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Abstract. Longest Common Subsequence (LCS) deals with the problem of measuring
similarity of two strings. While this problem has been analyzed for decades, the recent
interest stems from a practical observation that considering single characters is often
too simplistic. Therefore, recent works introduce the variants of LCS based on shared
substrings of length exactly or at least k (LCSk and LCSk+ respectively). The main
drawback of the state-of-the-art algorithms for computing LCSk and LCSk+ is that
they work well only in a limited setting: they either solve the average case well while
being suboptimal in the pathological situations or they achieve a good worst-case per-
formance, but fail to exploit the input data properties to speed up the computation.
Furthermore, these algorithms are based on non-trivial data structures which is not
ideal from a practitioner’s point of view. We present a single algorithm to compute
both LCSk and LCSk+ which outperforms the state-of-the art algorithms in terms of
runtime complexity and requires only basic data structures. In addition, we implement
an algorithm to reconstruct the solution which offers significant improvement in terms
of memory consumption. Our empirical validation shows that we save several orders
of magnitude of memory on human genome data. The C++ implementation of our
algorithms is made available at: https://github.com/google/fast-simple-lcsk.

Keywords: longest common subsequence, string similarity, efficient dynamic program-
ming, bioinformatics, memory optimization

1 Introduction

Measuring the similarity of strings is one of the fundamental problems in computer
science. It is very useful in many real-world applications such as DNA sequence com-
parison [5], differential file analysis and plagiarism detection [7]. One of the most
popular techniques for efficient measurement of string similarity is the Longest Com-
mon Subsequence (LCS ) [11,12,3].

LCS and extensions. Recently, there has been some critique of LCS being an
oversimplified way to measure string similarity as it does not distinguish well between
the sequences which consist mainly of consecutive characters and the ones which do
not [4,16]. To overcome this limitation, extensions of LCS to more general variants
have been proposed (see Example 1). In particular, Benson et al. [5,4] suggested
LCSk, which computes the similarity by counting the number of non-overlapping
substrings of length k contained in both strings. Another extension was given by
Pavetić et al. [14]: the LCSk++ computes similarity by summing the lengths of non-
overlapping substrings of length at least k contained in both strings. These variants
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have been applied in bioinformatics [15]. Later it has been renamed as LCS≥k by
Benson et al. [4] and as (used in this paper) LCSk+ by Ueki et al. [16]1.

Example 1 (Values of LCSk and LCSk+ for various string pairs).

– LCS3(ABCBA,ABCBA) = 1 (ABC) or (BCB) or (CBA)
– LCS3+(ABCBA,ABCBA) = 5 (ABCBA)
– LCS2(ABXXXCDE,ABY Y Y CDE) = 2 (AB,CD) or (AB,DE)
– LCS2+(ABXXXCDE,ABY Y Y CDE) = 5 (AB,CDE)
– LCS1(AAA,AA) = LCS(AAA,AA) = 2 (A,A)
– LCS1+(AAA,AA) = LCS(AAA,AA) = 2 (A,A)

State of the art. For LCSk and LCSk+ to be useful in practice, we need to be
able to compute them efficiently. State-of-the-art algorithms are often parametrized
by the total number of matching k-length substring pairs between the input strings,
denoted by r. The observation that r is often limited in real-world data can be used
to speed up the computation. Existing algorithms usually specialize for the situa-
tions when r is either low or high. Deorowicz and Grabowski [8] proposed several
algorithms for efficient computation of LCSk. Most notably, their Sparse algorithm
allows both the computation of LCSk and its reconstruction in O(m + n + r log l)
time and O(r) memory complexity, where l is the length of the optimal solution and
m,n are the lengths of the two input strings. In their approach they adapt the Hunt-
Szymanski [11] paradigm in a way that requires them to use a persistent red-black
tree. Pavetić et al. [14,13] proposed an algorithm based on the Fenwick tree data
structure [9] to efficiently compute LCSk+ in O(m + n + r log r). Ueki et al. [16]
proposed an algorithm which achieves a better worst-case complexity than Pavetić
and Žužić [13] when r ∼ mn, but a worse performance in the situations when r is
small. The complexity of their algorithm is O(mn) and does not depend on r.

