% 61.962% 

AM-SP 67.295% 62.329% 

CM-SP 67.388% 62.793% 

DSCL 70.895% 65.876% 

Table 2 

Classification results on the super-class level. 

Dataset Method Accuracy mAP 

Oxford Flat 91.597% 90.432% 

ST-Ex – –

AM-SP 89.692% 87.275% 

CM-SP 89.741% 86.670% 

DSCL 97.997% 94.212% 

SUN Flat 66.884% 61.668% 

ST-Ex 80.254% 79.514% 

AM-SP 83.703% 78.488% 

CM-SP 83.667% 78.598% 

DSCL 83.237% 67.707% 
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Table 3 

Classification results on the super-class level. 

Dataset Method The label level The super-class level 

Accuracy mAP Accuracy mAP 

Oxford Flat 91.597% 90.432% 91.597% 90.432% 

AlexNet 95.652% 94.934% 99.609% 87.004% 

VGG-16 95.896% 95.394% 99.609% 89.108% 

SUN Flat 66.884% 61.668% 66.884% 61.668% 

AlexNet 71.644% 66.776% 84.261% 66.810% 

VGG-16 71.773% 67.838% 84.324% 67.719% 
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superordinate categories). However, this hierarchy is a directed

cyclic graph with 73 scenes belonging to more than one basic-

evel category. For simplicity, we exclude these categories. Thus,

he SUN dataset finally had 324 classes and 90,261 images in to-

al. The number of images varied across categories, but there were

t least 100 images per category. The basic-level categories were

dopted to construct the semantic label structure. 

.2. Comparison methods and evaluation metrics 

We compared the super-class structure learned by the DSCL

odel with that extracted from the semantic taxonomy, and an-

ther two structures, trained by two state-of-the-art algorithms,

rovided by the raw data. For the learning-based methods, the

pectral clustering algorithm was applied on a confusion matrix

nd an affinity matrix. To make the confusion matrix and the affin-

ty matrix more reliable, we used the features extracted from a

re-trained VGG-s net. 
ST-Ex : ST-Ex is a method of clustering classes via mining their

emantic relationships defined by the WordNet or other domain

nowledge. This method has been frequently used to obtain label

tructures to enhance the performance of many tasks. For the SUN

ataset, there exists a manually annotated hierarchy of the classes,

nd therefore, we clustered categories with the information of the

econd layer, as mentioned in Section 3.1 , whereas for the Oxford

ataset, we could not achieve the semantic structure of the cate-

ories because we lacked a priori knowledge about the relevancy

f different flowers. 

AM-SP : AM-SP refers to the method presented in [37] , which

as proposed to simplify the similarity calculation for every cate-

ory pair. Then, a hierarchical spectral clustering is applied on the

ffinity matrix to build the hierarchical inter-class structure. In this

tudy, a super-class structure was required, and therefore, we used

he classical spectral clustering algorithm instead of a hierarchical

ne. 

CM-SP : CM-SP learns the label structure with the spectral clus-

ering and the confusion matrix. First, a logistic regression classifier

s trained to obtain the confusion matrix, and then, this confusion

atrix is delivered to the spectral clustering algorithm to learn the

abel structure. 

Because of the long-tail data distribution, the frequently-used

ccuracy indicator was not sufficient to evaluate the results of the

ifferent methods, and therefore, mAP wa employed as an addi-

ional. 

.3. Results and analysis 

For DSCL, the label structure is implied in the weight matrix of

he last fully connected layer. Thus, the explicit label structure can

e modeled explicitly by clustering the weights of all the output

odes into G clusters. In this method, we use d the k-means al-
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Fig. 6. Classification results of an example with the label structure learned by the AM-SP on Oxford. 

Fig. 7. Classification results of an example with the label structure learned by the DSCL on Oxford. 
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gorithm to perform the clustering and chose G from the same set

of other methods for efficient comparative analysis. As for Formula

(10) , we set λ = 0 . 05 experimentally, and γ was carefully selected

from [5, 0.5, 0.05, 0.005, 0.0005]. 

To fairly assess these different structures, we adopt the top-

down strategy, which trains a series of classifiers layer by layer to

model the label structure. Here, logistic regression is selected as

the base classifier. Moreover, since the number of super-class for

the semantic method is fixed, but for the learning-based methods,

it can be any value, we chose the target number of the clusters in

our experiments from a given set in which the candidates are com-

parable to that of the semantic method. The SUN dataset is com-

posed of 15 basic-level categories, and the Oxford dataset contains

no taxonomy annotation. Thus, the optimal number of clusters is

explored in the set [5, 10, 15, 20, 25, 30]. The flat method, which

evaluates the performance on the multi-classes classification task,

served as the baseline method. 

Results on the label level. Table 1 shows the results in terms

of the measurements accuracy and mAP on the label level. Here,

the top-down logistic regression is applied to the label struc-

tures obtained by all the included methods. We can see that the

super-class-based methods perform consistently better than the
at method on the two datasets. Specifically, DSCL achieves the

est results on both Oxford and SUN. More importantly, the super-

lass-based methods produce little difference in terms of either ac-

uracy or mAP, which shows their effectiveness in dealing with the

ong-tail distribution. 