Improving the current state. The algorithms to compute LCSk and LCSk+ are
either of unsatisfactory runtime complexity or they rely on using complex data struc-
tures. Implementing these complex algorithms is extremely time consuming for a
practitioner who usually has to make an experiment-based decision about which sim-
ilarity measure is even useful for their cause. Therefore, it is valuable to have a simple
and fast algorithm to compute both LCSk and LCSk+. Our contributions in this pa-
per are:

• We propose an algorithm to compute LCSk which achieves a favorable runtime
complexity when compared to the previously known algorithms. The runtime com-
plexity of the algorithm is O(min(r log l, r + ml)), where l is the length of the
optimal solution. (Section 3)
• We show that the same algorithm can be easily extended to compute LCSk+. This
unifies the solutions for both of these problems. (Section 4)
• We propose a heuristic to reduce memory needed to reconstruct the solution.
Experiments on the human genome demonstrate that it reduces the memory usage
by several orders of magnitude. (Section 5)
• Our algorithms do not rely on complex data structures such as Fenwick or a
persistent red-black tree.

1 Different authors used different names, however the definitions are the same.



52 Proceedings of the Prague Stringology Conference 2018

C T A T A G A G T A

A

T

T

A

T

a

a
b

b

c

c

d

d

e

e

Figure 1. The Figure shows the start and end points of the match pairs produced by the two strings.
In this example strings A = ATTAT and B = CTATAGAGTA construct exactly five match pairs
for k = 2, denoted with a to e. Start points of the pairs are represented by circles and their end
points are represented by squares. The following holds: “c precedes e”, while the following does not
hold: “a precedes b”, “c precedes d” (Definition 5). Note that a start point of one match pair can
share coordinates with the end point of another: e. g. end point of a and start point of b.

• To speed up future research on the topic, we made the implementation of our
algorithms available at https://github.com/google/fast-simple-lcsk. As far
as we know, this is the first widely accessible implementation of algorithms to
compute LCSk and LCSk+.

2 Preliminaries

This section contains the definitions useful throughout the rest of the paper. Even
though we inherit some of the definitions from other sources, we state them here for
the sake of completeness. The inputs to all the algorithms are strings A of length m

and B of length n, both over alphabet Σ. Without loss of generality we can assume
that m ≤ n. We use X[i : j) to denote the substring of X, starting at (inclusive) index
i and ending at (exclusive) index j. Using that notation it holds that A[0 : m) = A

and B[0 : n) = B.

Definition 2 (The LCSk problem [4]). Given two strings A and B of length m

and n, respectively, and an integer k ≥ 1, we say that C is a common subsequence in
exactly k length substrings of A and B, if there exist i1, . . . , it and j1, . . . , jt such that
A[is : is+k) = B[js : js+k) = C[ps : ps+k) for 1 ≤ s ≤ t, and is+k ≤ is+1, js+k ≤
js+1 and ps+1 = ps + k for 1 ≤ s < t, p1 = 0 and |C| = pt + k. The longest common
subsequence in exactly k length substrings (LCSk) equals to maximum possible t, such
that the mentioned conditions are met.

Definition 3 (The LCSk+ problem [14,4,16]). Given two strings A and B of
length m and n, respectively, and an integer k ≥ 1, we say that C is a common sub-
sequence in at least k length substrings of A and B, if there exist i1, . . . , it, j1, . . . , jt
and l1, . . . , lt such that A[is : is + ls) = B[js : js + ls) = C[ps : ps + ls) and ls ≥ k for
1 ≤ s ≤ t, and is + ls ≤ is+1, js + ls ≤ js+1 and ps+1 = ps + ls for 1 ≤ s < t, p1 = 0
and |C| = pt + lt. The longest common subsequence in at least k length substrings
(LCSk+) equals to maximum possible sum

∑t

i=1 li, such that the mentioned conditions
are met.

We state the recurrence relation to compute LCSk(i, j)=LCSk(A[0 : i), B[0, j)) for
two strings A and B, given in [5]:

https://github.com/google/fast-simple-lcsk
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LCSk(i, j) = max







LCSk(i− 1, j) if i ≥ 1
LCSk(i, j − 1) if j ≥ 1
LCSk(i− k, j − k) + 1 if A[i− k : i) = B[j − k : j)

(1)

The choice to add 1 or k in the last line of Equation 1 is arbitrary since it influences
the final result only by a constant factor. We choose to add +1 to be consistent with
prior definitions of LCSk. When expanding the relation to LCSk+, we need to adjust
it as shown in [14,16]:

LCSk+(i, j) = max















LCSk+(i− 1, j) i ≥ 1
LCSk+(i, j − 1) j ≥ 1

max
k≤k′≤min(i,j)

A[i−k′:i)=B[j−k′:j)

LCSk+(i− k′, j − k′) + k′ (2)

Definition 4 (Match pair [5]). Given the strings A, B and integer k ≥ 1 we say
that at (i, j) there is a match pair if A[i : i+ k) = B[j : j + k). (i, j) is also called
the start point or the start of the match pair. (i + k − 1, j + k − 1) is called the
end point or the end of the match pair.

Definition 5 (Precedence of match pairs). Let P=(iP , jP ) and G=(iG, jG) be
match pairs. Then G precedes P if iG + k ≤ iP and jG + k ≤ jP . In other words, G
precedes P if the end of G is on the upper left side of the start of P in the dynamic
programming table (see Figure 1).

2.1 Efficient algorithms for computing LCS

The known efficient algorithms are based on the observation that in order to com-
pute LCS via a classic dynamic programming approach2, it is not always necessary
to fill out the entire matrix. If it happens that many entries repeat in the cases when
two strings have only a few pairs of matching characters, it is possible to design a
structure which stores the matrix in a compressed form. We sketch the main ideas
behind these techniques since we later use them as building blocks.

The algorithm by Hunt and Szymanski [11,6] traverses only the matching character
pairs of the two strings in row-major order. The main idea is to maintain an array
M such that Md holds the minimum j such that there is some already processed
row i for which LCS(i, j) = d. For simplicity we define M0 = 0 and Md = ∞ if no
such j exists. In simpler terms, M is a compressed representation of the dynamic pro-
gramming table, storing only the boundaries of same-value intervals. This is obviously
useful when a row contains many repeated values. Note that M is non-decreasing. For
every point (i, j) corresponding to matching character pairs in row i, let us find the
biggest d such that Md < j. Then there must exist a common subsequence of length
d ending with (i′, j′) where i′ < i and j′ < j. Such a subsequence can be extended
by (i, j), so we know that after processing all the points in the current row we will
have Md+1 ≤ j. It will suffice to find a d such that Md < j ≤Md+1 (easily done using
binary search), and set Md+1 to min(Md+1, j) (since we’re extending a subsequence

2 This is usually done by filling out a matrix based on the relation which we get after we set k = 1
in either of the Equation 1 or Equation 2.
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of length d ending at column Md into a subsequence of length d+1 ending at column
j). We note that the order in which the points of a row are processed matters: they
should be ordered descending by column, so that the updates to M with the results
of a new row happen effectively at the same time (otherwise queries are influenced
by previous updates from the same row, which leads to incorrect results).

Hunt’s algorithm was modified by Kuo and Cross [12] by replacing the binary search
for each point in a row with a linear scan of M together with all the points in a
row. Specifically, as we process the points of the current row, we also maintain an
index d into M which we increment until Md+1 ≥ j for the current point (i, j). The
increments of d amortize over the length of M , so the total complexity is O(ri + l),
where ri is the number of points in row i and l is the length of the LCS. When ri ≪ l

this algorithm is performing worse than Hunt’s variant (which would have a runtime
complexity of O(ri log ri)). However, it does becomes a significant improvement as ri
approaches l.