Results on the super-class level. The classification results of

he different methods on the super-class level are displayed in

able 2 . As compared with the flat method, the super-class-based

ethods obtain obvious improvements when the experiments are

onducted on the super-class level. Therefore, when the classifiers

re hesitant in deciding the category of a sample, we can provide a

uper-class label at a high confidence level. This super-class label is

ignificant, since it will simplify the classification task by limiting

he candidates to a small subset of labels. For the Oxford dataset,

he proposed DSCL method achieves the best result. While on the

UN dataset, the result of DSCL is worse than AM-SP and CM-SP.

his is because AM-SP and CM-SP cluster similar categories into

 super-class. Thus, the intra-class variation of the super-class is

maller than that of DSCL, which values the discrimination of the

ne-grained classes when constructing the super-class structure. 

A comparison of Tables 1 and 2 provides some insights. First,

he performance of AM-SP and CM-SP is worse on both label and
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Fig. 8. Classification results with different value of α on Oxford. 

Fig. 9. Classification results with different value of α on SUN. 

Fig. 10. Classification results with different value of K on Oxford. 

Fig. 11. Classification results with different value of K on SUN. 
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super-class level on the Oxford dataset. The decline on the label

level is probably caused by their poor capabilities on the super-

class level. The reasons why they perform poorly may be that they

produce a noneffective super-class structure, or that the features

contain too many details about the label, which constitutes in-

terfering information and prevents the classifier from classifying

samples into the correct super-class. Moreover, the DSCL model

achieves approximate results on the two image datasets. The per-

formance of the label level is severely constrained by that of the

super-class level. Features for correctly recognizing the super-class

of a sample are coarser than those required by label distinction.

Therefore, in our opinion these methods would achieve better re-

sults if different features were employed for the classifiers on dif-

ferent levels. The performance can be further improved by intro-

ducing the features extracted from a CNN fine tuned with the

super-class level labels. 

Figs. 6 and 7 show the top-down procedure of a sample clas-

sified into a certain super-class and class with two different label

structures learned by AM-SP and the proposed DSCL. Given an im-

age of a purple coneflower, the top-down classifiers first classify

it to a certain super-class, and then a label from this super-class

is attached to this image. For the super-class and label level, we

present the top 4 candidates. Pictures with bold edges are the can-

didates with the highest confidence for each level of the two label

structures. It is obvious that the correct recognition depends heav-

ily on the results of the super-class level. 

4.4. Parameter analysis 

Figs. 8 and 9 describe the classification results with different

values of α on the Oxford and SUN dataset, when the number of

clusters (i.e., K ) is set to 25 and 30, respectively. For the super-class

level, we can conclude that the accuracy decreases when α gets

larger, while the mAP increases. This is because that the intra-class

difference become lager when the number of classes belonging to

a super-class grows. However, the data distribution on the super-

class space are more and more balanced, which will benefit the

training of the classifier. For the label level, both the accuracy and

mAP decrease, as its performance is severely constrained by that of

the super-class level. Considering the accuracy and mAP on both

super-class level and label level, we set α = 0 . 3 for Oxford, and

α = 0 . 4 for SUN in our experiments. 

Figs. 10 and 11 show the classification results with different val-

ues of K on the Oxford and SUN dataset, when α is set to 0.3 and

0.4, respectively. For the super-class level, we can see that both the

accuracy and mAP increase when K gets larger, which is benefit

from the decreased intra-class difference. However, accuracy and

mAP decrease at some K-value points. On the Oxford dataset, ac-

curacy drops where K = 10 and K = 30 , while the mAP decreases

at the point K = 10 . On the SUN dataset, The accuracy and mAP on

the SUN both get decreased where K = 10 . As K grows, the solving

space of the super-classes becomes larger, making the task more

and more difficult. Then, the performance may be reduced. For the

label level, both the accuracy and mAP increase, benefiting from

results of the super-classes. Considering the accuracy and mAP on

both super-class level and label level, we set K = 25 for Oxford,

and K = 30 for SUN in our experiments. 

4.5. Implementation on other deep models 

Although the designed block-structured sparse constraint is im-

plemented on the VGG-S architecture in this study, it can be eas-

ily applied on other deep learning models. Table 3 presents the

results on both the label level and the super-class level with im-

plementation on AlexNet and VGG16. To show the effectiveness of

the super-class learning strategy, results of the flat model are also
isted in the table. It can be concluded that we can achieve better

esults with a more powerful deep model. 

. Conclusion and future work 

In this study, we examined a super-class-based strategy to re-

uce the impact of long-tail distribution for image classification.

s existing super-class learning methods have inherent disadvan-

ages for the long-tail distribution, we proposed a DSCL model.

ased on the observation that categories from the same cluster

ut a more similar value on the features than those from differ-

nt ones, a block-structured sparse regularization term was de-

igned. By appending this new regularization term on the weight

atrix of the classification layer to the original objective func-

ion, the DSCL model can execute representation learning, classifier

raining, and super-class structure construction simultaneously. To

how the effectiveness of the super-class construction strategy and

he DSCL model, we conducted several experiments on the Oxford

ataset and the SUN dataset. The experimental results show that

he super-class-based strategy and the proposed model can con-

iderably improve the accuracy and mAP on both the super-class

nd label level of classification with long-tail distribution. 

To the best of our knowledge, very few studies on solving long-

ail distribution classification with the super-class-based strategy

nd deep learning methods exist. Thus, a considerable amount of

ork is required to further improve the performance of the current

ethods. In the future, we will explore new strategies to build the

abel structure, and consider how to model this structure. More-

ver, new evaluation criteria that consider the performance of both

he super-class and category level are imperative to assess different

lassifiers for long-tail distribution classification more reasonably. 
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