3 Algorithm to compute LCSk

In this section we show how to compute LCSk efficiently. The main observation is
that processing start and end points of the match pairs independently allows us to
directly re-use the techniques for the efficient computation of LCS. Additionally, we
dynamically adapt the computation between situations where the number of match
pairs r is low as well as high, in order to secure a good worst-case performance. We
achieve a runtime complexity of O(m+ n+ r+min(r log l, r+ml)) and the memory
complexity of O(l +m+ n).

3.1 Decoupling the starts and ends of the match pairs

Another way to formulate the computation of LCSk is to view it as a problem of
finding the longest chain of match pairs. This formulation is an extension of the one
previously used in the LCS literature [10]. Given a match pair P , it is possible to
compute LCSk(P ) using the following relation:

LCSk(P ) =

{

1 if no match pair precedes P
maxG LCSk(G) + 1 over all G preceding P

(3)

In other words, we are looking for the longest chain of match pairs such that a pair
which occurs earlier in the chain precedes the pairs which come later. The chain
ending with a match pair P can be constructed in two ways: (i) P is added to some
preceding shorter chain ending with G or (ii) a new chain containing only P is started.

Now that we have reformulated the relation for LCSk, we show how to compute it
efficiently. First we take a step back to the description of Hunt’s algorithm for LCS.
There we mentioned that the order in which the points within a row are processed
matters since reads and updates to the helper array M happen interchangeably. If
we allow two traversals of the points, the first one can only read and the second one
can only update M . Note that this does not have much effect on the result of the
LCS computation, but it only removes the restriction on the order in which we have
to process the points within a row. The decoupling of the reads and the updates of



Filip Pavetić et al.: Fast and Simple Algorithms for Computing both LCSk and LCSk+ 55

M is an idea which we use to generalize the algorithm to compute LCSk. Namely,
if we decouple the start and end points of all the match pairs and process them in
row-major order, at every row we can: 1) do the reads of M for all the start points
and then 2) update M with values of all the end points. This entire algorithm is
summarized in Algorithm 1.

Algorithm 1 Computing LCSk by decoupling start and end points
1: for 0 ≤ i < m do

2: for all x = (i, j) ∈ StartPointsForRow(i) do
3: P ←MatchPair(x)
4: LCSk,start(P )← d s.t. Md < j ≤Md+1

5: end for

6: for all x = (i, j) ∈ EndPointsForRow(i) do
7: P ←MatchPair(x)
8: LCSk,end(P )← LCSk,start(P ) + 1
9: MLCSk,end(P ) ← min(MLCSk,end(P ), j)
10: end for

11: end for

12: return maxP LCSk,end(P )

In the Algorithm 1 we use several quantities: 1) LCSk,start(P ) stores the value read
from M at the start point of match pair P , 2) LCSk,end(P ) stores the value of LCSk

at the end point of P and 3) MatchPair(x) retrieves a match pair for which x is a
start or an end point. Lines 2-5 of the algorithm can be implemented in two different
ways: 1) following Hunt’s paradigm and performing binary search over the M array
to do the reads and 2) following Kuo’s paradigm and doing all the reads in one linear
pass over array M . Since we can estimate the number of operations needed for both
variants, at each row i we dynamically choose between the two options. Doing this
picks up the benefits of both approaches and makes our algorithm work efficiently in
both sparse and dense rows. StartPointsForRow(i) and EndPointsForRow(i) can
be computed in O(n+m+ r) time in multiple ways: 1) by using a suffix array based
approach proposed by Deorowicz and Grabowski [8] or 2) hash the k-mers of B and
create a hash table mapping to the indexes (if it happens that Σk is small enough
to fit a computer word). Querying that table with k-mers from A trivially gives the
start/end points for a wanted row. For more details see Appendix A.1.

3.2 Complexity

Generating all the match pairs takes O(m+ n+ r) time. Computing the update for
row i takes O(min(ri log l, ri + l)) time. Summing over all the rows implies that

m−1
∑

r=0

min(ri log l, ri + l) ≤ O(min(r log l, r +ml)) (4)

Theorem 6. The presented algorithm computes LCSk with the runtime complexity
of O(m+ n+ r +min(r log l, r +ml)). The memory complexity is O(l +m+ n).

Proof. The runtime complexity directly follows from adding up the complexities for
generating the match pairs with the right side of Equation 4. Regarding memory con-
sumption, we need to O(l) memory for array M , and O(m+ n) memory to generate



56 Proceedings of the Prague Stringology Conference 2018

the start/end points of the match pairs (same for both described approaches to gener-
ate them). This does not takes into account the memory needed for the reconstruction
of the solution, which requires O(r) memory.

4 Algorithm to compute LCSk+

In this section, we show how to modify the algorithm for LCSk to compute LCSk+.
Similar to LCSk, we look at the LCSk+ computation as finding chains of match pairs
where consecutive ones precede or continue (see Definition 7) one another. This makes
it possible to achieve the runtime complexity of O(m+n+r+min(r(log l+k), r+ml))
and the memory complexity of O(l +m+ n).

Definition 7 (Continuation of match pairs). Let P = (iP , jP ) and G = (iG, jG)
be k-match pairs. Then P continues G if iP = iG + 1 and jP = jG + 1. P is only
one down-right position from G, see Figure 1.

We reproduce the relation for computing LCSk+ over match pairs from [14]:

dp(P ) = max







k

dp(G) + 1 if P is a continuation of G
maxG dp(G) + k over all G preceding P

(5)

Note that this relation computes the actual number of characters in the LCSk+,
whereas the corresponding relation for LCSk computes the number of blocks of length
k. This difference requires us to reconsider the compressed representationM and make
important changes. Instead of the array M , we introduce a new array N , defined as
follows. Lets assume that we have finished processing the start and end points in
row i − 1. Let Nd denote the minimum j such that dp(P ) ≥ d for some match pair
P with end point (i′, j). Furthermore, we let N0 = 0 and Nd = ∞ when no such j

exists. Note that by using ’≥’ instead of ’=’ we make N non-decreasing. Indeed, since
LCSk+(i− 1, Nd+1) ≥ d+ 1 ≥ d, Nd cannot be greater than Nd+1.

Using N to compute the maximum over preceding pairs in Equation 5 turns out to
be the same as for LCSk. However, updating N needs an adjustment. If we look at
the end (i, j) of match pair P and suppose that we have calculated the corresponding
dp(P ), the first temptation is to simply set Ndp(P ) ← min(Ndp(P ), j). In order to main-
tain the non-decreasing property of N , we must ensure that Nd ≤ j for all d ≤ dp(P ).
However, it happens that we don’t really need to update the whole prefix. If dp(P )
is computed from a preceding match pair G as dp(G) + k, upon processing the start
point (i−k+1, j−k+1) of P , we have Ndp(G) < j−k+1 ≤ j. Since for any d, Nd may
only decrease as we move from row to row, this will also hold when we reach the end
point of P (in row i). Therefore, Ndp(G) = Ndp(P )−k will already be smaller than or
equal to j. The same holds for all indices less than dp(G), as N is kept non-decreasing
so we only need to set Ndp(P )−s ← min(Ndp(P )−s, j) for s ∈ 0, .., k − 1. If we encounter
Ndp(P )−s = j we stop, as further values of N are already smaller than or equal to
j. Since the pairs are sorted by column, this bounds the total time spent iterating
through N for a single row by O(l). In the case dp(P ) = dp(G)+1 where P is a contin-
uation of G we have Ndp(G) ≤ j−1 < j, so it is enough to set Ndp(P ) ← min(Ndp(P ), j).
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i N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14

42 0 5 5 5 5 33 43 43 43 43 44 49 49 49 49
45 0 5 5 5 5 31 31 31 31 43 44 49 49 49 49

Figure 2. Example used to highlight the difference in the updates between LCSk and LCSk+. It
shows a typical situation where k entries of N need to be changed. The table shows the state of
N after finishing with rows 42 and 45. Note that the content of the strings does not matter, we
assume a situation where k = 4 and the only match pair in that range is (42, 28) (N does not change
between rows 43 and 44). When processing the start point of P = (42, 28) in row 42, we find that
N4 < 28 ≤ N5, so we take d = 4. This means that using P we can extend a sequence of length 4 into
a sequence of length 8. So when we reach row 45, and see the end point (45, 31) of P , we calculate
dp(P ) = d+ k = 4 + 4 = 8. Finally, we set N5 through N8 to j = 31.

Algorithm 2 Algorithm to compute LCSk+

1: for 0 ≤ i < m do

2: for all x = (i, j) ∈ StartPointsForRow(i) do
3: P ←MatchPair(x)
4: LCSk+,start(P )← d s.t. Nd < j ≤ Nd+1

5: end for

6: for all x = (i, j) ∈ EndPointsForRow(i) do
7: P ←MatchPair(x)
8: G← a match pair s.t. P continues G
9: LCSk+,end(P )← max(LCSk+,start(P ) + k, LCSk+,end(G) + 1)
10: for LCSk,end(P )− k < z ≤ LCSk,end(P ) do
11: Nz ← min(Nz, j)
12: end for

13: end for

14: end for

15: return maxP LCSk,end(P )

We note that lines 2-5 (processing starts of match pairs) are identical for both Algo-
rithm 1 and 2. The differences are in how the ends of the match pairs are processed,
where two things happen: (i) continuations of match pairs are handled and (ii) the
updates are done as described earlier in the section.

4.1 Complexity

In the sparse case, the time complexities of querying and updating N are O(ri log l)
and O(kri) respectively, or O(ri(log l+k)) in total. For the dense case we get O(ri+l)
for both, yielding O(min(ri(log l + k), ri + l)) as the time complexity of processing a
single row. Summing over all the rows, this is bounded by O(min(r(log l+k), r+ml)).
The runtime complexity of the whole algorithm is presented in Theorem 8.

Theorem 8. The presented algorithm computes LCSk+ with the runtime complexity
of O(m+n+ r+min(r(log l+k), r+ml)). The memory complexity is O(l+m+n).

Proof. The analysis of memory complexity is the same as in Theorem 6. For time com-
plexity, we again add up the complexities of generating match pairs and calculating
the length of the LCSk+.

Finally, we mention that one can achieve O(log l) runtime complexity for querying N

by using a more involved data structure (see Appendix A.2). However, we argue that
the added complications are not worth it, since we are often in a setting where values
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of k range in O(log n). A good example of that are the DNA aligners operating on
genomes having billions (log2 10

9 ∼ 30) of nucleotides, with typical values of k ranging
from 10 to 32 [18]. Additionally, too large values of k result in absence of match pairs,
which does not make them useful [14].

5 Notes on the implementation

We implemented the algorithms described in this paper and made the code available
at https://github.com/google/fast-simple-lcsk. This section briefly describes
some details of our implementation which haven’t been addressed in the rest of the
paper.

The analysis of memory complexity for the reconstruction of the optimal solution in
Section 3 shows that maintaining the chains of match pairs causes the biggest part
of the memory consumption - if we store the match pairs until the end of the com-
putation to do the reconstruction we need O(r) memory. For long inputs, this makes
it impossible to fit the computation into RAM of a single computer. To reduce the
memory requirements we can observe the following: at any moment of the processing,
we will have a set of reconstruction paths ending with a match pair contained in the
array M - we only need to keep the match pairs on these paths. As soon as there is
no reconstruction path going from M to some match pair x, we can delete x. This is
implemented as follows: every match pair is reference counted and has a pointer to its
predecessor in the reconstruction path. The last match pair in every reconstruction
path is pointed to from array M . As soon as M stops pointing to such match pair,
its reference count drops to zero and it is deleted. This can further cause that the
reference count of its predecessor dropped to zero so that one gets deallocated, etc.3

In order to demonstrate savings of the memory consumption on the real world data,
we performed simple experiments on different chromosomes from the human genome4.
We computed LCSk of several chromosomes with themselves and compared the num-
ber of match pairs with the maximum number of match pairs kept in memory during
computation for different values of k, in order to get an estimate on their relation in
real data. Figure 3 shows that the savings of the memory consumption are significant.
In particular, we can see that the described optimization can save 700-1000x of the
memory. The savings tend to increase as the number of match pairs increases.

6 Conclusion and future work

We have demonstrated a single and simple algorithm for computing both LCSk and
LCSk+ of two strings. The algorithm beats the runtime complexity of the existing ap-
proaches and does not require complex data structures. Also, we have demonstrated
a heuristic for reducing the memory needed to reconstruct the solution. Experiments
on real data demonstrated savings of 700-1000x. Furthermore, we made our imple-
mentation widely accessible.

3 In C++ this can be easily achieved by using std::shared ptr.
4 Homo sapiens.GRCh38 (Release 88) obtained from www.ensembl.org [17]

https://github.com/google/fast-simple-lcsk
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k chromosome match pairs max in memory compression factor

30 1 5 627 330 181 7 802 719 721.20
30 2 5 737 185 065 8 186 269 700.83
30 3 3 575 560 336 6 778 074 527.51
29 1 6 428 219 516 8 090 660 794.52
29 2 6 368 795 382 8 494 144 749.78
29 3 3 971 642 925 7 020 437 565.72
28 1 7 374 448 317 8 399 480 877.96
28 2 7 108 071 229 8 824 093 805.52
28 3 4 440 640 300 7 277 931 610.15
27 1 8 540 954 582 8 732 809 978.03
27 2 8 012 803 096 9 179 547 872.89
27 3 5 014 652 783 7 554 106 663.83
26 1 9 954 502 925 9 092 744 1094.77
26 2 9 100 424 727 9 537 800 954.14
26 3 5 708 852 882 7 849 184 727.31

Figure 3. The comparison of the number of all the match pairs and the number of max match pairs
kept in memory at any moment of the computation for the first few chromosomes from the human
genome and varying values of k. The ratios of these numbers directly translates to the savings in
the memory required for the reconstruction. We note that in our case of computing LCSk of a
chromosome with itself, the number of match pairs is going to be a sum of squares.

As a direction for future research we would like to pose few questions:

• Is it possible to create a link between the memory optimization we described with
what is known as dominant points in LCS-related literature (see Appendix A.3)?
• It is not clear that all the match pairs are useful in the search for the optimal
sequences. Can we speed up the algorithms by developing rules for discarding
some of them, before even starting the computation?
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A Appendix

A.1 Generating the match pairs

Algorithm 1 assumes that it has a list of start and end points already available. Here
we address how to obtain it. We offer two approaches which have the same runtime
complexity, but different tradeoffs between the simplicity and the assumptions on the
input data.

Deorowicz and Grabowski [8] described an algorithm for enumerating all the match
pairs by using a suffix array built over the string B#A5. The LCP (Longest Com-
mon Prefix) table is used to group all the suffixes of that string sharing a prefix of
at least k. With careful bookkeeping it is possible to enumerate all the columns j

which correspond to match pairs starting in row i. For more details please consult
the referenced paper.

We note that in practice we are often in a setting where either the alphabet size Σ is
small or useful values of k are small (e. g. DNA has Σ = 4 and the popular tools for
aligning the DNA often set k to a range 10-32 [18]). If it happens that Σk is small
enough to fit a 64-bit integer, we can easily and cheaply obtain perfect hashing of the
k-mers by treating them as k-digit number in base Σ. Having that, we can build a
hash table H mapping from the hashes of all the k-mers of B to the indices of their
start position. Enumerating all the match pairs starting in a row i then comes down
to hashing A[i : i+ k) and looking up all the indices from H. This gives us a simpler
algorithm, but still relevant in practice.

Both of the described approaches show how to generate the match pairs inO(n+m+r)
time. We note that Algorithm 1 requires the start and end match points at every row.
The start points for row i are obtained directly by generating the match pairs at row
i. The end points for row i are obtained by generating the match pairs at row i−k+1.

A.2 An alternative to O(k) updates for LCSk+

The operations we need are querying a single element of the array, and setting all ele-
ments in a given prefix [0..i] to the minimum of a given value v and their present value.

One approach is to use a complete binary tree in which the leaves correspond to
array elements in order. An internal node then represents an interval of the array.
To simplify things, we think of leaves as intervals consisting of a single element.
Every node of the tree has an associated value, initially set to ∞. We denote the leaf
representing element Ni by L(i). The algorithm is as follows:

• The update for prefix [0, i] with value v is done by setting the values left siblings
(if they exist) of nodes along the path from root to L(i+ 1) to the minimum of v
and their present value (updates are lazily propagated to the leaves).
• The query for Ni is done by finding the minimum of the values along the path
from root to the appropriate leaf L(i).

5 B#A = string B, concatenated with character ’#’, concatenated with string A
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a
a
a
a
a
a
a
a

a a a a a a a a
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 2 2 2 2 2 2 2
0 0 2 2 2 2 2 2 2
0 0 2 2 4 4 4 4 4
0 0 2 2 4 4 4 4 4
0 0 2 2 4 4 6 6 6
0 0 2 2 4 4 6 6 6
0 0 2 2 4 4 6 6 8

a
a

b
b
c
c

d
d

b b a a d d c c
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 2 2 2 2 2
0 0 0 0 2 2 2 2 2
0 0 2 2 2 2 2 2 2
0 0 2 2 2 2 2 2 2
0 0 2 2 2 2 2 2 4
0 0 2 2 2 2 2 2 4
0 0 2 2 2 2 4 4 4

Figure 4. The full LCSk table for two different string pairs, with k = 2. The encircled fields are
called dominant points. For the purposes of reconstructing the solution, it is sufficient to only keep
the match pairs ending at these locations.

Looking at the query and update together, we see that querying for i we will, for
every previously applied update on [0..j] such that i ≤ j, encounter exactly one node
that was affected by it, and thus correctly calculate the current value of Ni. Since the
depth of the tree is O(log l), that is also the time complexity of our operations.

By using this structure, we can reduce the runtime complexity of computing LCSk+

to O(m+ n+ r +min(r log l, r +ml)).

A.3 Dominant points

The example strings shown in Figure 4 (left) generate match pairs at almost all the
indexes. In this case r = Ω(mn), which makes the memory required to reconstruct
the solution extremely high. Still, looking at the table, we can observe the following:
in order to build any of the table entries with value 4, we only need to keep the
topmost-leftmost entry with value 2, as opposed to keeping all of them. In fact, the
points that we need to keep in order to reconstruct the solution are known in the
LCS-related literature as dominant points.

Definition 9 (Dominant points [2,1]). Lets look at a table T (i, j) =LCSk(i, j) or
T (i, j) =LCSk+(i, j). A point (i, j) is then called q-dominant if T (i, j) = q and for
any other (i′, j′) such that T (i′, j′) = q it holds that either (i′ > i and j′ ≤ j) or
(i′ ≤ i and j′ > j) is true. The dominant points are then the union over q-dominant
points over all different q.


